src/HOL/Probability/Radon_Nikodym.thy
 author hoelzl Fri Feb 04 14:16:55 2011 +0100 (2011-02-04) changeset 41705 1100512e16d8 parent 41689 3e39b0e730d6 child 41832 27cb9113b1a0 permissions -rw-r--r--
add auto support for AE_mp
```     1 theory Radon_Nikodym
```
```     2 imports Lebesgue_Integration
```
```     3 begin
```
```     4
```
```     5 lemma less_\<omega>_Ex_of_nat: "x < \<omega> \<longleftrightarrow> (\<exists>n. x < of_nat n)"
```
```     6 proof safe
```
```     7   assume "x < \<omega>"
```
```     8   then obtain r where "0 \<le> r" "x = Real r" by (cases x) auto
```
```     9   moreover obtain n where "r < of_nat n" using ex_less_of_nat by auto
```
```    10   ultimately show "\<exists>n. x < of_nat n" by (auto simp: real_eq_of_nat)
```
```    11 qed auto
```
```    12
```
```    13 lemma (in sigma_finite_measure) Ex_finite_integrable_function:
```
```    14   shows "\<exists>h\<in>borel_measurable M. integral\<^isup>P M h \<noteq> \<omega> \<and> (\<forall>x\<in>space M. 0 < h x \<and> h x < \<omega>)"
```
```    15 proof -
```
```    16   obtain A :: "nat \<Rightarrow> 'a set" where
```
```    17     range: "range A \<subseteq> sets M" and
```
```    18     space: "(\<Union>i. A i) = space M" and
```
```    19     measure: "\<And>i. \<mu> (A i) \<noteq> \<omega>" and
```
```    20     disjoint: "disjoint_family A"
```
```    21     using disjoint_sigma_finite by auto
```
```    22   let "?B i" = "2^Suc i * \<mu> (A i)"
```
```    23   have "\<forall>i. \<exists>x. 0 < x \<and> x < inverse (?B i)"
```
```    24   proof
```
```    25     fix i show "\<exists>x. 0 < x \<and> x < inverse (?B i)"
```
```    26     proof cases
```
```    27       assume "\<mu> (A i) = 0"
```
```    28       then show ?thesis by (auto intro!: exI[of _ 1])
```
```    29     next
```
```    30       assume not_0: "\<mu> (A i) \<noteq> 0"
```
```    31       then have "?B i \<noteq> \<omega>" using measure[of i] by auto
```
```    32       then have "inverse (?B i) \<noteq> 0" unfolding pextreal_inverse_eq_0 by simp
```
```    33       then show ?thesis using measure[of i] not_0
```
```    34         by (auto intro!: exI[of _ "inverse (?B i) / 2"]
```
```    35                  simp: pextreal_noteq_omega_Ex zero_le_mult_iff zero_less_mult_iff mult_le_0_iff power_le_zero_eq)
```
```    36     qed
```
```    37   qed
```
```    38   from choice[OF this] obtain n where n: "\<And>i. 0 < n i"
```
```    39     "\<And>i. n i < inverse (2^Suc i * \<mu> (A i))" by auto
```
```    40   let "?h x" = "\<Sum>\<^isub>\<infinity> i. n i * indicator (A i) x"
```
```    41   show ?thesis
```
```    42   proof (safe intro!: bexI[of _ ?h] del: notI)
```
```    43     have "\<And>i. A i \<in> sets M"
```
```    44       using range by fastsimp+
```
```    45     then have "integral\<^isup>P M ?h = (\<Sum>\<^isub>\<infinity> i. n i * \<mu> (A i))"
```
```    46       by (simp add: positive_integral_psuminf positive_integral_cmult_indicator)
```
```    47     also have "\<dots> \<le> (\<Sum>\<^isub>\<infinity> i. Real ((1 / 2)^Suc i))"
```
```    48     proof (rule psuminf_le)
```
```    49       fix N show "n N * \<mu> (A N) \<le> Real ((1 / 2) ^ Suc N)"
```
```    50         using measure[of N] n[of N]
```
```    51         by (cases "n N")
```
```    52            (auto simp: pextreal_noteq_omega_Ex field_simps zero_le_mult_iff
```
```    53                        mult_le_0_iff mult_less_0_iff power_less_zero_eq
```
```    54                        power_le_zero_eq inverse_eq_divide less_divide_eq
```
```    55                        power_divide split: split_if_asm)
```
```    56     qed
```
```    57     also have "\<dots> = Real 1"
```
```    58       by (rule suminf_imp_psuminf, rule power_half_series, auto)
```
```    59     finally show "integral\<^isup>P M ?h \<noteq> \<omega>" by auto
```
```    60   next
```
```    61     fix x assume "x \<in> space M"
```
```    62     then obtain i where "x \<in> A i" using space[symmetric] by auto
```
```    63     from psuminf_cmult_indicator[OF disjoint, OF this]
```
```    64     have "?h x = n i" by simp
```
```    65     then show "0 < ?h x" and "?h x < \<omega>" using n[of i] by auto
```
```    66   next
```
```    67     show "?h \<in> borel_measurable M" using range
```
```    68       by (auto intro!: borel_measurable_psuminf borel_measurable_pextreal_times)
```
```    69   qed
```
```    70 qed
```
```    71
```
```    72 subsection "Absolutely continuous"
```
```    73
```
```    74 definition (in measure_space)
```
```    75   "absolutely_continuous \<nu> = (\<forall>N\<in>null_sets. \<nu> N = (0 :: pextreal))"
```
```    76
```
```    77 lemma (in sigma_finite_measure) absolutely_continuous_AE:
```
```    78   assumes "measure_space M'" and [simp]: "sets M' = sets M" "space M' = space M"
```
```    79     and "absolutely_continuous (measure M')" "AE x. P x"
```
```    80   shows "measure_space.almost_everywhere M' P"
```
```    81 proof -
```
```    82   interpret \<nu>: measure_space M' by fact
```
```    83   from `AE x. P x` obtain N where N: "N \<in> null_sets" and "{x\<in>space M. \<not> P x} \<subseteq> N"
```
```    84     unfolding almost_everywhere_def by auto
```
```    85   show "\<nu>.almost_everywhere P"
```
```    86   proof (rule \<nu>.AE_I')
```
```    87     show "{x\<in>space M'. \<not> P x} \<subseteq> N" by simp fact
```
```    88     from `absolutely_continuous (measure M')` show "N \<in> \<nu>.null_sets"
```
```    89       using N unfolding absolutely_continuous_def by auto
```
```    90   qed
```
```    91 qed
```
```    92
```
```    93 lemma (in finite_measure_space) absolutely_continuousI:
```
```    94   assumes "finite_measure_space (M\<lparr> measure := \<nu>\<rparr>)" (is "finite_measure_space ?\<nu>")
```
```    95   assumes v: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0"
```
```    96   shows "absolutely_continuous \<nu>"
```
```    97 proof (unfold absolutely_continuous_def sets_eq_Pow, safe)
```
```    98   fix N assume "\<mu> N = 0" "N \<subseteq> space M"
```
```    99   interpret v: finite_measure_space ?\<nu> by fact
```
