src/HOL/simpdata.ML
 author paulson Fri Jan 07 11:06:03 2000 +0100 (2000-01-07) changeset 8114 09a7a180cc99 parent 7711 4dae7a4fceaf child 8473 2798d2f71ec2 permissions -rw-r--r--
tidied parentheses
```     1 (*  Title:      HOL/simpdata.ML
```
```     2     ID:         \$Id\$
```
```     3     Author:     Tobias Nipkow
```
```     4     Copyright   1991  University of Cambridge
```
```     5
```
```     6 Instantiation of the generic simplifier for HOL.
```
```     7 *)
```
```     8
```
```     9 section "Simplifier";
```
```    10
```
```    11 (*** Addition of rules to simpsets and clasets simultaneously ***)	(* FIXME move to Provers/clasimp.ML? *)
```
```    12
```
```    13 infix 4 addIffs delIffs;
```
```    14
```
```    15 (*Takes UNCONDITIONAL theorems of the form A<->B to
```
```    16         the Safe Intr     rule B==>A and
```
```    17         the Safe Destruct rule A==>B.
```
```    18   Also ~A goes to the Safe Elim rule A ==> ?R
```
```    19   Failing other cases, A is added as a Safe Intr rule*)
```
```    20 local
```
```    21   val iff_const = HOLogic.eq_const HOLogic.boolT;
```
```    22
```
```    23   fun addIff ((cla, simp), th) =
```
```    24       (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
```
```    25                 (Const("Not", _) \$ A) =>
```
```    26                     cla addSEs [zero_var_indexes (th RS notE)]
```
```    27               | (con \$ _ \$ _) =>
```
```    28                     if con = iff_const
```
```    29                     then cla addSIs [zero_var_indexes (th RS iffD2)]
```
```    30                               addSDs [zero_var_indexes (th RS iffD1)]
```
```    31                     else  cla addSIs [th]
```
```    32               | _ => cla addSIs [th],
```
```    33        simp addsimps [th])
```
```    34       handle TERM _ => error ("AddIffs: theorem must be unconditional\n" ^
```
```    35                          string_of_thm th);
```
```    36
```
```    37   fun delIff ((cla, simp), th) =
```
```    38       (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
```
```    39                 (Const ("Not", _) \$ A) =>
```
```    40                     cla delrules [zero_var_indexes (th RS notE)]
```
```    41               | (con \$ _ \$ _) =>
```
```    42                     if con = iff_const
```
```    43                     then cla delrules [zero_var_indexes (th RS iffD2),
```
```    44                                        make_elim (zero_var_indexes (th RS iffD1))]
```
```    45                     else cla delrules [th]
```
```    46               | _ => cla delrules [th],
```
```    47        simp delsimps [th])
```
```    48       handle TERM _ => (warning("DelIffs: ignoring conditional theorem\n" ^
```
```    49                           string_of_thm th); (cla, simp));
```
```    50
```
```    51   fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
```
```    52 in
```
```    53 val op addIffs = foldl addIff;
```
```    54 val op delIffs = foldl delIff;
```
```    55 fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
```
```    56 fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
```
```    57 end;
```
```    58
```
```    59
```
```    60 (* "iff" attribute *)
```
```    61
```
```    62 local
```
```    63   fun change_global_css f (thy, th) =
```
```    64     let
```
```    65       val cs_ref = Classical.claset_ref_of thy;
```
```    66       val ss_ref = Simplifier.simpset_ref_of thy;
```
```    67       val (cs', ss') = f ((! cs_ref, ! ss_ref), [th]);
```
```    68     in cs_ref := cs'; ss_ref := ss'; (thy, th) end;
```
```    69
```
```    70   fun change_local_css f (ctxt, th) =
```
```    71     let
```
```    72       val cs = Classical.get_local_claset ctxt;
```
```    73       val ss = Simplifier.get_local_simpset ctxt;
```
```    74       val (cs', ss') = f ((cs, ss), [th]);
```
```    75       val ctxt' =
```
```    76         ctxt
```
```    77         |> Classical.put_local_claset cs'
```
```    78         |> Simplifier.put_local_simpset ss';
```
```    79     in (ctxt', th) end;
```
```    80 in
```
```    81
```
```    82 val iff_add_global = change_global_css (op addIffs);
```
```    83 val iff_add_local = change_local_css (op addIffs);
```
```    84
```
```    85 val iff_attrib_setup =
```
```    86   [Attrib.add_attributes [("iff", (Attrib.no_args iff_add_global, Attrib.no_args iff_add_local),
```
```    87     "add rules to simpset and claset simultaneously")]];
```
```    88
```
```    89 end;
```
```    90
```
