src/HOL/Modelcheck/MuckeExample1.thy
author nipkow
Fri Aug 28 18:52:41 2009 +0200 (2009-08-28)
changeset 32436 10cd49e0c067
parent 17272 c63e5220ed77
child 35416 d8d7d1b785af
permissions -rw-r--r--
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
     1 (*  Title:      HOL/Modelcheck/MuckeExample1.thy
     2     ID:         $Id$
     3     Author:     Olaf Mueller, Jan Philipps, Robert Sandner
     4     Copyright   1997  TU Muenchen
     5 *)
     6 
     7 theory MuckeExample1
     8 imports MuckeSyn
     9 begin
    10 
    11 types
    12   state = "bool * bool * bool"
    13 
    14 constdefs
    15   INIT :: "state pred"
    16   "INIT x ==  ~(fst x)&~(fst (snd x))&~(snd (snd x))"
    17   N    :: "[state,state] => bool"
    18   "N x y == let x1 = fst(x); x2 = fst(snd(x)); x3 = snd(snd(x));
    19                 y1 = fst(y); y2 = fst(snd(y)); y3 = snd(snd(y))
    20             in (~x1&~x2&~x3 & y1&~y2&~y3) |
    21                (x1&~x2&~x3 & ~y1&~y2&~y3) |
    22                (x1&~x2&~x3 & y1&y2&y3)"
    23   reach:: "state pred"
    24   "reach  == mu (%Q x. INIT x | (? y. Q y & N y x))"
    25 
    26 lemmas reach_rws = INIT_def N_def reach_def
    27 
    28 lemma reach_ex1: "reach (True,True,True)"
    29   apply (tactic {* simp_tac (Mucke_ss addsimps (thms "reach_rws")) 1 *})
    30   apply (tactic {* mc_mucke_tac [] 1 *})
    31   done
    32 
    33 (*alternative*)
    34 lemma reach_ex' "reach (True,True,True)"
    35   by (tactic {* mc_mucke_tac (thms "reach_rws") 1 *})
    36 
    37 end