3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1993 University of Cambridge
8 header{*Disjoint Sums*}
10 theory Sum imports Bool equalities begin
12 text{*And the "Part" primitive for simultaneous recursive type definitions*}
17 sum :: "[i,i]=>i" (infixr "+" 65)
18 "A+B == {0}*A Un {1}*B"
26 "case" :: "[i=>i, i=>i, i]=>i"
27 "case(c,d) == (%<y,z>. cond(y, d(z), c(z)))"
29 (*operator for selecting out the various summands*)
30 Part :: "[i,i=>i] => i"
31 "Part(A,h) == {x: A. EX z. x = h(z)}"
35 subsection{*Rules for the @{term Part} Primitive*}
38 "a : Part(A,h) <-> a:A & (EX y. a=h(y))"
39 apply (unfold Part_def)
40 apply (rule separation)
43 lemma Part_eqI [intro]:
44 "[| a : A; a=h(b) |] ==> a : Part(A,h)"
45 by (unfold Part_def, blast)
47 lemmas PartI = refl [THEN [2] Part_eqI]
50 "[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P
52 apply (unfold Part_def, blast)
55 lemma Part_subset: "Part(A,h) <= A"
56 apply (unfold Part_def)
57 apply (rule Collect_subset)
61 subsection{*Rules for Disjoint Sums*}
63 lemmas sum_defs = sum_def Inl_def Inr_def case_def
65 lemma Sigma_bool: "Sigma(bool,C) = C(0) + C(1)"
66 by (unfold bool_def sum_def, blast)
68 (** Introduction rules for the injections **)
70 lemma InlI [intro!,simp,TC]: "a : A ==> Inl(a) : A+B"
71 by (unfold sum_defs, blast)
73 lemma InrI [intro!,simp,TC]: "b : B ==> Inr(b) : A+B"
74 by (unfold sum_defs, blast)
76 (** Elimination rules **)
80 !!x. [| x:A; u=Inl(x) |] ==> P;
81 !!y. [| y:B; u=Inr(y) |] ==> P
83 by (unfold sum_defs, blast)
85 (** Injection and freeness equivalences, for rewriting **)
87 lemma Inl_iff [iff]: "Inl(a)=Inl(b) <-> a=b"
88 by (simp add: sum_defs)
90 lemma Inr_iff [iff]: "Inr(a)=Inr(b) <-> a=b"
91 by (simp add: sum_defs)
93 lemma Inl_Inr_iff [simp]: "Inl(a)=Inr(b) <-> False"
94 by (simp add: sum_defs)
96 lemma Inr_Inl_iff [simp]: "Inr(b)=Inl(a) <-> False"
97 by (simp add: sum_defs)
99 lemma sum_empty [simp]: "0+0 = 0"
100 by (simp add: sum_defs)
102 (*Injection and freeness rules*)
104 lemmas Inl_inject = Inl_iff [THEN iffD1, standard]
105 lemmas Inr_inject = Inr_iff [THEN iffD1, standard]
106 lemmas Inl_neq_Inr = Inl_Inr_iff [THEN iffD1, THEN FalseE, elim!]
107 lemmas Inr_neq_Inl = Inr_Inl_iff [THEN iffD1, THEN FalseE, elim!]