```    91
```
```    92 val [prem] = goal (the_context ()) "x==y ==> x=y";
```
```    93 by (rewtac prem);
```
```    94 by (rtac refl 1);
```
```    95 qed "meta_eq_to_obj_eq";
```
```    96
```
```    97 local
```
```    98
```
```    99   fun prover s = prove_goal (the_context ()) s (fn _ => [(Blast_tac 1)]);
```
```   100
```
```   101 in
```
```   102
```
```   103 (*Make meta-equalities.  The operator below is Trueprop*)
```
```   104
```
```   105 fun mk_meta_eq r = r RS eq_reflection;
```
```   106
```
```   107 val Eq_TrueI  = mk_meta_eq(prover  "P --> (P = True)"  RS mp);
```
```   108 val Eq_FalseI = mk_meta_eq(prover "~P --> (P = False)" RS mp);
```
```   109
```
```   110 fun mk_eq th = case concl_of th of
```
```   111         Const("==",_)\$_\$_       => th
```
```   112     |   _\$(Const("op =",_)\$_\$_) => mk_meta_eq th
```
```   113     |   _\$(Const("Not",_)\$_)    => th RS Eq_FalseI
```
```   114     |   _                       => th RS Eq_TrueI;
```
```   115 (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
```
```   116
```
```   117 fun mk_eq_True r = Some(r RS meta_eq_to_obj_eq RS Eq_TrueI);
```
```   118
```
```   119 fun mk_meta_cong rl =
```
```   120   standard(mk_meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
```
```   121   handle THM _ =>
```
```   122   error("Premises and conclusion of congruence rules must be =-equalities");
```
```   123
```
```   124 val not_not = prover "(~ ~ P) = P";
```
```   125
```
```   126 val simp_thms = [not_not] @ map prover
```
```   127  [ "(x=x) = True",
```
```   128    "(~True) = False", "(~False) = True",
```
```   129    "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
```
```   130    "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
```
```   131    "(True --> P) = P", "(False --> P) = True",
```
```   132    "(P --> True) = True", "(P --> P) = True",
```
```   133    "(P --> False) = (~P)", "(P --> ~P) = (~P)",
```
```   134    "(P & True) = P", "(True & P) = P",
```
```   135    "(P & False) = False", "(False & P) = False",
```
```   136    "(P & P) = P", "(P & (P & Q)) = (P & Q)",
```
```   137    "(P & ~P) = False",    "(~P & P) = False",
```
```   138    "(P | True) = True", "(True | P) = True",
```
```   139    "(P | False) = P", "(False | P) = P",
```
```   140    "(P | P) = P", "(P | (P | Q)) = (P | Q)",
```
```   141    "(P | ~P) = True",    "(~P | P) = True",
```
```   142    "((~P) = (~Q)) = (P=Q)",
```
```   143    "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x",
```
```   144 (*two needed for the one-point-rule quantifier simplification procs*)
```
```   145    "(? x. x=t & P(x)) = P(t)",		(*essential for termination!!*)
```
```   146    "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)
```
```   147
```
```   148 (* Add congruence rules for = (instead of ==) *)
```
```   149
```
```   150 (* ###FIXME: Move to simplifier,
```
```   151    taking mk_meta_cong as input, eliminating addeqcongs and deleqcongs *)
```
```   152 infix 4 addcongs delcongs;
```
```   153 fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);
```
```   154 fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);
```
```   155 fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
```
```   156 fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
```
```   157
```
```   158
```
```   159 val imp_cong = impI RSN
```
```   160     (2, prove_goal (the_context ()) "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
```
```   161         (fn _=> [(Blast_tac 1)]) RS mp RS mp);
```
```   162
```
```   163 (*Miniscoping: pushing in existential quantifiers*)
```
```   164 val ex_simps = map prover
```
```   165                 ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
```
```   166                  "(EX x. P & Q x)   = (P & (EX x. Q x))",
```
```   167                  "(EX x. P x | Q)   = ((EX x. P x) | Q)",
```
```   168                  "(EX x. P | Q x)   = (P | (EX x. Q x))",
```
```   169                  "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
```
```   170                  "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
```
```   171
```
```   172 (*Miniscoping: pushing in universal quantifiers*)
```
```   173 val all_simps = map prover
```
```   174                 ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
```
```   175                  "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
```
```   176                  "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
```