```   100   have "\<nu> N = measure ?\<nu> (\<Union>x\<in>N. {x})" by simp
```
```   101   also have "\<dots> = (\<Sum>x\<in>N. measure ?\<nu> {x})"
```
```   102   proof (rule v.measure_finitely_additive''[symmetric])
```
```   103     show "finite N" using `N \<subseteq> space M` finite_space by (auto intro: finite_subset)
```
```   104     show "disjoint_family_on (\<lambda>i. {i}) N" unfolding disjoint_family_on_def by auto
```
```   105     fix x assume "x \<in> N" thus "{x} \<in> sets ?\<nu>" using `N \<subseteq> space M` sets_eq_Pow by auto
```
```   106   qed
```
```   107   also have "\<dots> = 0"
```
```   108   proof (safe intro!: setsum_0')
```
```   109     fix x assume "x \<in> N"
```
```   110     hence "\<mu> {x} \<le> \<mu> N" using sets_eq_Pow `N \<subseteq> space M` by (auto intro!: measure_mono)
```
```   111     hence "\<mu> {x} = 0" using `\<mu> N = 0` by simp
```
```   112     thus "measure ?\<nu> {x} = 0" using v[of x] `x \<in> N` `N \<subseteq> space M` by auto
```
```   113   qed
```
```   114   finally show "\<nu> N = 0" by simp
```
```   115 qed
```
```   116
```
```   117 lemma (in measure_space) density_is_absolutely_continuous:
```
```   118   assumes "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   119   shows "absolutely_continuous \<nu>"
```
```   120   using assms unfolding absolutely_continuous_def
```
```   121   by (simp add: positive_integral_null_set)
```
```   122
```
```   123 subsection "Existence of the Radon-Nikodym derivative"
```
```   124
```
```   125 lemma (in finite_measure) Radon_Nikodym_aux_epsilon:
```
```   126   fixes e :: real assumes "0 < e"
```
```   127   assumes "finite_measure (M\<lparr>measure := \<nu>\<rparr>)"
```
```   128   shows "\<exists>A\<in>sets M. real (\<mu> (space M)) - real (\<nu> (space M)) \<le>
```
```   129                     real (\<mu> A) - real (\<nu> A) \<and>
```
```   130                     (\<forall>B\<in>sets M. B \<subseteq> A \<longrightarrow> - e < real (\<mu> B) - real (\<nu> B))"
```
```   131 proof -
```
```   132   let "?d A" = "real (\<mu> A) - real (\<nu> A)"
```
```   133   interpret M': finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
```
```   134   let "?A A" = "if (\<forall>B\<in>sets M. B \<subseteq> space M - A \<longrightarrow> -e < ?d B)
```
```   135     then {}
```
```   136     else (SOME B. B \<in> sets M \<and> B \<subseteq> space M - A \<and> ?d B \<le> -e)"
```
```   137   def A \<equiv> "\<lambda>n. ((\<lambda>B. B \<union> ?A B) ^^ n) {}"
```
```   138   have A_simps[simp]:
```
```   139     "A 0 = {}"
```
```   140     "\<And>n. A (Suc n) = (A n \<union> ?A (A n))" unfolding A_def by simp_all
```
```   141   { fix A assume "A \<in> sets M"
```
```   142     have "?A A \<in> sets M"
```
```   143       by (auto intro!: someI2[of _ _ "\<lambda>A. A \<in> sets M"] simp: not_less) }
```
```   144   note A'_in_sets = this
```
```   145   { fix n have "A n \<in> sets M"
```
```   146     proof (induct n)
```
```   147       case (Suc n) thus "A (Suc n) \<in> sets M"
```
```   148         using A'_in_sets[of "A n"] by (auto split: split_if_asm)
```
```   149     qed (simp add: A_def) }
```
```   150   note A_in_sets = this
```
```   151   hence "range A \<subseteq> sets M" by auto
```
```   152   { fix n B
```
```   153     assume Ex: "\<exists>B. B \<in> sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> -e"
```
```   154     hence False: "\<not> (\<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B)" by (auto simp: not_less)
```
```   155     have "?d (A (Suc n)) \<le> ?d (A n) - e" unfolding A_simps if_not_P[OF False]
```
```   156     proof (rule someI2_ex[OF Ex])
```
```   157       fix B assume "B \<in> sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e"
```
```   158       hence "A n \<inter> B = {}" "B \<in> sets M" and dB: "?d B \<le> -e" by auto
```
```   159       hence "?d (A n \<union> B) = ?d (A n) + ?d B"
```
```   160         using `A n \<in> sets M` real_finite_measure_Union M'.real_finite_measure_Union by simp
```
```   161       also have "\<dots> \<le> ?d (A n) - e" using dB by simp
```
```   162       finally show "?d (A n \<union> B) \<le> ?d (A n) - e" .
```
```   163     qed }
```
```   164   note dA_epsilon = this
```
```   165   { fix n have "?d (A (Suc n)) \<le> ?d (A n)"
```
```   166     proof (cases "\<exists>B. B\<in>sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e")
```
```   167       case True from dA_epsilon[OF this] show ?thesis using `0 < e` by simp
```
```   168     next
```
```   169       case False
```
```   170       hence "\<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B" by (auto simp: not_le)
```
```   171       thus ?thesis by simp
```
```   172     qed }
```
```   173   note dA_mono = this
```
```   174   show ?thesis
```
```   175   proof (cases "\<exists>n. \<forall>B\<in>sets M. B \<subseteq> space M - A n \<longrightarrow> -e < ?d B")
```
```   176     case True then obtain n where B: "\<And>B. \<lbrakk> B \<in> sets M; B \<subseteq> space M - A n\<rbrakk> \<Longrightarrow> -e < ?d B" by blast
```
```   177     show ?thesis
```
```   178     proof (safe intro!: bexI[of _ "space M - A n"])
```
```   179       fix B assume "B \<in> sets M" "B \<subseteq> space M - A n"
```
```   180       from B[OF this] show "-e < ?d B" .
```
```   181     next
```
```   182       show "space M - A n \<in> sets M" by (rule compl_sets) fact
```
```   183     next
```
```   184       show "?d (space M) \<le> ?d (space M - A n)"
```
```   185       proof (induct n)
```
```   186         fix n assume "?d (space M) \<le> ?d (space M - A n)"
```
```   187         also have "\<dots> \<le> ?d (space M - A (Suc n))"
```
```   188           using A_in_sets sets_into_space dA_mono[of n]
```
```   189             real_finite_measure_Diff[of "space M"]
```
```   190             real_finite_measure_Diff[of "space M"]
```
```   191             M'.real_finite_measure_Diff[of "space M"]
```
```   192             M'.real_finite_measure_Diff[of "space M"]
```
```   193           by (simp del: A_simps)
```
```   194         finally show "?d (space M) \<le> ?d (space M - A (Suc n))" .
