1 (* Title: HOL/Groebner_Basis.thy
3 Author: Amine Chaieb, TU Muenchen
6 header {* Semiring normalization and Groebner Bases *}
10 "Tools/Groebner_Basis/misc.ML"
11 "Tools/Groebner_Basis/normalizer_data.ML"
12 ("Tools/Groebner_Basis/normalizer.ML")
13 ("Tools/Groebner_Basis/groebner.ML")
17 subsection {* Semiring normalization *}
19 setup NormalizerData.setup
23 fixes add mul pwr r0 r1
24 assumes add_a:"(add x (add y z) = add (add x y) z)"
25 and add_c: "add x y = add y x" and add_0:"add r0 x = x"
26 and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x"
27 and mul_1:"mul r1 x = x" and mul_0:"mul r0 x = r0"
28 and mul_d:"mul x (add y z) = add (mul x y) (mul x z)"
29 and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)"
32 lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)"
35 then show ?case by (auto simp add: pwr_0 mul_1)
38 from this [symmetric] show ?case
39 by (auto simp add: pwr_Suc mul_1 mul_a)
42 lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
43 proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1)
45 assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)"
46 have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))"
48 also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c)
49 also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a)
50 finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) =
51 mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c)
54 lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)"
55 proof (induct p arbitrary: q)
57 show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto
60 thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc)
64 subsubsection {* Declaring the abstract theory *}
67 includes meta_term_syntax
68 shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)"
69 and "TERM r0" and "TERM r1"
73 "add (mul a m) (mul b m) = mul (add a b) m"
74 "add (mul a m) m = mul (add a r1) m"
75 "add m (mul a m) = mul (add a r1) m"
76 "add m m = mul (add r1 r1) m"
80 "mul (add a b) c = add (mul a c) (mul b c)"
85 "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
86 "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
87 "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
88 "mul (mul lx ly) rx = mul (mul lx rx) ly"
89 "mul (mul lx ly) rx = mul lx (mul ly rx)"
90 "mul lx (mul rx ry) = mul (mul lx rx) ry"
91 "mul lx (mul rx ry) = mul rx (mul lx ry)"
92 "add (add a b) (add c d) = add (add a c) (add b d)"
93 "add (add a b) c = add a (add b c)"
94 "add a (add c d) = add c (add a d)"
95 "add (add a b) c = add (add a c) b"
97 "add a (add c d) = add (add a c) d"
98 "mul (pwr x p) (pwr x q) = pwr x (p + q)"
99 "mul x (pwr x q) = pwr x (Suc q)"
100 "mul (pwr x q) x = pwr x (Suc q)"
102 "pwr (mul x y) q = mul (pwr x q) (pwr y q)"
103 "pwr (pwr x p) q = pwr x (p * q)"
106 "mul x (add y z) = add (mul x y) (mul x z)"
107 "pwr x (Suc q) = mul x (pwr x q)"
108 "pwr x (2*n) = mul (pwr x n) (pwr x n)"
109 "pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))"
111 show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp
112 next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp
113 next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp
114 next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp
115 next show "add r0 a = a" using add_0 by simp
116 next show "add a r0 = a" using add_0 add_c by simp
117 next show "mul a b = mul b a" using mul_c by simp
118 next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp
119 next show "mul r0 a = r0" using mul_0 by simp
120 next show "mul a r0 = r0" using mul_0 mul_c by simp
121 next show "mul r1 a = a" using mul_1 by simp
122 next show "mul a r1 = a" using mul_1 mul_c by simp
123 next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)"
124 using mul_c mul_a by simp
125 next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))"
128 have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c)
129 also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp
131 show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)"
133 next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp
135 show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a)
136 next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a )
137 next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c)
138 next show "add (add a b) (add c d) = add (add a c) (add b d)"
139 using add_c add_a by simp
140 next show "add (add a b) c = add a (add b c)" using add_a by simp
141 next show "add a (add c d) = add c (add a d)"
142 apply (simp add: add_a) by (simp only: add_c)
143 next show "add (add a b) c = add (add a c) b" using add_a add_c by simp
144 next show "add a c = add c a" by (rule add_c)
145 next show "add a (add c d) = add (add a c) d" using add_a by simp
146 next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr)
147 next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp
148 next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp
149 next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c)
150 next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul)
151 next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr)
152 next show "pwr x 0 = r1" using pwr_0 .