```   177                  "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
```
```   178                  "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
```
```   179                  "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
```
```   180
```
```   181
```
```   182 (* elimination of existential quantifiers in assumptions *)
```
```   183
```
```   184 val ex_all_equiv =
```
```   185   let val lemma1 = prove_goal (the_context ())
```
```   186         "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
```
```   187         (fn prems => [resolve_tac prems 1, etac exI 1]);
```
```   188       val lemma2 = prove_goalw (the_context ()) [Ex_def]
```
```   189         "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
```
```   190         (fn prems => [(REPEAT(resolve_tac prems 1))])
```
```   191   in equal_intr lemma1 lemma2 end;
```
```   192
```
```   193 end;
```
```   194
```
```   195 bind_thms ("ex_simps", ex_simps);
```
```   196 bind_thms ("all_simps", all_simps);
```
```   197 bind_thm ("not_not", not_not);
```
```   198
```
```   199 (* Elimination of True from asumptions: *)
```
```   200
```
```   201 val True_implies_equals = prove_goal (the_context ())
```
```   202  "(True ==> PROP P) == PROP P"
```
```   203 (fn _ => [rtac equal_intr_rule 1, atac 2,
```
```   204           METAHYPS (fn prems => resolve_tac prems 1) 1,
```
```   205           rtac TrueI 1]);
```
```   206
```
```   207 fun prove nm thm  = qed_goal nm (the_context ()) thm (fn _ => [(Blast_tac 1)]);
```
```   208
```
```   209 prove "eq_commute" "(a=b)=(b=a)";
```
```   210 prove "eq_left_commute" "(P=(Q=R)) = (Q=(P=R))";
```
```   211 prove "eq_assoc" "((P=Q)=R) = (P=(Q=R))";
```
```   212 val eq_ac = [eq_commute, eq_left_commute, eq_assoc];
```
```   213
```
```   214 prove "conj_commute" "(P&Q) = (Q&P)";
```
```   215 prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
```
```   216 val conj_comms = [conj_commute, conj_left_commute];
```
```   217 prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
```
```   218
```
```   219 prove "disj_commute" "(P|Q) = (Q|P)";
```
```   220 prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
```
```   221 val disj_comms = [disj_commute, disj_left_commute];
```
```   222 prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
```
```   223
```
```   224 prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
```
```   225 prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
```
```   226
```
```   227 prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
```
```   228 prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
```
```   229
```
```   230 prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
```
```   231 prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
```
```   232 prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
```
```   233
```
```   234 (*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
```
```   235 prove "imp_disj_not1" "(P --> Q | R) = (~Q --> P --> R)";
```
```   236 prove "imp_disj_not2" "(P --> Q | R) = (~R --> P --> Q)";
```
```   237
```
```   238 prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
```
```   239 prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
```
```   240
```
```   241 prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
```
```   242 prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
```
```   243 prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
```
```   244 prove "not_iff" "(P~=Q) = (P = (~Q))";
```
```   245 prove "disj_not1" "(~P | Q) = (P --> Q)";
```
```   246 prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)
```
```   247 prove "imp_conv_disj" "(P --> Q) = ((~P) | Q)";
```
```   248
```
```   249 prove "iff_conv_conj_imp" "(P = Q) = ((P --> Q) & (Q --> P))";
```
```   250
```
```   251
```
```   252 (*Avoids duplication of subgoals after split_if, when the true and false
```
```   253   cases boil down to the same thing.*)
```
```   254 prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
```
```   255
```
```   256 prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
```
```   257 prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
```
```   258 prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
```
```   259 prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
```
```   260
```
```   261 prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
```
```   262 prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
```
```   263
```
```   264 (* '&' congruence rule: not included by default!