```
```   195       qed simp
```
```   196     qed
```
```   197   next
```
```   198     case False hence B: "\<And>n. \<exists>B. B\<in>sets M \<and> B \<subseteq> space M - A n \<and> ?d B \<le> - e"
```
```   199       by (auto simp add: not_less)
```
```   200     { fix n have "?d (A n) \<le> - real n * e"
```
```   201       proof (induct n)
```
```   202         case (Suc n) with dA_epsilon[of n, OF B] show ?case by (simp del: A_simps add: real_of_nat_Suc field_simps)
```
```   203       qed simp } note dA_less = this
```
```   204     have decseq: "decseq (\<lambda>n. ?d (A n))" unfolding decseq_eq_incseq
```
```   205     proof (rule incseq_SucI)
```
```   206       fix n show "- ?d (A n) \<le> - ?d (A (Suc n))" using dA_mono[of n] by auto
```
```   207     qed
```
```   208     from real_finite_continuity_from_below[of A] `range A \<subseteq> sets M`
```
```   209       M'.real_finite_continuity_from_below[of A]
```
```   210     have convergent: "(\<lambda>i. ?d (A i)) ----> ?d (\<Union>i. A i)"
```
```   211       by (auto intro!: LIMSEQ_diff)
```
```   212     obtain n :: nat where "- ?d (\<Union>i. A i) / e < real n" using reals_Archimedean2 by auto
```
```   213     moreover from order_trans[OF decseq_le[OF decseq convergent] dA_less]
```
```   214     have "real n \<le> - ?d (\<Union>i. A i) / e" using `0<e` by (simp add: field_simps)
```
```   215     ultimately show ?thesis by auto
```
```   216   qed
```
```   217 qed
```
```   218
```
```   219 lemma (in finite_measure) Radon_Nikodym_aux:
```
```   220   assumes "finite_measure (M\<lparr>measure := \<nu>\<rparr>)" (is "finite_measure ?M'")
```
```   221   shows "\<exists>A\<in>sets M. real (\<mu> (space M)) - real (\<nu> (space M)) \<le>
```
```   222                     real (\<mu> A) - real (\<nu> A) \<and>
```
```   223                     (\<forall>B\<in>sets M. B \<subseteq> A \<longrightarrow> 0 \<le> real (\<mu> B) - real (\<nu> B))"
```
```   224 proof -
```
```   225   let "?d A" = "real (\<mu> A) - real (\<nu> A)"
```
```   226   let "?P A B n" = "A \<in> sets M \<and> A \<subseteq> B \<and> ?d B \<le> ?d A \<and> (\<forall>C\<in>sets M. C \<subseteq> A \<longrightarrow> - 1 / real (Suc n) < ?d C)"
```
```   227   interpret M': finite_measure ?M' where
```
```   228     "space ?M' = space M" and "sets ?M' = sets M" and "measure ?M' = \<nu>" by fact auto
```
```   229   let "?r S" = "restricted_space S"
```
```   230   { fix S n
```
```   231     assume S: "S \<in> sets M"
```
```   232     hence **: "\<And>X. X \<in> op \<inter> S ` sets M \<longleftrightarrow> X \<in> sets M \<and> X \<subseteq> S" by auto
```
```   233     have [simp]: "(restricted_space S\<lparr>measure := \<nu>\<rparr>) = M'.restricted_space S"
```
```   234       by (cases M) simp
```
```   235     from M'.restricted_finite_measure[of S] restricted_finite_measure[OF S] S
```
```   236     have "finite_measure (?r S)" "0 < 1 / real (Suc n)"
```
```   237       "finite_measure (?r S\<lparr>measure := \<nu>\<rparr>)" by auto
```
```   238     from finite_measure.Radon_Nikodym_aux_epsilon[OF this] guess X ..
```
```   239     hence "?P X S n"
```
```   240     proof (simp add: **, safe)
```
```   241       fix C assume C: "C \<in> sets M" "C \<subseteq> X" "X \<subseteq> S" and
```
```   242         *: "\<forall>B\<in>sets M. S \<inter> B \<subseteq> X \<longrightarrow> - (1 / real (Suc n)) < ?d (S \<inter> B)"
```
```   243       hence "C \<subseteq> S" "C \<subseteq> X" "S \<inter> C = C" by auto
```
```   244       with *[THEN bspec, OF `C \<in> sets M`]
```
```   245       show "- (1 / real (Suc n)) < ?d C" by auto
```
```   246     qed
```
```   247     hence "\<exists>A. ?P A S n" by auto }
```
```   248   note Ex_P = this
```
```   249   def A \<equiv> "nat_rec (space M) (\<lambda>n A. SOME B. ?P B A n)"
```
```   250   have A_Suc: "\<And>n. A (Suc n) = (SOME B. ?P B (A n) n)" by (simp add: A_def)
```
```   251   have A_0[simp]: "A 0 = space M" unfolding A_def by simp
```
```   252   { fix i have "A i \<in> sets M" unfolding A_def
```
```   253     proof (induct i)
```
```   254       case (Suc i)
```
```   255       from Ex_P[OF this, of i] show ?case unfolding nat_rec_Suc
```
```   256         by (rule someI2_ex) simp
```
```   257     qed simp }
```
```   258   note A_in_sets = this
```
```   259   { fix n have "?P (A (Suc n)) (A n) n"
```
```   260       using Ex_P[OF A_in_sets] unfolding A_Suc
```
```   261       by (rule someI2_ex) simp }
```
```   262   note P_A = this
```
```   263   have "range A \<subseteq> sets M" using A_in_sets by auto
```
```   264   have A_mono: "\<And>i. A (Suc i) \<subseteq> A i" using P_A by simp
```
```   265   have mono_dA: "mono (\<lambda>i. ?d (A i))" using P_A by (simp add: mono_iff_le_Suc)
```
```   266   have epsilon: "\<And>C i. \<lbrakk> C \<in> sets M; C \<subseteq> A (Suc i) \<rbrakk> \<Longrightarrow> - 1 / real (Suc i) < ?d C"
```
```   267       using P_A by auto
```
```   268   show ?thesis
```
```   269   proof (safe intro!: bexI[of _ "\<Inter>i. A i"])
```
```   270     show "(\<Inter>i. A i) \<in> sets M" using A_in_sets by auto
```
```   271     from `range A \<subseteq> sets M` A_mono
```
```   272       real_finite_continuity_from_above[of A]
```
```   273       M'.real_finite_continuity_from_above[of A]
```
```   274     have "(\<lambda>i. ?d (A i)) ----> ?d (\<Inter>i. A i)" by (auto intro!: LIMSEQ_diff)
```
```   275     thus "?d (space M) \<le> ?d (\<Inter>i. A i)" using mono_dA[THEN monoD, of 0 _]
```
```   276       by (rule_tac LIMSEQ_le_const) (auto intro!: exI)
```
```   277   next
```
```   278     fix B assume B: "B \<in> sets M" "B \<subseteq> (\<Inter>i. A i)"
```
```   279     show "0 \<le> ?d B"
```
```   280     proof (rule ccontr)
```
```   281       assume "\<not> 0 \<le> ?d B"
```
```   282       hence "0 < - ?d B" by auto
```
```   283       from ex_inverse_of_nat_Suc_less[OF this]
```
```   284       obtain n where *: "?d B < - 1 / real (Suc n)"
```
```   285         by (auto simp: real_eq_of_nat inverse_eq_divide field_simps)
```
```   286       have "B \<subseteq> A (Suc n)" using B by (auto simp del: nat_rec_Suc)
```
```   287       from epsilon[OF B(1) this] *
```
```   288       show False by auto
