3 Author: Tobias Nipkow, based on a theory by David von Oheimb
4 Copyright 1997-2003 TU Muenchen
6 The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
15 types ('a,'b) "~=>" = "'a => 'b option" (infixr 0)
16 translations (type) "a ~=> b " <= (type) "a => b option"
19 "~=>" :: "[type, type] => type" (infixr "\<rightharpoonup>" 0)
22 empty :: "'a ~=> 'b" where
26 map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where
27 "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
30 map_comp (infixl "\<circ>\<^sub>m" 55)
33 map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where
34 "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
37 restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where
38 "m|`A = (\<lambda>x. if x : A then m x else None)"
40 notation (latex output)
41 restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
44 dom :: "('a ~=> 'b) => 'a set" where
45 "dom m = {a. m a ~= None}"
48 ran :: "('a ~=> 'b) => 'b set" where
49 "ran m = {b. EX a. m a = Some b}"
52 map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where
53 "(m\<^isub>1 \<subseteq>\<^sub>m m\<^isub>2) = (\<forall>a \<in> dom m\<^isub>1. m\<^isub>1 a = m\<^isub>2 a)"
56 map_of :: "('a * 'b) list => 'a ~=> 'b"
57 map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)"
63 "_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _")
64 "_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _")
65 "" :: "maplet => maplets" ("_")
66 "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
67 "_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
68 "_Map" :: "maplets => 'a ~=> 'b" ("(1[_])")
71 "_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _")
72 "_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _")
75 "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms"
76 "_MapUpd m (_maplet x y)" == "m(x:=Some y)"
77 "_MapUpd m (_maplets x y)" == "map_upds m x y"
78 "_Map ms" == "_MapUpd (CONST empty) ms"
79 "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2"
80 "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
84 "map_of (p#ps) = (map_of ps)(fst p |-> snd p)"
87 map_upds_def [code func]: "m(xs [|->] ys) == m ++ map_of (rev(zip xs ys))"
90 subsection {* @{term [source] empty} *}
92 lemma empty_upd_none [simp]: "empty(x := None) = empty"
96 subsection {* @{term [source] map_upd} *}
98 lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
101 lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
103 assume "t(k \<mapsto> x) = empty"
104 then have "(t(k \<mapsto> x)) k = None" by simp
105 then show False by simp
109 assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
112 from prems have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
113 then show ?thesis by simp
116 lemma map_upd_Some_unfold:
117 "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
120 lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
123 lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
125 apply (simp (no_asm_use) add:full_SetCompr_eq)
126 apply (rule finite_subset)
127 prefer 2 apply assumption
132 subsection {* @{term [source] map_of} *}
134 lemma map_of_eq_None_iff:
135 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
136 by (induct xys) simp_all
138 lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
141 apply (clarsimp split: if_splits)
144 lemma map_of_eq_Some_iff [simp]:
145 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
148 apply (auto simp: map_of_eq_None_iff [symmetric])
151 lemma Some_eq_map_of_iff [simp]:
152 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
153 by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
155 lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
156 \<Longrightarrow> map_of xys x = Some y"
162 lemma map_of_zip_is_None [simp]:
163 "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
164 by (induct rule: list_induct2) simp_all
166 lemma finite_range_map_of: "finite (range (map_of xys))"
168 apply (simp_all add: image_constant)
169 apply (rule finite_subset)
170 prefer 2 apply assumption
174 lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
175 by (induct xs) (simp, atomize (full), auto)
177 lemma map_of_mapk_SomeI:
178 "inj f ==> map_of t k = Some x ==>
179 map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
180 by (induct t) (auto simp add: inj_eq)
182 lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
185 lemma map_of_filter_in:
186 "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"
189 lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
193 subsection {* @{term [source] option_map} related *}