153 next show "pwr x 1 = x" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c)
154 next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp
155 next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp
156 next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr)
157 next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))"
158 by (simp add: nat_number pwr_Suc mul_pwr)
162 lemma "axioms" [normalizer
163 semiring ops: semiring_ops
164 semiring rules: semiring_rules]:
165 "gb_semiring add mul pwr r0 r1" by fact
169 interpretation class_semiring: gb_semiring
170 ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"]
171 by unfold_locales (auto simp add: ring_simps power_Suc)
174 add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
176 lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)"
177 by (simp add: numeral_1_eq_1)
178 lemmas comp_arith = Let_def arith_simps nat_arith rel_simps if_False
179 if_True add_0 add_Suc add_number_of_left mult_number_of_left
180 numeral_1_eq_1[symmetric] Suc_eq_add_numeral_1
181 numeral_0_eq_0[symmetric] numerals[symmetric] not_iszero_1
182 iszero_number_of_1 iszero_number_of_0 nonzero_number_of_Min
183 iszero_number_of_Pls iszero_0 not_iszero_Numeral1
185 lemmas semiring_norm = comp_arith
192 fun numeral_is_const ct =
193 can HOLogic.dest_number (Thm.term_of ct);
196 (case Rat.quotient_of_rat x of (i, 1) => i
197 | _ => error "int_of_rat: bad int");
200 Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}) then_conv
201 Simplifier.rewrite (HOL_basic_ss addsimps
202 (@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)}));
206 fun normalizer_funs key =
207 NormalizerData.funs key
208 {is_const = fn phi => numeral_is_const,
209 dest_const = fn phi => fn ct =>
211 (HOLogic.dest_number (Thm.term_of ct)
212 handle TERM _ => error "ring_dest_const")),
213 mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT (int_of_rat x),
214 conv = fn phi => K numeral_conv}
219 declaration {* normalizer_funs @{thm class_semiring.axioms} *}
222 locale gb_ring = gb_semiring +
223 fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
224 and neg :: "'a \<Rightarrow> 'a"
225 assumes neg_mul: "neg x = mul (neg r1) x"
226 and sub_add: "sub x y = add x (neg y)"
230 includes meta_term_syntax
231 shows "TERM (sub x y)" and "TERM (neg x)" .
233 lemmas ring_rules = neg_mul sub_add
235 lemma "axioms" [normalizer
236 semiring ops: semiring_ops
237 semiring rules: semiring_rules
239 ring rules: ring_rules]:
240 "gb_ring add mul pwr r0 r1 sub neg" by fact
245 interpretation class_ring: gb_ring ["op +" "op *" "op ^"
246 "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"]
247 by unfold_locales simp_all
250 declaration {* normalizer_funs @{thm class_ring.axioms} *}
252 use "Tools/Groebner_Basis/normalizer.ML"
254 method_setup sring_norm = {*
255 Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (Normalizer.semiring_normalize_tac ctxt))
256 *} "semiring normalizer"
259 locale gb_field = gb_ring +
260 fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
261 and inverse:: "'a \<Rightarrow> 'a"
262 assumes divide: "divide x y = mul x (inverse y)"
263 and inverse: "inverse x = divide r1 x"
266 lemma "axioms" [normalizer
267 semiring ops: semiring_ops
268 semiring rules: semiring_rules
270 ring rules: ring_rules]:
271 "gb_field add mul pwr r0 r1 sub neg divide inverse" by fact
276 subsection {* Groebner Bases *}
278 locale semiringb = gb_semiring +
279 assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z"
280 and add_mul_solve: "add (mul w y) (mul x z) =
281 add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z"
284 lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
286 have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp
287 also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
288 using add_mul_solve by blast
289 finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)"
293 lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk>
294 \<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)"