```
```   289     qed
```
```   290   qed
```
```   291 qed
```
```   292
```
```   293 lemma (in finite_measure) Radon_Nikodym_finite_measure:
```
```   294   assumes "finite_measure (M\<lparr> measure := \<nu>\<rparr>)" (is "finite_measure ?M'")
```
```   295   assumes "absolutely_continuous \<nu>"
```
```   296   shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   297 proof -
```
```   298   interpret M': finite_measure ?M'
```
```   299     where "space ?M' = space M" and "sets ?M' = sets M" and "measure ?M' = \<nu>"
```
```   300     using assms(1) by auto
```
```   301   def G \<equiv> "{g \<in> borel_measurable M. \<forall>A\<in>sets M. (\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A}"
```
```   302   have "(\<lambda>x. 0) \<in> G" unfolding G_def by auto
```
```   303   hence "G \<noteq> {}" by auto
```
```   304   { fix f g assume f: "f \<in> G" and g: "g \<in> G"
```
```   305     have "(\<lambda>x. max (g x) (f x)) \<in> G" (is "?max \<in> G") unfolding G_def
```
```   306     proof safe
```
```   307       show "?max \<in> borel_measurable M" using f g unfolding G_def by auto
```
```   308       let ?A = "{x \<in> space M. f x \<le> g x}"
```
```   309       have "?A \<in> sets M" using f g unfolding G_def by auto
```
```   310       fix A assume "A \<in> sets M"
```
```   311       hence sets: "?A \<inter> A \<in> sets M" "(space M - ?A) \<inter> A \<in> sets M" using `?A \<in> sets M` by auto
```
```   312       have union: "((?A \<inter> A) \<union> ((space M - ?A) \<inter> A)) = A"
```
```   313         using sets_into_space[OF `A \<in> sets M`] by auto
```
```   314       have "\<And>x. x \<in> space M \<Longrightarrow> max (g x) (f x) * indicator A x =
```
```   315         g x * indicator (?A \<inter> A) x + f x * indicator ((space M - ?A) \<inter> A) x"
```
```   316         by (auto simp: indicator_def max_def)
```
```   317       hence "(\<integral>\<^isup>+x. max (g x) (f x) * indicator A x \<partial>M) =
```
```   318         (\<integral>\<^isup>+x. g x * indicator (?A \<inter> A) x \<partial>M) +
```
```   319         (\<integral>\<^isup>+x. f x * indicator ((space M - ?A) \<inter> A) x \<partial>M)"
```
```   320         using f g sets unfolding G_def
```
```   321         by (auto cong: positive_integral_cong intro!: positive_integral_add borel_measurable_indicator)
```
```   322       also have "\<dots> \<le> \<nu> (?A \<inter> A) + \<nu> ((space M - ?A) \<inter> A)"
```
```   323         using f g sets unfolding G_def by (auto intro!: add_mono)
```
```   324       also have "\<dots> = \<nu> A"
```
```   325         using M'.measure_additive[OF sets] union by auto
```
```   326       finally show "(\<integral>\<^isup>+x. max (g x) (f x) * indicator A x \<partial>M) \<le> \<nu> A" .
```
```   327     qed }
```
```   328   note max_in_G = this
```
```   329   { fix f g assume  "f \<up> g" and f: "\<And>i. f i \<in> G"
```
```   330     have "g \<in> G" unfolding G_def
```
```   331     proof safe
```
```   332       from `f \<up> g` have [simp]: "g = (\<lambda>x. SUP i. f i x)"
```
```   333         unfolding isoton_def fun_eq_iff SUPR_apply by simp
```
```   334       have f_borel: "\<And>i. f i \<in> borel_measurable M" using f unfolding G_def by simp
```
```   335       thus "g \<in> borel_measurable M" by auto
```
```   336       fix A assume "A \<in> sets M"
```
```   337       hence "\<And>i. (\<lambda>x. f i x * indicator A x) \<in> borel_measurable M"
```
```   338         using f_borel by (auto intro!: borel_measurable_indicator)
```
```   339       from positive_integral_isoton[OF isoton_indicator[OF `f \<up> g`] this]
```
```   340       have SUP: "(\<integral>\<^isup>+x. g x * indicator A x \<partial>M) =
```
```   341           (SUP i. (\<integral>\<^isup>+x. f i x * indicator A x \<partial>M))"
```
```   342         unfolding isoton_def by simp
```
```   343       show "(\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A" unfolding SUP
```
```   344         using f `A \<in> sets M` unfolding G_def by (auto intro!: SUP_leI)
```
```   345     qed }
```
```   346   note SUP_in_G = this
```
```   347   let ?y = "SUP g : G. integral\<^isup>P M g"
```
```   348   have "?y \<le> \<nu> (space M)" unfolding G_def
```
```   349   proof (safe intro!: SUP_leI)
```
```   350     fix g assume "\<forall>A\<in>sets M. (\<integral>\<^isup>+x. g x * indicator A x \<partial>M) \<le> \<nu> A"
```
```   351     from this[THEN bspec, OF top] show "integral\<^isup>P M g \<le> \<nu> (space M)"
```
```   352       by (simp cong: positive_integral_cong)
```
```   353   qed
```
```   354   hence "?y \<noteq> \<omega>" using M'.finite_measure_of_space by auto
```
```   355   from SUPR_countable_SUPR[OF this `G \<noteq> {}`] guess ys .. note ys = this
```
```   356   hence "\<forall>n. \<exists>g. g\<in>G \<and> integral\<^isup>P M g = ys n"
```
```   357   proof safe
```
```   358     fix n assume "range ys \<subseteq> integral\<^isup>P M ` G"
```
```   359     hence "ys n \<in> integral\<^isup>P M ` G" by auto
```
```   360     thus "\<exists>g. g\<in>G \<and> integral\<^isup>P M g = ys n" by auto
```
```   361   qed
```
```   362   from choice[OF this] obtain gs where "\<And>i. gs i \<in> G" "\<And>n. integral\<^isup>P M (gs n) = ys n" by auto
```
```   363   hence y_eq: "?y = (SUP i. integral\<^isup>P M (gs i))" using ys by auto
```
```   364   let "?g i x" = "Max ((\<lambda>n. gs n x) ` {..i})"
```
```   365   def f \<equiv> "SUP i. ?g i"
```
```   366   have gs_not_empty: "\<And>i. (\<lambda>n. gs n x) ` {..i} \<noteq> {}" by auto
```
```   367   { fix i have "?g i \<in> G"
```
```   368     proof (induct i)
```
```   369       case 0 thus ?case by simp fact
```
```   370     next
```
```   371       case (Suc i)
```
```   372       with Suc gs_not_empty `gs (Suc i) \<in> G` show ?case
```
```   373         by (auto simp add: atMost_Suc intro!: max_in_G)
```
```   374     qed }
```
```   375   note g_in_G = this
```
```   376   have "\<And>x. \<forall>i. ?g i x \<le> ?g (Suc i) x"
```
```   377     using gs_not_empty by (simp add: atMost_Suc)
```
```   378   hence isoton_g: "?g \<up> f" by (simp add: isoton_def le_fun_def f_def)
```
```   379   from SUP_in_G[OF this g_in_G] have "f \<in> G" .