195 lemma option_map_o_empty [simp]: "option_map f o empty = empty"
198 lemma option_map_o_map_upd [simp]:
199 "option_map f o m(a|->b) = (option_map f o m)(a|->f b)"
203 subsection {* @{term [source] map_comp} related *}
205 lemma map_comp_empty [simp]:
206 "m \<circ>\<^sub>m empty = empty"
207 "empty \<circ>\<^sub>m m = empty"
208 by (auto simp add: map_comp_def intro: ext split: option.splits)
210 lemma map_comp_simps [simp]:
211 "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
212 "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
213 by (auto simp add: map_comp_def)
215 lemma map_comp_Some_iff:
216 "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
217 by (auto simp add: map_comp_def split: option.splits)
219 lemma map_comp_None_iff:
220 "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
221 by (auto simp add: map_comp_def split: option.splits)
224 subsection {* @{text "++"} *}
226 lemma map_add_empty[simp]: "m ++ empty = m"
227 by(simp add: map_add_def)
229 lemma empty_map_add[simp]: "empty ++ m = m"
230 by (rule ext) (simp add: map_add_def split: option.split)
232 lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
233 by (rule ext) (simp add: map_add_def split: option.split)
235 lemma map_add_Some_iff:
236 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
237 by (simp add: map_add_def split: option.split)
239 lemma map_add_SomeD [dest!]:
240 "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
241 by (rule map_add_Some_iff [THEN iffD1])
243 lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
244 by (subst map_add_Some_iff) fast
246 lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
247 by (simp add: map_add_def split: option.split)
249 lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
250 by (rule ext) (simp add: map_add_def)
252 lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
253 by (simp add: map_upds_def)
255 lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
256 unfolding map_add_def
260 apply (simp split add: option.split)
263 lemma finite_range_map_of_map_add:
264 "finite (range f) ==> finite (range (f ++ map_of l))"
266 apply (auto simp del: fun_upd_apply)
267 apply (erule finite_range_updI)
270 lemma inj_on_map_add_dom [iff]:
271 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
272 by (fastsimp simp: map_add_def dom_def inj_on_def split: option.splits)
275 subsection {* @{term [source] restrict_map} *}
277 lemma restrict_map_to_empty [simp]: "m|`{} = empty"
278 by (simp add: restrict_map_def)
280 lemma restrict_map_empty [simp]: "empty|`D = empty"
281 by (simp add: restrict_map_def)
283 lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
284 by (simp add: restrict_map_def)
286 lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
287 by (simp add: restrict_map_def)
289 lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
290 by (auto simp: restrict_map_def ran_def split: split_if_asm)
292 lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
293 by (auto simp: restrict_map_def dom_def split: split_if_asm)
295 lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
296 by (rule ext) (auto simp: restrict_map_def)
298 lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
299 by (rule ext) (auto simp: restrict_map_def)
301 lemma restrict_fun_upd [simp]:
302 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
303 by (simp add: restrict_map_def expand_fun_eq)
305 lemma fun_upd_None_restrict [simp]:
306 "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
307 by (simp add: restrict_map_def expand_fun_eq)
309 lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
310 by (simp add: restrict_map_def expand_fun_eq)
312 lemma fun_upd_restrict_conv [simp]:
313 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
314 by (simp add: restrict_map_def expand_fun_eq)
317 subsection {* @{term [source] map_upds} *}
319 lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
320 by (simp add: map_upds_def)
322 lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
323 by (simp add:map_upds_def)
325 lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
326 by (simp add:map_upds_def)
328 lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
329 m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
331 apply (clarsimp simp add: neq_Nil_conv)
337 lemma map_upds_list_update2_drop [simp]:
338 "\<lbrakk>size xs \<le> i; i < size ys\<rbrakk>
339 \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
340 apply (induct xs arbitrary: m ys i)
344 apply (simp split: nat.split)
347 lemma map_upd_upds_conv_if:
348 "(f(x|->y))(xs [|->] ys) =
349 (if x : set(take (length ys) xs) then f(xs [|->] ys)
