1 (* Title: ZF/Cardinal_AC.thy
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1994 University of Cambridge
6 These results help justify infinite-branching datatypes
9 header{*Cardinal Arithmetic Using AC*}
11 theory Cardinal_AC imports CardinalArith Zorn begin
13 subsection{*Strengthened Forms of Existing Theorems on Cardinals*}
15 lemma cardinal_eqpoll: "|A| eqpoll A"
16 apply (rule AC_well_ord [THEN exE])
17 apply (erule well_ord_cardinal_eqpoll)
20 text{*The theorem @{term "||A|| = |A|"} *}
21 lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, standard, simp]
23 lemma cardinal_eqE: "|X| = |Y| ==> X eqpoll Y"
24 apply (rule AC_well_ord [THEN exE])
25 apply (rule AC_well_ord [THEN exE])
26 apply (rule well_ord_cardinal_eqE, assumption+)
29 lemma cardinal_eqpoll_iff: "|X| = |Y| <-> X eqpoll Y"
30 by (blast intro: cardinal_cong cardinal_eqE)
32 lemma cardinal_disjoint_Un:
33 "[| |A|=|B|; |C|=|D|; A Int C = 0; B Int D = 0 |]
34 ==> |A Un C| = |B Un D|"
35 by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un)
37 lemma lepoll_imp_Card_le: "A lepoll B ==> |A| le |B|"
38 apply (rule AC_well_ord [THEN exE])
39 apply (erule well_ord_lepoll_imp_Card_le, assumption)
42 lemma cadd_assoc: "(i |+| j) |+| k = i |+| (j |+| k)"
43 apply (rule AC_well_ord [THEN exE])
44 apply (rule AC_well_ord [THEN exE])
45 apply (rule AC_well_ord [THEN exE])
46 apply (rule well_ord_cadd_assoc, assumption+)
49 lemma cmult_assoc: "(i |*| j) |*| k = i |*| (j |*| k)"
50 apply (rule AC_well_ord [THEN exE])
51 apply (rule AC_well_ord [THEN exE])
52 apply (rule AC_well_ord [THEN exE])
53 apply (rule well_ord_cmult_assoc, assumption+)
56 lemma cadd_cmult_distrib: "(i |+| j) |*| k = (i |*| k) |+| (j |*| k)"
57 apply (rule AC_well_ord [THEN exE])
58 apply (rule AC_well_ord [THEN exE])
59 apply (rule AC_well_ord [THEN exE])
60 apply (rule well_ord_cadd_cmult_distrib, assumption+)
63 lemma InfCard_square_eq: "InfCard(|A|) ==> A*A eqpoll A"
64 apply (rule AC_well_ord [THEN exE])
65 apply (erule well_ord_InfCard_square_eq, assumption)
69 subsection {*The relationship between cardinality and le-pollence*}
71 lemma Card_le_imp_lepoll: "|A| le |B| ==> A lepoll B"
72 apply (rule cardinal_eqpoll
73 [THEN eqpoll_sym, THEN eqpoll_imp_lepoll, THEN lepoll_trans])
74 apply (erule le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_trans])
75 apply (rule cardinal_eqpoll [THEN eqpoll_imp_lepoll])
78 lemma le_Card_iff: "Card(K) ==> |A| le K <-> A lepoll K"
79 apply (erule Card_cardinal_eq [THEN subst], rule iffI,
80 erule Card_le_imp_lepoll)
81 apply (erule lepoll_imp_Card_le)
84 lemma cardinal_0_iff_0 [simp]: "|A| = 0 <-> A = 0";
86 apply (drule cardinal_0 [THEN ssubst])
87 apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1])
90 lemma cardinal_lt_iff_lesspoll: "Ord(i) ==> i < |A| <-> i lesspoll A"
91 apply (cut_tac A = "A" in cardinal_eqpoll)
92 apply (auto simp add: eqpoll_iff)
93 apply (blast intro: lesspoll_trans2 lt_Card_imp_lesspoll Card_cardinal)
94 apply (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt lesspoll_trans2
95 simp add: cardinal_idem)
98 lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A"
99 apply (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans)
103 subsection{*Other Applications of AC*}
105 lemma surj_implies_inj: "f: surj(X,Y) ==> EX g. g: inj(Y,X)"
106 apply (unfold surj_def)
107 apply (erule CollectE)