```
```   265    May slow rewrite proofs down by as much as 50% *)
```
```   266
```
```   267 let val th = prove_goal (the_context ())
```
```   268                 "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
```
```   269                 (fn _=> [(Blast_tac 1)])
```
```   270 in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
```
```   271
```
```   272 let val th = prove_goal (the_context ())
```
```   273                 "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
```
```   274                 (fn _=> [(Blast_tac 1)])
```
```   275 in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
```
```   276
```
```   277 (* '|' congruence rule: not included by default! *)
```
```   278
```
```   279 let val th = prove_goal (the_context ())
```
```   280                 "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
```
```   281                 (fn _=> [(Blast_tac 1)])
```
```   282 in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
```
```   283
```
```   284 prove "eq_sym_conv" "(x=y) = (y=x)";
```
```   285
```
```   286
```
```   287 (** if-then-else rules **)
```
```   288
```
```   289 Goalw [if_def] "(if True then x else y) = x";
```
```   290 by (Blast_tac 1);
```
```   291 qed "if_True";
```
```   292
```
```   293 Goalw [if_def] "(if False then x else y) = y";
```
```   294 by (Blast_tac 1);
```
```   295 qed "if_False";
```
```   296
```
```   297 Goalw [if_def] "P ==> (if P then x else y) = x";
```
```   298 by (Blast_tac 1);
```
```   299 qed "if_P";
```
```   300
```
```   301 Goalw [if_def] "~P ==> (if P then x else y) = y";
```
```   302 by (Blast_tac 1);
```
```   303 qed "if_not_P";
```
```   304
```
```   305 Goal "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))";
```
```   306 by (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1);
```
```   307 by (stac if_P 2);
```
```   308 by (stac if_not_P 1);
```
```   309 by (ALLGOALS (Blast_tac));
```
```   310 qed "split_if";
```
```   311
```
```   312 (* for backwards compatibility: *)
```
```   313 val expand_if = split_if;
```
```   314
```
```   315 Goal "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))";
```
```   316 by (stac split_if 1);
```
```   317 by (Blast_tac 1);
```
```   318 qed "split_if_asm";
```
```   319
```
```   320 Goal "(if c then x else x) = x";
```
```   321 by (stac split_if 1);
```
```   322 by (Blast_tac 1);
```
```   323 qed "if_cancel";
```
```   324
```
```   325 Goal "(if x = y then y else x) = x";
```
```   326 by (stac split_if 1);
```
```   327 by (Blast_tac 1);
```
```   328 qed "if_eq_cancel";
```
```   329
```
```   330 (*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
```
```   331 Goal "(if P then Q else R) = ((P-->Q) & (~P-->R))";
```
```   332 by (rtac split_if 1);
```
```   333 qed "if_bool_eq_conj";
```
```   334
```
```   335 (*And this form is useful for expanding IFs on the LEFT*)
```
```   336 Goal "(if P then Q else R) = ((P&Q) | (~P&R))";
```
```   337 by (stac split_if 1);
```
```   338 by (Blast_tac 1);
```
```   339 qed "if_bool_eq_disj";
```
```   340
```
```   341
```
```   342 (*** make simplification procedures for quantifier elimination ***)
```
```   343
```
```   344 structure Quantifier1 = Quantifier1Fun(
```
```   345 struct
```
```   346   (*abstract syntax*)
```
```   347   fun dest_eq((c as Const("op =",_)) \$ s \$ t) = Some(c,s,t)
```
```   348     | dest_eq _ = None;
```
```   349   fun dest_conj((c as Const("op &",_)) \$ s \$ t) = Some(c,s,t)
```
```   350     | dest_conj _ = None;
```
```   351   val conj = HOLogic.conj
```
```   352   val imp  = HOLogic.imp
```
```   353   (*rules*)
```
```   354   val iff_reflection = eq_reflection
```
```   355   val iffI = iffI
```
```   356   val sym  = sym
```
```   357   val conjI= conjI
```
```   358   val conjE= conjE
```
```   359   val impI = impI
```
```   360   val impE = impE
```
```   361   val mp   = mp
```
```   362   val exI  = exI
```
```   363   val exE  = exE
```
```   364   val allI = allI
```
```   365   val allE = allE
```
```   366 end);
```
```   367
```
```   368 local
```
```   369 val ex_pattern =
```
```   370   Thm.read_cterm (Theory.sign_of (the_context ())) ("EX x. P(x) & Q(x)",HOLogic.boolT)
```
```   371
```
```   372 val all_pattern =
```
```   373   Thm.read_cterm (Theory.sign_of (the_context ())) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
```
```   374
```
```   375 in
```