```
```   380   hence [simp, intro]: "f \<in> borel_measurable M" unfolding G_def by auto
```
```   381   have "(\<lambda>i. integral\<^isup>P M (?g i)) \<up> integral\<^isup>P M f"
```
```   382     using isoton_g g_in_G by (auto intro!: positive_integral_isoton simp: G_def f_def)
```
```   383   hence "integral\<^isup>P M f = (SUP i. integral\<^isup>P M (?g i))"
```
```   384     unfolding isoton_def by simp
```
```   385   also have "\<dots> = ?y"
```
```   386   proof (rule antisym)
```
```   387     show "(SUP i. integral\<^isup>P M (?g i)) \<le> ?y"
```
```   388       using g_in_G by (auto intro!: exI Sup_mono simp: SUPR_def)
```
```   389     show "?y \<le> (SUP i. integral\<^isup>P M (?g i))" unfolding y_eq
```
```   390       by (auto intro!: SUP_mono positive_integral_mono Max_ge)
```
```   391   qed
```
```   392   finally have int_f_eq_y: "integral\<^isup>P M f = ?y" .
```
```   393   let "?t A" = "\<nu> A - (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   394   let ?M = "M\<lparr> measure := ?t\<rparr>"
```
```   395   interpret M: sigma_algebra ?M
```
```   396     by (intro sigma_algebra_cong) auto
```
```   397   have fmM: "finite_measure ?M"
```
```   398   proof (default, simp_all add: countably_additive_def, safe)
```
```   399     fix A :: "nat \<Rightarrow> 'a set"  assume A: "range A \<subseteq> sets M" "disjoint_family A"
```
```   400     have "(\<Sum>\<^isub>\<infinity> n. (\<integral>\<^isup>+x. f x * indicator (A n) x \<partial>M))
```
```   401       = (\<integral>\<^isup>+x. (\<Sum>\<^isub>\<infinity>n. f x * indicator (A n) x) \<partial>M)"
```
```   402       using `range A \<subseteq> sets M`
```
```   403       by (rule_tac positive_integral_psuminf[symmetric]) (auto intro!: borel_measurable_indicator)
```
```   404     also have "\<dots> = (\<integral>\<^isup>+x. f x * indicator (\<Union>n. A n) x \<partial>M)"
```
```   405       apply (rule positive_integral_cong)
```
```   406       apply (subst psuminf_cmult_right)
```
```   407       unfolding psuminf_indicator[OF `disjoint_family A`] ..
```
```   408     finally have "(\<Sum>\<^isub>\<infinity> n. (\<integral>\<^isup>+x. f x * indicator (A n) x \<partial>M))
```
```   409       = (\<integral>\<^isup>+x. f x * indicator (\<Union>n. A n) x \<partial>M)" .
```
```   410     moreover have "(\<Sum>\<^isub>\<infinity>n. \<nu> (A n)) = \<nu> (\<Union>n. A n)"
```
```   411       using M'.measure_countably_additive A by (simp add: comp_def)
```
```   412     moreover have "\<And>i. (\<integral>\<^isup>+x. f x * indicator (A i) x \<partial>M) \<le> \<nu> (A i)"
```
```   413         using A `f \<in> G` unfolding G_def by auto
```
```   414     moreover have v_fin: "\<nu> (\<Union>i. A i) \<noteq> \<omega>" using M'.finite_measure A by (simp add: countable_UN)
```
```   415     moreover {
```
```   416       have "(\<integral>\<^isup>+x. f x * indicator (\<Union>i. A i) x \<partial>M) \<le> \<nu> (\<Union>i. A i)"
```
```   417         using A `f \<in> G` unfolding G_def by (auto simp: countable_UN)
```
```   418       also have "\<nu> (\<Union>i. A i) < \<omega>" using v_fin by (simp add: pextreal_less_\<omega>)
```
```   419       finally have "(\<integral>\<^isup>+x. f x * indicator (\<Union>i. A i) x \<partial>M) \<noteq> \<omega>"
```
```   420         by (simp add: pextreal_less_\<omega>) }
```
```   421     ultimately
```
```   422     show "(\<Sum>\<^isub>\<infinity> n. ?t (A n)) = ?t (\<Union>i. A i)"
```
```   423       apply (subst psuminf_minus) by simp_all
```
```   424   qed
```
```   425   then interpret M: finite_measure ?M
```
```   426     where "space ?M = space M" and "sets ?M = sets M" and "measure ?M = ?t"
```
```   427     by (simp_all add: fmM)
```
```   428   have ac: "absolutely_continuous ?t" using `absolutely_continuous \<nu>` unfolding absolutely_continuous_def by auto
```
```   429   have upper_bound: "\<forall>A\<in>sets M. ?t A \<le> 0"
```
```   430   proof (rule ccontr)
```
```   431     assume "\<not> ?thesis"
```
```   432     then obtain A where A: "A \<in> sets M" and pos: "0 < ?t A"
```
```   433       by (auto simp: not_le)
```
```   434     note pos
```
```   435     also have "?t A \<le> ?t (space M)"
```
```   436       using M.measure_mono[of A "space M"] A sets_into_space by simp
```
```   437     finally have pos_t: "0 < ?t (space M)" by simp
```
```   438     moreover
```
```   439     hence pos_M: "0 < \<mu> (space M)"
```
```   440       using ac top unfolding absolutely_continuous_def by auto
```
```   441     moreover
```
```   442     have "(\<integral>\<^isup>+x. f x * indicator (space M) x \<partial>M) \<le> \<nu> (space M)"
```
```   443       using `f \<in> G` unfolding G_def by auto
```
```   444     hence "(\<integral>\<^isup>+x. f x * indicator (space M) x \<partial>M) \<noteq> \<omega>"
```
```   445       using M'.finite_measure_of_space by auto
```
```   446     moreover
```
```   447     def b \<equiv> "?t (space M) / \<mu> (space M) / 2"
```
```   448     ultimately have b: "b \<noteq> 0" "b \<noteq> \<omega>"
```
```   449       using M'.finite_measure_of_space
```
```   450       by (auto simp: pextreal_inverse_eq_0 finite_measure_of_space)
```
```   451     let ?Mb = "?M\<lparr>measure := \<lambda>A. b * \<mu> A\<rparr>"
```
```   452     interpret b: sigma_algebra ?Mb by (intro sigma_algebra_cong) auto
```
```   453     have "finite_measure ?Mb"
```
```   454       by default
```
```   455          (insert finite_measure_of_space b measure_countably_additive,
```
```   456           auto simp: psuminf_cmult_right countably_additive_def)
```
```   457     from M.Radon_Nikodym_aux[OF this]
```
```   458     obtain A0 where "A0 \<in> sets M" and
```
```   459       space_less_A0: "real (?t (space M)) - real (b * \<mu> (space M)) \<le> real (?t A0) - real (b * \<mu> A0)" and
```
```   460       *: "\<And>B. \<lbrakk> B \<in> sets M ; B \<subseteq> A0 \<rbrakk> \<Longrightarrow> 0 \<le> real (?t B) - real (b * \<mu> B)" by auto
```
```   461     { fix B assume "B \<in> sets M" "B \<subseteq> A0"
```
```   462       with *[OF this] have "b * \<mu> B \<le> ?t B"
```
```   463         using M'.finite_measure b finite_measure
```