108 apply (rule_tac A1 = Y and B1 = "%y. f-``{y}" in AC_Pi [THEN exE])
109 apply (fast elim!: apply_Pair)
110 apply (blast dest: apply_type Pi_memberD
111 intro: apply_equality Pi_type f_imp_injective)
114 (*Kunen's Lemma 10.20*)
115 lemma surj_implies_cardinal_le: "f: surj(X,Y) ==> |Y| le |X|"
116 apply (rule lepoll_imp_Card_le)
117 apply (erule surj_implies_inj [THEN exE])
118 apply (unfold lepoll_def)
122 (*Kunen's Lemma 10.21*)
123 lemma cardinal_UN_le:
124 "[| InfCard(K); ALL i:K. |X(i)| le K |] ==> |\<Union>i\<in>K. X(i)| le K"
125 apply (simp add: InfCard_is_Card le_Card_iff)
126 apply (rule lepoll_trans)
128 apply (rule InfCard_square_eq [THEN eqpoll_imp_lepoll])
129 apply (simp add: InfCard_is_Card Card_cardinal_eq)
130 apply (unfold lepoll_def)
131 apply (frule InfCard_is_Card [THEN Card_is_Ord])
132 apply (erule AC_ball_Pi [THEN exE])
134 (*Lemma needed in both subgoals, for a fixed z*)
135 apply (subgoal_tac "ALL z: (\<Union>i\<in>K. X (i)). z: X (LEAST i. z:X (i)) &
136 (LEAST i. z:X (i)) : K")
138 apply (fast intro!: Least_le [THEN lt_trans1, THEN ltD] ltI
139 elim!: LeastI Ord_in_Ord)
140 apply (rule_tac c = "%z. <LEAST i. z:X (i), f ` (LEAST i. z:X (i)) ` z>"
141 and d = "%<i,j>. converse (f`i) ` j" in lam_injective)
142 (*Instantiate the lemma proved above*)
143 by (blast intro: inj_is_fun [THEN apply_type] dest: apply_type, force)
146 (*The same again, using csucc*)
147 lemma cardinal_UN_lt_csucc:
148 "[| InfCard(K); ALL i:K. |X(i)| < csucc(K) |]
149 ==> |\<Union>i\<in>K. X(i)| < csucc(K)"
150 by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal)
152 (*The same again, for a union of ordinals. In use, j(i) is a bit like rank(i),
153 the least ordinal j such that i:Vfrom(A,j). *)
154 lemma cardinal_UN_Ord_lt_csucc:
155 "[| InfCard(K); ALL i:K. j(i) < csucc(K) |]
156 ==> (\<Union>i\<in>K. j(i)) < csucc(K)"
157 apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption)
158 apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE)
159 apply (blast intro!: Ord_UN elim: ltE)
160 apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc])
164 (** Main result for infinite-branching datatypes. As above, but the index
165 set need not be a cardinal. Surprisingly complicated proof!
168 (*Work backwards along the injection from W into K, given that W~=0.*)
170 "[| f: inj(A,B); a:A |] ==>
171 (\<Union>x\<in>A. C(x)) <= (\<Union>y\<in>B. C(if y: range(f) then converse(f)`y else a))"
172 apply (rule UN_least)
173 apply (rule_tac x1= "f`x" in subset_trans [OF _ UN_upper])
174 apply (simp add: inj_is_fun [THEN apply_rangeI])
175 apply (blast intro: inj_is_fun [THEN apply_type])
178 (*Simpler to require |W|=K; we'd have a bijection; but the theorem would
180 lemma le_UN_Ord_lt_csucc:
181 "[| InfCard(K); |W| le K; ALL w:W. j(w) < csucc(K) |]
182 ==> (\<Union>w\<in>W. j(w)) < csucc(K)"
183 apply (case_tac "W=0")
184 (*solve the easy 0 case*)
185 apply (simp add: InfCard_is_Card Card_is_Ord [THEN Card_csucc]
186 Card_is_Ord Ord_0_lt_csucc)
187 apply (simp add: InfCard_is_Card le_Card_iff lepoll_def)
188 apply (safe intro!: equalityI)
190 apply (rule lt_subset_trans [OF inj_UN_subset cardinal_UN_Ord_lt_csucc], assumption+)
191 apply (simp add: inj_converse_fun [THEN apply_type])
192 apply (blast intro!: Ord_UN elim: ltE)
197 val cardinal_0_iff_0 = thm "cardinal_0_iff_0";
198 val cardinal_lt_iff_lesspoll = thm "cardinal_lt_iff_lesspoll";