296 assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d"
297 and eq: "add b (mul r c) = add b (mul r d)"
298 hence "mul r c = mul r d" using cnd add_cancel by simp
299 hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)"
300 using mul_0 add_cancel by simp
301 thus "False" using add_mul_solve nz cnd by simp
304 declare "axioms" [normalizer del]
306 lemma "axioms" [normalizer
307 semiring ops: semiring_ops
308 semiring rules: semiring_rules
309 idom rules: noteq_reduce add_scale_eq_noteq]:
310 "semiringb add mul pwr r0 r1" by fact
314 locale ringb = semiringb + gb_ring
317 declare "axioms" [normalizer del]
319 lemma "axioms" [normalizer
320 semiring ops: semiring_ops
321 semiring rules: semiring_rules
323 ring rules: ring_rules
324 idom rules: noteq_reduce add_scale_eq_noteq]:
325 "ringb add mul pwr r0 r1 sub neg" by fact
329 lemma no_zero_divirors_neq0:
330 assumes az: "(a::'a::no_zero_divisors) \<noteq> 0"
331 and ab: "a*b = 0" shows "b = 0"
333 { assume bz: "b \<noteq> 0"
334 from no_zero_divisors [OF az bz] ab have False by blast }
335 thus "b = 0" by blast
338 interpretation class_ringb: ringb
339 ["op +" "op *" "op ^" "0::'a::{idom,recpower,number_ring}" "1" "op -" "uminus"]
340 proof(unfold_locales, simp add: ring_simps power_Suc, auto)
341 fix w x y z ::"'a::{idom,recpower,number_ring}"
342 assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
343 hence ynz': "y - z \<noteq> 0" by simp
344 from p have "w * y + x* z - w*z - x*y = 0" by simp
345 hence "w* (y - z) - x * (y - z) = 0" by (simp add: ring_simps)
346 hence "(y - z) * (w - x) = 0" by (simp add: ring_simps)
347 with no_zero_divirors_neq0 [OF ynz']
348 have "w - x = 0" by blast
353 declaration {* normalizer_funs @{thm class_ringb.axioms} *}
355 interpretation natgb: semiringb
356 ["op +" "op *" "op ^" "0::nat" "1"]
357 proof (unfold_locales, simp add: ring_simps power_Suc)
359 { assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z"
360 hence "y < z \<or> y > z" by arith
362 assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto)
363 then obtain k where kp: "k>0" and yz:"z = y + k" by blast
364 from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz ring_simps)
365 hence "x*k = w*k" by simp
366 hence "w = x" using kp by (simp add: mult_cancel2) }
368 assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto)
369 then obtain k where kp: "k>0" and yz:"y = z + k" by blast
370 from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz ring_simps)
371 hence "w*k = x*k" by simp
372 hence "w = x" using kp by (simp add: mult_cancel2)}
373 ultimately have "w=x" by blast }
374 thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto
377 declaration {* normalizer_funs @{thm natgb.axioms} *}
379 locale fieldgb = ringb + gb_field
382 declare "axioms" [normalizer del]
384 lemma "axioms" [normalizer
385 semiring ops: semiring_ops
386 semiring rules: semiring_rules
388 ring rules: ring_rules
389 idom rules: noteq_reduce add_scale_eq_noteq]:
390 "fieldgb add mul pwr r0 r1 sub neg divide inverse" by unfold_locales
394 lemmas bool_simps = simp_thms(1-34)
396 "(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))"
397 "(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)"
400 lemmas weak_dnf_simps = dnf bool_simps
403 "(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)"
404 "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P"
408 "P \<equiv> False \<Longrightarrow> \<not> P"
409 "\<not> P \<Longrightarrow> (P \<equiv> False)"
412 use "Tools/Groebner_Basis/groebner.ML"
414 method_setup algebra =
417 fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ()
420 val any_keyword = keyword addN || keyword delN
421 val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat;
423 fn src => Method.syntax
424 ((Scan.optional (keyword addN |-- thms) []) --
425 (Scan.optional (keyword delN |-- thms) [])) src
426 #> (fn ((add_ths, del_ths), ctxt) =>
427 Method.SIMPLE_METHOD' (Groebner.ring_tac add_ths del_ths ctxt))
429 *} "solve polynomial equations over (semi)rings using Groebner bases"