```   464         by (cases "b * \<mu> B", cases "?t B") (auto simp: field_simps) }
```
```   465     note bM_le_t = this
```
```   466     let "?f0 x" = "f x + b * indicator A0 x"
```
```   467     { fix A assume A: "A \<in> sets M"
```
```   468       hence "A \<inter> A0 \<in> sets M" using `A0 \<in> sets M` by auto
```
```   469       have "(\<integral>\<^isup>+x. ?f0 x  * indicator A x \<partial>M) =
```
```   470         (\<integral>\<^isup>+x. f x * indicator A x + b * indicator (A \<inter> A0) x \<partial>M)"
```
```   471         by (auto intro!: positive_integral_cong simp: field_simps indicator_inter_arith)
```
```   472       hence "(\<integral>\<^isup>+x. ?f0 x * indicator A x \<partial>M) =
```
```   473           (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + b * \<mu> (A \<inter> A0)"
```
```   474         using `A0 \<in> sets M` `A \<inter> A0 \<in> sets M` A
```
```   475         by (simp add: borel_measurable_indicator positive_integral_add positive_integral_cmult_indicator) }
```
```   476     note f0_eq = this
```
```   477     { fix A assume A: "A \<in> sets M"
```
```   478       hence "A \<inter> A0 \<in> sets M" using `A0 \<in> sets M` by auto
```
```   479       have f_le_v: "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) \<le> \<nu> A"
```
```   480         using `f \<in> G` A unfolding G_def by auto
```
```   481       note f0_eq[OF A]
```
```   482       also have "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + b * \<mu> (A \<inter> A0) \<le>
```
```   483           (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + ?t (A \<inter> A0)"
```
```   484         using bM_le_t[OF `A \<inter> A0 \<in> sets M`] `A \<in> sets M` `A0 \<in> sets M`
```
```   485         by (auto intro!: add_left_mono)
```
```   486       also have "\<dots> \<le> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) + ?t A"
```
```   487         using M.measure_mono[simplified, OF _ `A \<inter> A0 \<in> sets M` `A \<in> sets M`]
```
```   488         by (auto intro!: add_left_mono)
```
```   489       also have "\<dots> \<le> \<nu> A"
```
```   490         using f_le_v M'.finite_measure[simplified, OF `A \<in> sets M`]
```
```   491         by (cases "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M)", cases "\<nu> A", auto)
```
```   492       finally have "(\<integral>\<^isup>+x. ?f0 x * indicator A x \<partial>M) \<le> \<nu> A" . }
```
```   493     hence "?f0 \<in> G" using `A0 \<in> sets M` unfolding G_def
```
```   494       by (auto intro!: borel_measurable_indicator borel_measurable_pextreal_add borel_measurable_pextreal_times)
```
```   495     have real: "?t (space M) \<noteq> \<omega>" "?t A0 \<noteq> \<omega>"
```
```   496       "b * \<mu> (space M) \<noteq> \<omega>" "b * \<mu> A0 \<noteq> \<omega>"
```
```   497       using `A0 \<in> sets M` b
```
```   498         finite_measure[of A0] M.finite_measure[of A0]
```
```   499         finite_measure_of_space M.finite_measure_of_space
```
```   500       by auto
```
```   501     have int_f_finite: "integral\<^isup>P M f \<noteq> \<omega>"
```
```   502       using M'.finite_measure_of_space pos_t unfolding pextreal_zero_less_diff_iff
```
```   503       by (auto cong: positive_integral_cong)
```
```   504     have "?t (space M) > b * \<mu> (space M)" unfolding b_def
```
```   505       apply (simp add: field_simps)
```
```   506       apply (subst mult_assoc[symmetric])
```
```   507       apply (subst pextreal_mult_inverse)
```
```   508       using finite_measure_of_space M'.finite_measure_of_space pos_t pos_M
```
```   509       using pextreal_mult_strict_right_mono[of "Real (1/2)" 1 "?t (space M)"]
```
```   510       by simp_all
```
```   511     hence  "0 < ?t (space M) - b * \<mu> (space M)"
```
```   512       by (simp add: pextreal_zero_less_diff_iff)
```
```   513     also have "\<dots> \<le> ?t A0 - b * \<mu> A0"
```
```   514       using space_less_A0 pos_M pos_t b real[unfolded pextreal_noteq_omega_Ex] by auto
```
```   515     finally have "b * \<mu> A0 < ?t A0" unfolding pextreal_zero_less_diff_iff .
```
```   516     hence "0 < ?t A0" by auto
```
```   517     hence "0 < \<mu> A0" using ac unfolding absolutely_continuous_def
```
```   518       using `A0 \<in> sets M` by auto
```
```   519     hence "0 < b * \<mu> A0" using b by auto
```
```   520     from int_f_finite this
```
```   521     have "?y + 0 < integral\<^isup>P M f + b * \<mu> A0" unfolding int_f_eq_y
```
```   522       by (rule pextreal_less_add)
```
```   523     also have "\<dots> = integral\<^isup>P M ?f0" using f0_eq[OF top] `A0 \<in> sets M` sets_into_space
```
```   524       by (simp cong: positive_integral_cong)
```
```   525     finally have "?y < integral\<^isup>P M ?f0" by simp
```
```   526     moreover from `?f0 \<in> G` have "integral\<^isup>P M ?f0 \<le> ?y" by (auto intro!: le_SUPI)
```
```   527     ultimately show False by auto
```
```   528   qed
```
```   529   show ?thesis
```
```   530   proof (safe intro!: bexI[of _ f])
```
```   531     fix A assume "A\<in>sets M"
```
```   532     show "\<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   533     proof (rule antisym)
```
```   534       show "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) \<le> \<nu> A"
```
```   535         using `f \<in> G` `A \<in> sets M` unfolding G_def by auto
```
```   536       show "\<nu> A \<le> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   537         using upper_bound[THEN bspec, OF `A \<in> sets M`]
```
```   538          by (simp add: pextreal_zero_le_diff)
```
```   539     qed
```
```   540   qed simp
```
```   541 qed
```
```   542
```
```   543 lemma (in finite_measure) split_space_into_finite_sets_and_rest:
```
```   544   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
```
```   545   assumes ac: "absolutely_continuous \<nu>"
```
```   546   shows "\<exists>\<Omega>0\<in>sets M. \<exists>\<Omega>::nat\<Rightarrow>'a set. disjoint_family \<Omega> \<and> range \<Omega> \<subseteq> sets M \<and> \<Omega>0 = space M - (\<Union>i. \<Omega> i) \<and>
```
```   547     (\<forall>A\<in>sets M. A \<subseteq> \<Omega>0 \<longrightarrow> (\<mu> A = 0 \<and> \<nu> A = 0) \<or> (\<mu> A > 0 \<and> \<nu> A = \<omega>)) \<and>
```