350 else (f(xs [|->] ys))(x|->y))"
351 apply (induct xs arbitrary: x y ys f)
354 apply (auto split: split_if simp: fun_upd_twist)
357 lemma map_upds_twist [simp]:
358 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
359 using set_take_subset by (fastsimp simp add: map_upd_upds_conv_if)
361 lemma map_upds_apply_nontin [simp]:
362 "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
363 apply (induct xs arbitrary: ys)
366 apply (auto simp: map_upd_upds_conv_if)
369 lemma fun_upds_append_drop [simp]:
370 "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
371 apply (induct xs arbitrary: m ys)
377 lemma fun_upds_append2_drop [simp]:
378 "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
379 apply (induct xs arbitrary: m ys)
386 lemma restrict_map_upds[simp]:
387 "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
388 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
389 apply (induct xs arbitrary: m ys)
393 apply (simp add: Diff_insert [symmetric] insert_absorb)
394 apply (simp add: map_upd_upds_conv_if)
398 subsection {* @{term [source] dom} *}
400 lemma domI: "m a = Some b ==> a : dom m"
402 (* declare domI [intro]? *)
404 lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
405 by (cases "m a") (auto simp add: dom_def)
407 lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
410 lemma dom_empty [simp]: "dom empty = {}"
413 lemma dom_fun_upd [simp]:
414 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
415 by(auto simp add:dom_def)
417 lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}"
418 by (induct xys) (auto simp del: fun_upd_apply)
420 lemma dom_map_of_conv_image_fst:
421 "dom(map_of xys) = fst ` (set xys)"
422 by(force simp: dom_map_of)
424 lemma dom_map_of_zip [simp]: "[| length xs = length ys; distinct xs |] ==>
425 dom(map_of(zip xs ys)) = set xs"
426 by (induct rule: list_induct2) simp_all
428 lemma finite_dom_map_of: "finite (dom (map_of l))"
429 by (induct l) (auto simp add: dom_def insert_Collect [symmetric])
431 lemma dom_map_upds [simp]:
432 "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
433 apply (induct xs arbitrary: m ys)
439 lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
440 by(auto simp:dom_def)
442 lemma dom_override_on [simp]:
443 "dom(override_on f g A) =
444 (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}"
445 by(auto simp: dom_def override_on_def)
447 lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
448 by (rule ext) (force simp: map_add_def dom_def split: option.split)
450 (* Due to John Matthews - could be rephrased with dom *)
451 lemma finite_map_freshness:
452 "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
453 \<exists>x. f x = None"
454 by(bestsimp dest:ex_new_if_finite)
456 subsection {* @{term [source] ran} *}
458 lemma ranI: "m a = Some b ==> b : ran m"
459 by(auto simp: ran_def)
460 (* declare ranI [intro]? *)
462 lemma ran_empty [simp]: "ran empty = {}"
463 by(auto simp: ran_def)
465 lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
468 apply (subgoal_tac "aa ~= a")
473 subsection {* @{text "map_le"} *}
475 lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
476 by (simp add: map_le_def)
478 lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
479 by (force simp add: map_le_def)
481 lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
482 by (fastsimp simp add: map_le_def)
484 lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
485 by (force simp add: map_le_def)
487 lemma map_le_upds [simp]:
488 "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
489 apply (induct as arbitrary: f g bs)
495 lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
496 by (fastsimp simp add: map_le_def dom_def)
498 lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
499 by (simp add: map_le_def)
501 lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
502 by (auto simp add: map_le_def dom_def)
504 lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
507 apply (case_tac "x \<in> dom f", simp)
508 apply (case_tac "x \<in> dom g", simp, fastsimp)
511 lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
512 by (fastsimp simp add: map_le_def)
514 lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
515 by(fastsimp simp: map_add_def map_le_def expand_fun_eq split: option.splits)
517 lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
518 by (fastsimp simp add: map_le_def map_add_def dom_def)
520 lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h; f \<subseteq>\<^sub>m f++g \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
521 by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)