110 lemma InlD: "Inl(a): A+B ==> a: A"
113 lemma InrD: "Inr(b): A+B ==> b: B"
116 lemma sum_iff: "u: A+B <-> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))"
119 lemma Inl_in_sum_iff [simp]: "(Inl(x) \<in> A+B) <-> (x \<in> A)";
122 lemma Inr_in_sum_iff [simp]: "(Inr(y) \<in> A+B) <-> (y \<in> B)";
125 lemma sum_subset_iff: "A+B <= C+D <-> A<=C & B<=D"
128 lemma sum_equal_iff: "A+B = C+D <-> A=C & B=D"
129 by (simp add: extension sum_subset_iff, blast)
131 lemma sum_eq_2_times: "A+A = 2*A"
132 by (simp add: sum_def, blast)
135 subsection{*The Eliminator: @{term case}*}
137 lemma case_Inl [simp]: "case(c, d, Inl(a)) = c(a)"
138 by (simp add: sum_defs)
140 lemma case_Inr [simp]: "case(c, d, Inr(b)) = d(b)"
141 by (simp add: sum_defs)
143 lemma case_type [TC]:
145 !!x. x: A ==> c(x): C(Inl(x));
146 !!y. y: B ==> d(y): C(Inr(y))
147 |] ==> case(c,d,u) : C(u)"
150 lemma expand_case: "u: A+B ==>
152 ((ALL x:A. u = Inl(x) --> R(c(x))) &
153 (ALL y:B. u = Inr(y) --> R(d(y))))"
158 !!x. x:A ==> c(x)=c'(x);
159 !!y. y:B ==> d(y)=d'(y)
160 |] ==> case(c,d,z) = case(c',d',z)"
163 lemma case_case: "z: A+B ==>
165 case(c, d, case(%x. Inl(c'(x)), %y. Inr(d'(y)), z)) =
166 case(%x. c(c'(x)), %y. d(d'(y)), z)"
170 subsection{*More Rules for @{term "Part(A,h)"}*}
172 lemma Part_mono: "A<=B ==> Part(A,h)<=Part(B,h)"
175 lemma Part_Collect: "Part(Collect(A,P), h) = Collect(Part(A,h), P)"
178 lemmas Part_CollectE =
179 Part_Collect [THEN equalityD1, THEN subsetD, THEN CollectE, standard]
181 lemma Part_Inl: "Part(A+B,Inl) = {Inl(x). x: A}"
184 lemma Part_Inr: "Part(A+B,Inr) = {Inr(y). y: B}"
187 lemma PartD1: "a : Part(A,h) ==> a : A"
188 by (simp add: Part_def)
190 lemma Part_id: "Part(A,%x. x) = A"
193 lemma Part_Inr2: "Part(A+B, %x. Inr(h(x))) = {Inr(y). y: Part(B,h)}"
196 lemma Part_sum_equality: "C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C"
201 val sum_def = thm "sum_def";
202 val Inl_def = thm "Inl_def";
203 val Inr_def = thm "Inr_def";
204 val sum_defs = thms "sum_defs";
206 val Part_iff = thm "Part_iff";
207 val Part_eqI = thm "Part_eqI";
208 val PartI = thm "PartI";
209 val PartE = thm "PartE";
210 val Part_subset = thm "Part_subset";
211 val Sigma_bool = thm "Sigma_bool";
212 val InlI = thm "InlI";
213 val InrI = thm "InrI";
214 val sumE = thm "sumE";
215 val Inl_iff = thm "Inl_iff";
216 val Inr_iff = thm "Inr_iff";
217 val Inl_Inr_iff = thm "Inl_Inr_iff";
218 val Inr_Inl_iff = thm "Inr_Inl_iff";
219 val sum_empty = thm "sum_empty";
220 val Inl_inject = thm "Inl_inject";
221 val Inr_inject = thm "Inr_inject";
222 val Inl_neq_Inr = thm "Inl_neq_Inr";
223 val Inr_neq_Inl = thm "Inr_neq_Inl";
224 val InlD = thm "InlD";
225 val InrD = thm "InrD";
226 val sum_iff = thm "sum_iff";
227 val sum_subset_iff = thm "sum_subset_iff";
228 val sum_equal_iff = thm "sum_equal_iff";
229 val sum_eq_2_times = thm "sum_eq_2_times";
230 val case_Inl = thm "case_Inl";
231 val case_Inr = thm "case_Inr";
232 val case_type = thm "case_type";
233 val expand_case = thm "expand_case";
234 val case_cong = thm "case_cong";
235 val case_case = thm "case_case";
236 val Part_mono = thm "Part_mono";
237 val Part_Collect = thm "Part_Collect";
238 val Part_CollectE = thm "Part_CollectE";
239 val Part_Inl = thm "Part_Inl";
240 val Part_Inr = thm "Part_Inr";
241 val PartD1 = thm "PartD1";
242 val Part_id = thm "Part_id";
243 val Part_Inr2 = thm "Part_Inr2";
244 val Part_sum_equality = thm "Part_sum_equality";