src/HOL/Recdef.thy
author wenzelm
Wed Jan 03 21:23:50 2001 +0100 (2001-01-03)
changeset 10773 0deff0197496
parent 10653 55f33da63366
child 11165 3b69feb7d053
permissions -rw-r--r--
renamed .sml files to .ML;
tuned package setup;
     1 (*  Title:      HOL/Recdef.thy
     2     ID:         $Id$
     3     Author:     Konrad Slind and Markus Wenzel, TU Muenchen
     4 
     5 TFL: recursive function definitions.
     6 *)
     7 
     8 theory Recdef = Wellfounded_Relations + Datatype
     9 files
    10   ("../TFL/utils.ML")
    11   ("../TFL/usyntax.ML")
    12   ("../TFL/dcterm.ML")
    13   ("../TFL/thms.ML")
    14   ("../TFL/rules.ML")
    15   ("../TFL/thry.ML")
    16   ("../TFL/tfl.ML")
    17   ("../TFL/post.ML")
    18   ("Tools/recdef_package.ML"):
    19 
    20 lemma tfl_some: "\<forall>P x. P x --> P (Eps P)"
    21   by (blast intro: someI)
    22 
    23 lemma tfl_eq_True: "(x = True) --> x"
    24   by blast
    25 
    26 lemma tfl_rev_eq_mp: "(x = y) --> y --> x";
    27   by blast
    28 
    29 lemma tfl_simp_thm: "(x --> y) --> (x = x') --> (x' --> y)"
    30   by blast
    31 
    32 lemma tfl_P_imp_P_iff_True: "P ==> P = True"
    33   by blast
    34 
    35 lemma tfl_imp_trans: "(A --> B) ==> (B --> C) ==> (A --> C)"
    36   by blast
    37 
    38 lemma tfl_disj_assoc: "(a \<or> b) \<or> c == a \<or> (b \<or> c)"
    39   by simp
    40 
    41 lemma tfl_disjE: "P \<or> Q ==> P --> R ==> Q --> R ==> R"
    42   by blast
    43 
    44 lemma tfl_exE: "\<exists>x. P x ==> \<forall>x. P x --> Q ==> Q"
    45   by blast
    46 
    47 use "../TFL/utils.ML"
    48 use "../TFL/usyntax.ML"
    49 use "../TFL/dcterm.ML"
    50 use "../TFL/thms.ML"
    51 use "../TFL/rules.ML"
    52 use "../TFL/thry.ML"
    53 use "../TFL/tfl.ML"
    54 use "../TFL/post.ML"
    55 use "Tools/recdef_package.ML"
    56 setup RecdefPackage.setup
    57 
    58 lemmas [recdef_simp] =
    59   inv_image_def
    60   measure_def
    61   lex_prod_def
    62   less_Suc_eq [THEN iffD2]
    63 
    64 lemmas [recdef_cong] =
    65   if_cong
    66 
    67 lemma let_cong [recdef_cong]:
    68     "M = N ==> (!!x. x = N ==> f x = g x) ==> Let M f = Let N g"
    69   by (unfold Let_def) blast
    70 
    71 lemmas [recdef_wf] =
    72   wf_trancl
    73   wf_less_than
    74   wf_lex_prod
    75   wf_inv_image
    76   wf_measure
    77   wf_pred_nat
    78   wf_same_fst
    79   wf_empty
    80 
    81 end