```   548     (\<forall>i. \<nu> (\<Omega> i) \<noteq> \<omega>)"
```
```   549 proof -
```
```   550   interpret v: measure_space ?N
```
```   551     where "space ?N = space M" and "sets ?N = sets M" and "measure ?N = \<nu>"
```
```   552     by fact auto
```
```   553   let ?Q = "{Q\<in>sets M. \<nu> Q \<noteq> \<omega>}"
```
```   554   let ?a = "SUP Q:?Q. \<mu> Q"
```
```   555   have "{} \<in> ?Q" using v.empty_measure by auto
```
```   556   then have Q_not_empty: "?Q \<noteq> {}" by blast
```
```   557   have "?a \<le> \<mu> (space M)" using sets_into_space
```
```   558     by (auto intro!: SUP_leI measure_mono top)
```
```   559   then have "?a \<noteq> \<omega>" using finite_measure_of_space
```
```   560     by auto
```
```   561   from SUPR_countable_SUPR[OF this Q_not_empty]
```
```   562   obtain Q'' where "range Q'' \<subseteq> \<mu> ` ?Q" and a: "?a = (SUP i::nat. Q'' i)"
```
```   563     by auto
```
```   564   then have "\<forall>i. \<exists>Q'. Q'' i = \<mu> Q' \<and> Q' \<in> ?Q" by auto
```
```   565   from choice[OF this] obtain Q' where Q': "\<And>i. Q'' i = \<mu> (Q' i)" "\<And>i. Q' i \<in> ?Q"
```
```   566     by auto
```
```   567   then have a_Lim: "?a = (SUP i::nat. \<mu> (Q' i))" using a by simp
```
```   568   let "?O n" = "\<Union>i\<le>n. Q' i"
```
```   569   have Union: "(SUP i. \<mu> (?O i)) = \<mu> (\<Union>i. ?O i)"
```
```   570   proof (rule continuity_from_below[of ?O])
```
```   571     show "range ?O \<subseteq> sets M" using Q' by (auto intro!: finite_UN)
```
```   572     show "\<And>i. ?O i \<subseteq> ?O (Suc i)" by fastsimp
```
```   573   qed
```
```   574   have Q'_sets: "\<And>i. Q' i \<in> sets M" using Q' by auto
```
```   575   have O_sets: "\<And>i. ?O i \<in> sets M"
```
```   576      using Q' by (auto intro!: finite_UN Un)
```
```   577   then have O_in_G: "\<And>i. ?O i \<in> ?Q"
```
```   578   proof (safe del: notI)
```
```   579     fix i have "Q' ` {..i} \<subseteq> sets M"
```
```   580       using Q' by (auto intro: finite_UN)
```
```   581     with v.measure_finitely_subadditive[of "{.. i}" Q']
```
```   582     have "\<nu> (?O i) \<le> (\<Sum>i\<le>i. \<nu> (Q' i))" by auto
```
```   583     also have "\<dots> < \<omega>" unfolding setsum_\<omega> pextreal_less_\<omega> using Q' by auto
```
```   584     finally show "\<nu> (?O i) \<noteq> \<omega>" unfolding pextreal_less_\<omega> by auto
```
```   585   qed auto
```
```   586   have O_mono: "\<And>n. ?O n \<subseteq> ?O (Suc n)" by fastsimp
```
```   587   have a_eq: "?a = \<mu> (\<Union>i. ?O i)" unfolding Union[symmetric]
```
```   588   proof (rule antisym)
```
```   589     show "?a \<le> (SUP i. \<mu> (?O i))" unfolding a_Lim
```
```   590       using Q' by (auto intro!: SUP_mono measure_mono finite_UN)
```
```   591     show "(SUP i. \<mu> (?O i)) \<le> ?a" unfolding SUPR_def
```
```   592     proof (safe intro!: Sup_mono, unfold bex_simps)
```
```   593       fix i
```
```   594       have *: "(\<Union>Q' ` {..i}) = ?O i" by auto
```
```   595       then show "\<exists>x. (x \<in> sets M \<and> \<nu> x \<noteq> \<omega>) \<and>
```
```   596         \<mu> (\<Union>Q' ` {..i}) \<le> \<mu> x"
```
```   597         using O_in_G[of i] by (auto intro!: exI[of _ "?O i"])
```
```   598     qed
```
```   599   qed
```
```   600   let "?O_0" = "(\<Union>i. ?O i)"
```
```   601   have "?O_0 \<in> sets M" using Q' by auto
```
```   602   def Q \<equiv> "\<lambda>i. case i of 0 \<Rightarrow> Q' 0 | Suc n \<Rightarrow> ?O (Suc n) - ?O n"
```
```   603   { fix i have "Q i \<in> sets M" unfolding Q_def using Q'[of 0] by (cases i) (auto intro: O_sets) }
```
```   604   note Q_sets = this
```
```   605   show ?thesis
```
```   606   proof (intro bexI exI conjI ballI impI allI)
```
```   607     show "disjoint_family Q"
```
```   608       by (fastsimp simp: disjoint_family_on_def Q_def
```
```   609         split: nat.split_asm)
```
```   610     show "range Q \<subseteq> sets M"
```
```   611       using Q_sets by auto
```
```   612     { fix A assume A: "A \<in> sets M" "A \<subseteq> space M - ?O_0"
```
```   613       show "\<mu> A = 0 \<and> \<nu> A = 0 \<or> 0 < \<mu> A \<and> \<nu> A = \<omega>"
```
```   614       proof (rule disjCI, simp)
```
```   615         assume *: "0 < \<mu> A \<longrightarrow> \<nu> A \<noteq> \<omega>"
```
```   616         show "\<mu> A = 0 \<and> \<nu> A = 0"
```
```   617         proof cases
```
```   618           assume "\<mu> A = 0" moreover with ac A have "\<nu> A = 0"
```
```   619             unfolding absolutely_continuous_def by auto
```
```   620           ultimately show ?thesis by simp
```
```   621         next
```
```   622           assume "\<mu> A \<noteq> 0" with * have "\<nu> A \<noteq> \<omega>" by auto
```
```   623           with A have "\<mu> ?O_0 + \<mu> A = \<mu> (?O_0 \<union> A)"
```
```   624             using Q' by (auto intro!: measure_additive countable_UN)
```
```   625           also have "\<dots> = (SUP i. \<mu> (?O i \<union> A))"
```
```   626           proof (rule continuity_from_below[of "\<lambda>i. ?O i \<union> A", symmetric, simplified])
```
```   627             show "range (\<lambda>i. ?O i \<union> A) \<subseteq> sets M"
```
```   628               using `\<nu> A \<noteq> \<omega>` O_sets A by auto
```
```   629           qed fastsimp
```
```   630           also have "\<dots> \<le> ?a"
```
```   631           proof (safe intro!: SUPR_bound)
```
```   632             fix i have "?O i \<union> A \<in> ?Q"
```
```   633             proof (safe del: notI)
```
```   634               show "?O i \<union> A \<in> sets M" using O_sets A by auto
```
```   635               from O_in_G[of i]
```
```   636               moreover have "\<nu> (?O i \<union> A) \<le> \<nu> (?O i) + \<nu> A"
```
```   637                 using v.measure_subadditive[of "?O i" A] A O_sets by auto
```
```   638               ultimately show "\<nu> (?O i \<union> A) \<noteq> \<omega>"
```
```   639                 using `\<nu> A \<noteq> \<omega>` by auto
```
```   640             qed
```
```   641             then show "\<mu> (?O i \<union> A) \<le> ?a" by (rule le_SUPI)
```
```   642           qed
```
```   643           finally have "\<mu> A = 0" unfolding a_eq using finite_measure[OF `?O_0 \<in> sets M`]