```   376 val defEX_regroup =
```
```   377   mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
```
```   378 val defALL_regroup =
```
```   379   mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
```
```   380 end;
```
```   381
```
```   382
```
```   383 (*** Case splitting ***)
```
```   384
```
```   385 structure SplitterData =
```
```   386   struct
```
```   387   structure Simplifier = Simplifier
```
```   388   val mk_eq          = mk_eq
```
```   389   val meta_eq_to_iff = meta_eq_to_obj_eq
```
```   390   val iffD           = iffD2
```
```   391   val disjE          = disjE
```
```   392   val conjE          = conjE
```
```   393   val exE            = exE
```
```   394   val contrapos      = contrapos
```
```   395   val contrapos2     = contrapos2
```
```   396   val notnotD        = notnotD
```
```   397   end;
```
```   398
```
```   399 structure Splitter = SplitterFun(SplitterData);
```
```   400
```
```   401 val split_tac        = Splitter.split_tac;
```
```   402 val split_inside_tac = Splitter.split_inside_tac;
```
```   403 val split_asm_tac    = Splitter.split_asm_tac;
```
```   404 val op addsplits     = Splitter.addsplits;
```
```   405 val op delsplits     = Splitter.delsplits;
```
```   406 val Addsplits        = Splitter.Addsplits;
```
```   407 val Delsplits        = Splitter.Delsplits;
```
```   408
```
```   409 (*In general it seems wrong to add distributive laws by default: they
```
```   410   might cause exponential blow-up.  But imp_disjL has been in for a while
```
```   411   and cannot be removed without affecting existing proofs.  Moreover,
```
```   412   rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
```
```   413   grounds that it allows simplification of R in the two cases.*)
```
```   414
```
```   415 fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
```
```   416
```
```   417 val mksimps_pairs =
```
```   418   [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
```
```   419    ("All", [spec]), ("True", []), ("False", []),
```
```   420    ("If", [if_bool_eq_conj RS iffD1])];
```
```   421
```
```   422 (* ###FIXME: move to Provers/simplifier.ML
```
```   423 val mk_atomize:      (string * thm list) list -> thm -> thm list
```
```   424 *)
```
```   425 (* ###FIXME: move to Provers/simplifier.ML *)
```
```   426 fun mk_atomize pairs =
```
```   427   let fun atoms th =
```
```   428         (case concl_of th of
```
```   429            Const("Trueprop",_) \$ p =>
```
```   430              (case head_of p of
```
```   431                 Const(a,_) =>
```
```   432                   (case assoc(pairs,a) of
```
```   433                      Some(rls) => flat (map atoms ([th] RL rls))
```
```   434                    | None => [th])
```
```   435               | _ => [th])
```
```   436          | _ => [th])
```
```   437   in atoms end;
```
```   438
```
```   439 fun mksimps pairs = (map mk_eq o mk_atomize pairs o gen_all);
```
```   440
```
```   441 fun unsafe_solver_tac prems =
```
```   442   FIRST'[resolve_tac(reflexive_thm::TrueI::refl::prems), atac, etac FalseE];
```
```   443 val unsafe_solver = mk_solver "HOL unsafe" unsafe_solver_tac;
```
```   444
```
```   445 (*No premature instantiation of variables during simplification*)
```
```   446 fun safe_solver_tac prems =
```
```   447   FIRST'[match_tac(reflexive_thm::TrueI::refl::prems),
```
```   448          eq_assume_tac, ematch_tac [FalseE]];
```
```   449 val safe_solver = mk_solver "HOL safe" safe_solver_tac;
```
```   450
```
```   451 val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
```
```   452 			    setSSolver safe_solver
```
```   453 			    setSolver  unsafe_solver
```
```   454 			    setmksimps (mksimps mksimps_pairs)
```
```   455 			    setmkeqTrue mk_eq_True;
```
```   456
```
```   457 val HOL_ss =
```
```   458     HOL_basic_ss addsimps
```
```   459      ([triv_forall_equality, (* prunes params *)
```
```   460        True_implies_equals, (* prune asms `True' *)
```
```   461        if_True, if_False, if_cancel, if_eq_cancel,
```
```   462        imp_disjL, conj_assoc, disj_assoc,
```
```   463        de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
```
```   464        disj_not1, not_all, not_ex, cases_simp, Eps_eq, Eps_sym_eq]
```
```   465      @ ex_simps @ all_simps @ simp_thms)
```
```   466      addsimprocs [defALL_regroup,defEX_regroup]
```
```   467      addcongs [imp_cong]
```
