src/HOL/Hahn_Banach/README.html
author nipkow
Fri Aug 28 18:52:41 2009 +0200 (2009-08-28)
changeset 32436 10cd49e0c067
parent 31795 be3e1cc5005c
child 36862 952b2b102a0a
permissions -rw-r--r--
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
     1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
     2 
     3 <!-- $Id$ -->
     4 
     5 <HTML>
     6 
     7 <HEAD>
     8   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
     9   <TITLE>HOL/Hahn_Banach/README</TITLE>
    10 </HEAD>
    11 
    12 <BODY>
    13 
    14 <H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>
    15 
    16 Author: Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
    17 
    18 This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
    19 following H. Heuser, Funktionalanalysis, p. 228 -232.
    20 The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
    21 It is a conclusion of Zorn's lemma.<P>
    22 
    23 Two different formaulations of the theorem are presented, one for general real vectorspaces
    24 and its application to normed vectorspaces. <P>
    25 
    26 The theorem says, that every continous linearform, defined on arbitrary subspaces
    27 (not only one-dimensional subspaces), can be extended to a continous linearform on
    28 the whole vectorspace.
    29 
    30 
    31 <HR>
    32 
    33 <ADDRESS>
    34 <A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
    35 </ADDRESS>
    36 
    37 </BODY>
    38 </HTML>