src/HOL/Hahn_Banach/Zorn_Lemma.thy
author hoelzl
Thu Sep 02 10:14:32 2010 +0200 (2010-09-02)
changeset 39072 1030b1a166ef
parent 32960 69916a850301
child 44887 7ca82df6e951
permissions -rw-r--r--
Add lessThan_Suc_eq_insert_0
     1 (*  Title:      HOL/Hahn_Banach/Zorn_Lemma.thy
     2     Author:     Gertrud Bauer, TU Munich
     3 *)
     4 
     5 header {* Zorn's Lemma *}
     6 
     7 theory Zorn_Lemma
     8 imports Zorn
     9 begin
    10 
    11 text {*
    12   Zorn's Lemmas states: if every linear ordered subset of an ordered
    13   set @{text S} has an upper bound in @{text S}, then there exists a
    14   maximal element in @{text S}.  In our application, @{text S} is a
    15   set of sets ordered by set inclusion. Since the union of a chain of
    16   sets is an upper bound for all elements of the chain, the conditions
    17   of Zorn's lemma can be modified: if @{text S} is non-empty, it
    18   suffices to show that for every non-empty chain @{text c} in @{text
    19   S} the union of @{text c} also lies in @{text S}.
    20 *}
    21 
    22 theorem Zorn's_Lemma:
    23   assumes r: "\<And>c. c \<in> chain S \<Longrightarrow> \<exists>x. x \<in> c \<Longrightarrow> \<Union>c \<in> S"
    24     and aS: "a \<in> S"
    25   shows "\<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z \<longrightarrow> y = z"
    26 proof (rule Zorn_Lemma2)
    27   show "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
    28   proof
    29     fix c assume "c \<in> chain S"
    30     show "\<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
    31     proof cases
    32 
    33       txt {* If @{text c} is an empty chain, then every element in
    34         @{text S} is an upper bound of @{text c}. *}
    35 
    36       assume "c = {}"
    37       with aS show ?thesis by fast
    38 
    39       txt {* If @{text c} is non-empty, then @{text "\<Union>c"} is an upper
    40         bound of @{text c}, lying in @{text S}. *}
    41 
    42     next
    43       assume "c \<noteq> {}"
    44       show ?thesis
    45       proof
    46         show "\<forall>z \<in> c. z \<subseteq> \<Union>c" by fast
    47         show "\<Union>c \<in> S"
    48         proof (rule r)
    49           from `c \<noteq> {}` show "\<exists>x. x \<in> c" by fast
    50           show "c \<in> chain S" by fact
    51         qed
    52       qed
    53     qed
    54   qed
    55 qed
    56 
    57 end