src/LCF/LCF.thy
author paulson
Mon Dec 07 18:26:25 1998 +0100 (1998-12-07)
changeset 6019 0e55c2fb2ebb
parent 3837 d7f033c74b38
child 17248 81bf91654e73
permissions -rw-r--r--
tidying
     1 (*  Title:      LCF/lcf.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow
     4     Copyright   1992  University of Cambridge
     5 
     6 Natural Deduction Rules for LCF
     7 *)
     8 
     9 LCF = FOL +
    10 
    11 classes cpo < term
    12 
    13 default cpo
    14 
    15 types
    16  tr
    17  void
    18  ('a,'b) "*"            (infixl 6)
    19  ('a,'b) "+"            (infixl 5)
    20 
    21 arities
    22  fun, "*", "+" :: (cpo,cpo)cpo
    23  tr,void       :: cpo
    24 
    25 consts
    26  UU     :: "'a"
    27  TT,FF  :: "tr"
    28  FIX    :: "('a => 'a) => 'a"
    29  FST    :: "'a*'b => 'a"
    30  SND    :: "'a*'b => 'b"
    31  INL    :: "'a => 'a+'b"
    32  INR    :: "'b => 'a+'b"
    33  WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
    34  adm    :: "('a => o) => o"
    35  VOID   :: "void"               ("'(')")
    36  PAIR   :: "['a,'b] => 'a*'b"   ("(1<_,/_>)" [0,0] 100)
    37  COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
    38  "<<"   :: "['a,'a] => o"       (infixl 50)
    39 rules
    40   (** DOMAIN THEORY **)
    41 
    42   eq_def        "x=y == x << y & y << x"
    43 
    44   less_trans    "[| x << y; y << z |] ==> x << z"
    45 
    46   less_ext      "(ALL x. f(x) << g(x)) ==> f << g"
    47 
    48   mono          "[| f << g; x << y |] ==> f(x) << g(y)"
    49 
    50   minimal       "UU << x"
    51 
    52   FIX_eq        "f(FIX(f)) = FIX(f)"
    53 
    54   (** TR **)
    55 
    56   tr_cases      "p=UU | p=TT | p=FF"
    57 
    58   not_TT_less_FF "~ TT << FF"
    59   not_FF_less_TT "~ FF << TT"
    60   not_TT_less_UU "~ TT << UU"
    61   not_FF_less_UU "~ FF << UU"
    62 
    63   COND_UU       "UU => x | y  =  UU"
    64   COND_TT       "TT => x | y  =  x"
    65   COND_FF       "FF => x | y  =  y"
    66 
    67   (** PAIRS **)
    68 
    69   surj_pairing  "<FST(z),SND(z)> = z"
    70 
    71   FST   "FST(<x,y>) = x"
    72   SND   "SND(<x,y>) = y"
    73 
    74   (*** STRICT SUM ***)
    75 
    76   INL_DEF "~x=UU ==> ~INL(x)=UU"
    77   INR_DEF "~x=UU ==> ~INR(x)=UU"
    78 
    79   INL_STRICT "INL(UU) = UU"
    80   INR_STRICT "INR(UU) = UU"
    81 
    82   WHEN_UU  "WHEN(f,g,UU) = UU"
    83   WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
    84   WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
    85 
    86   SUM_EXHAUSTION
    87     "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
    88 
    89   (** VOID **)
    90 
    91   void_cases    "(x::void) = UU"
    92 
    93   (** INDUCTION **)
    94 
    95   induct        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
    96 
    97   (** Admissibility / Chain Completeness **)
    98   (* All rules can be found on pages 199--200 of Larry's LCF book.
    99      Note that "easiness" of types is not taken into account
   100      because it cannot be expressed schematically; flatness could be. *)
   101 
   102   adm_less      "adm(%x. t(x) << u(x))"
   103   adm_not_less  "adm(%x.~ t(x) << u)"
   104   adm_not_free  "adm(%x. A)"
   105   adm_subst     "adm(P) ==> adm(%x. P(t(x)))"
   106   adm_conj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
   107   adm_disj      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
   108   adm_imp       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
   109   adm_all       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
   110 end