src/HOL/Hahn_Banach/README.html
author hoelzl
Thu Sep 02 10:14:32 2010 +0200 (2010-09-02)
changeset 39072 1030b1a166ef
parent 36862 952b2b102a0a
permissions -rw-r--r--
Add lessThan_Suc_eq_insert_0
     1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
     2 
     3 <HTML>
     4 
     5 <HEAD>
     6   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
     7   <TITLE>HOL/Hahn_Banach/README</TITLE>
     8 </HEAD>
     9 
    10 <BODY>
    11 
    12 <H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
    13 
    14 Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
    15 
    16 This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
    17 following H. Heuser, Funktionalanalysis, p. 228 -232.
    18 The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
    19 It is a conclusion of Zorn's lemma.<P>
    20 
    21 Two different formaulations of the theorem are presented, one for general real vectorspaces
    22 and its application to normed vectorspaces. <P>
    23 
    24 The theorem says, that every continous linearform, defined on arbitrary subspaces
    25 (not only one-dimensional subspaces), can be extended to a continous linearform on
    26 the whole vectorspace.
    27 
    28 
    29 <HR>
    30 
    31 <ADDRESS>
    32 <A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
    33 </ADDRESS>
    34 
    35 </BODY>
    36 </HTML>