```   468      addsplits [split_if];
```
```   469
```
```   470 (*Simplifies x assuming c and y assuming ~c*)
```
```   471 val prems = Goalw [if_def]
```
```   472   "[| b=c; c ==> x=u; ~c ==> y=v |] ==> \
```
```   473 \  (if b then x else y) = (if c then u else v)";
```
```   474 by (asm_simp_tac (HOL_ss addsimps prems) 1);
```
```   475 qed "if_cong";
```
```   476
```
```   477 (*Prevents simplification of x and y: faster and allows the execution
```
```   478   of functional programs. NOW THE DEFAULT.*)
```
```   479 Goal "b=c ==> (if b then x else y) = (if c then x else y)";
```
```   480 by (etac arg_cong 1);
```
```   481 qed "if_weak_cong";
```
```   482
```
```   483 (*Prevents simplification of t: much faster*)
```
```   484 Goal "a = b ==> (let x=a in t(x)) = (let x=b in t(x))";
```
```   485 by (etac arg_cong 1);
```
```   486 qed "let_weak_cong";
```
```   487
```
```   488 Goal "f(if c then x else y) = (if c then f x else f y)";
```
```   489 by (simp_tac (HOL_ss setloop (split_tac [split_if])) 1);
```
```   490 qed "if_distrib";
```
```   491
```
```   492 (*For expand_case_tac*)
```
```   493 val prems = Goal "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
```
```   494 by (case_tac "P" 1);
```
```   495 by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
```
```   496 qed "expand_case";
```
```   497
```
```   498 (*Used in Auth proofs.  Typically P contains Vars that become instantiated
```
```   499   during unification.*)
```
```   500 fun expand_case_tac P i =
```
```   501     res_inst_tac [("P",P)] expand_case i THEN
```
```   502     Simp_tac (i+1) THEN
```
```   503     Simp_tac i;
```
```   504
```
```   505 (*This lemma restricts the effect of the rewrite rule u=v to the left-hand
```
```   506   side of an equality.  Used in {Integ,Real}/simproc.ML*)
```
```   507 Goal "x=y ==> (x=z) = (y=z)";
```
```   508 by (asm_simp_tac HOL_ss 1);
```
```   509 qed "restrict_to_left";
```
```   510
```
```   511 (* default simpset *)
```
```   512 val simpsetup =
```
```   513     [fn thy => (simpset_ref_of thy := HOL_ss addcongs [if_weak_cong];
```
```   514 		thy)];
```
```   515
```
```   516
```
```   517 (*** integration of simplifier with classical reasoner ***)
```
```   518
```
```   519 structure Clasimp = ClasimpFun
```
```   520  (structure Simplifier = Simplifier
```
```   521         and Classical  = Classical
```
```   522         and Blast      = Blast);
```
```   523 open Clasimp;
```
```   524
```
```   525 val HOL_css = (HOL_cs, HOL_ss);
```
```   526
```
```   527
```
```   528 (*** A general refutation procedure ***)
```
```   529
```
```   530 (* Parameters:
```
```   531
```
```   532    test: term -> bool
```
```   533    tests if a term is at all relevant to the refutation proof;
```
```   534    if not, then it can be discarded. Can improve performance,
```
```   535    esp. if disjunctions can be discarded (no case distinction needed!).
```
```   536
```
```   537    prep_tac: int -> tactic
```
```   538    A preparation tactic to be applied to the goal once all relevant premises
```
```   539    have been moved to the conclusion.
```
```   540
```
```   541    ref_tac: int -> tactic
```
```   542    the actual refutation tactic. Should be able to deal with goals
```
```   543    [| A1; ...; An |] ==> False
```
```   544    where the Ai are atomic, i.e. no top-level &, | or ?
```
```   545 *)
```
```   546
```
```   547 fun refute_tac test prep_tac ref_tac =
```
```   548   let val nnf_simps =
```
```   549         [imp_conv_disj,iff_conv_conj_imp,de_Morgan_disj,de_Morgan_conj,
```
```   550          not_all,not_ex,not_not];
```
```   551       val nnf_simpset =
```
```   552         empty_ss setmkeqTrue mk_eq_True
```
```   553                  setmksimps (mksimps mksimps_pairs)
```
```   554                  addsimps nnf_simps;
```
```   555       val prem_nnf_tac = full_simp_tac nnf_simpset;
```
```   556
```
```   557       val refute_prems_tac =
```
```   558         REPEAT(eresolve_tac [conjE, exE] 1 ORELSE
```
```   559                filter_prems_tac test 1 ORELSE
```
```   560                etac disjE 1) THEN
```
```   561         ref_tac 1;
```
```   562   in EVERY'[TRY o filter_prems_tac test,
```
```   563             DETERM o REPEAT o etac rev_mp, prep_tac, rtac ccontr, prem_nnf_tac,
```
```   564             SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
```
```   565   end;
```