```
```   644             by (cases "\<mu> A") (auto simp: pextreal_noteq_omega_Ex)
```
```   645           with `\<mu> A \<noteq> 0` show ?thesis by auto
```
```   646         qed
```
```   647       qed }
```
```   648     { fix i show "\<nu> (Q i) \<noteq> \<omega>"
```
```   649       proof (cases i)
```
```   650         case 0 then show ?thesis
```
```   651           unfolding Q_def using Q'[of 0] by simp
```
```   652       next
```
```   653         case (Suc n)
```
```   654         then show ?thesis unfolding Q_def
```
```   655           using `?O n \<in> ?Q` `?O (Suc n) \<in> ?Q` O_mono
```
```   656           using v.measure_Diff[of "?O n" "?O (Suc n)"] by auto
```
```   657       qed }
```
```   658     show "space M - ?O_0 \<in> sets M" using Q'_sets by auto
```
```   659     { fix j have "(\<Union>i\<le>j. ?O i) = (\<Union>i\<le>j. Q i)"
```
```   660       proof (induct j)
```
```   661         case 0 then show ?case by (simp add: Q_def)
```
```   662       next
```
```   663         case (Suc j)
```
```   664         have eq: "\<And>j. (\<Union>i\<le>j. ?O i) = (\<Union>i\<le>j. Q' i)" by fastsimp
```
```   665         have "{..j} \<union> {..Suc j} = {..Suc j}" by auto
```
```   666         then have "(\<Union>i\<le>Suc j. Q' i) = (\<Union>i\<le>j. Q' i) \<union> Q (Suc j)"
```
```   667           by (simp add: UN_Un[symmetric] Q_def del: UN_Un)
```
```   668         then show ?case using Suc by (auto simp add: eq atMost_Suc)
```
```   669       qed }
```
```   670     then have "(\<Union>j. (\<Union>i\<le>j. ?O i)) = (\<Union>j. (\<Union>i\<le>j. Q i))" by simp
```
```   671     then show "space M - ?O_0 = space M - (\<Union>i. Q i)" by fastsimp
```
```   672   qed
```
```   673 qed
```
```   674
```
```   675 lemma (in finite_measure) Radon_Nikodym_finite_measure_infinite:
```
```   676   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
```
```   677   assumes "absolutely_continuous \<nu>"
```
```   678   shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   679 proof -
```
```   680   interpret v: measure_space ?N
```
```   681     where "space ?N = space M" and "sets ?N = sets M" and "measure ?N = \<nu>"
```
```   682     by fact auto
```
```   683   from split_space_into_finite_sets_and_rest[OF assms]
```
```   684   obtain Q0 and Q :: "nat \<Rightarrow> 'a set"
```
```   685     where Q: "disjoint_family Q" "range Q \<subseteq> sets M"
```
```   686     and Q0: "Q0 \<in> sets M" "Q0 = space M - (\<Union>i. Q i)"
```
```   687     and in_Q0: "\<And>A. A \<in> sets M \<Longrightarrow> A \<subseteq> Q0 \<Longrightarrow> \<mu> A = 0 \<and> \<nu> A = 0 \<or> 0 < \<mu> A \<and> \<nu> A = \<omega>"
```
```   688     and Q_fin: "\<And>i. \<nu> (Q i) \<noteq> \<omega>" by force
```
```   689   from Q have Q_sets: "\<And>i. Q i \<in> sets M" by auto
```
```   690   have "\<forall>i. \<exists>f. f\<in>borel_measurable M \<and> (\<forall>A\<in>sets M.
```
```   691     \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f x * indicator (Q i \<inter> A) x \<partial>M))"
```
```   692   proof
```
```   693     fix i
```
```   694     have indicator_eq: "\<And>f x A. (f x :: pextreal) * indicator (Q i \<inter> A) x * indicator (Q i) x
```
```   695       = (f x * indicator (Q i) x) * indicator A x"
```
```   696       unfolding indicator_def by auto
```
```   697     have fm: "finite_measure (restricted_space (Q i))"
```
```   698       (is "finite_measure ?R") by (rule restricted_finite_measure[OF Q_sets[of i]])
```
```   699     then interpret R: finite_measure ?R .
```
```   700     have fmv: "finite_measure (restricted_space (Q i) \<lparr> measure := \<nu>\<rparr>)" (is "finite_measure ?Q")
```
```   701       unfolding finite_measure_def finite_measure_axioms_def
```
```   702     proof
```
```   703       show "measure_space ?Q"
```
```   704         using v.restricted_measure_space Q_sets[of i] by auto
```
```   705       show "measure ?Q (space ?Q) \<noteq> \<omega>" using Q_fin by simp
```
```   706     qed
```
```   707     have "R.absolutely_continuous \<nu>"
```
```   708       using `absolutely_continuous \<nu>` `Q i \<in> sets M`
```
```   709       by (auto simp: R.absolutely_continuous_def absolutely_continuous_def)
```
```   710     from R.Radon_Nikodym_finite_measure[OF fmv this]
```
```   711     obtain f where f: "(\<lambda>x. f x * indicator (Q i) x) \<in> borel_measurable M"
```
```   712       and f_int: "\<And>A. A\<in>sets M \<Longrightarrow> \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. (f x * indicator (Q i) x) * indicator A x \<partial>M)"
```
```   713       unfolding Bex_def borel_measurable_restricted[OF `Q i \<in> sets M`]
```
```   714         positive_integral_restricted[OF `Q i \<in> sets M`] by (auto simp: indicator_eq)
```
```   715     then show "\<exists>f. f\<in>borel_measurable M \<and> (\<forall>A\<in>sets M.
```
```   716       \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f x * indicator (Q i \<inter> A) x \<partial>M))"
```
```   717       by (fastsimp intro!: exI[of _ "\<lambda>x. f x * indicator (Q i) x"] positive_integral_cong
```
```   718           simp: indicator_def)
```
```   719   qed
```
```   720   from choice[OF this] obtain f where borel: "\<And>i. f i \<in> borel_measurable M"
```
```   721     and f: "\<And>A i. A \<in> sets M \<Longrightarrow>
```
```   722       \<nu> (Q i \<inter> A) = (\<integral>\<^isup>+x. f i x * indicator (Q i \<inter> A) x \<partial>M)"
```
```   723     by auto
```
```   724   let "?f x" =
```
```   725     "(\<Sum>\<^isub>\<infinity> i. f i x * indicator (Q i) x) + \<omega> * indicator Q0 x"
```
```   726   show ?thesis
```
```   727   proof (safe intro!: bexI[of _ ?f])
```
```   728     show "?f \<in> borel_measurable M"
```
```   729       by (safe intro!: borel_measurable_psuminf borel_measurable_pextreal_times
```
```   730         borel_measurable_pextreal_add borel_measurable_indicator
```
```   731         borel_measurable_const borel Q_sets Q0 Diff countable_UN)
```
```   732     fix A assume "A \<in> sets M"
```
```   733     have *:
```
```   734       "\<And>x i. indicator A x * (f i x * indicator (Q i) x) =
```
```   735         f i x * indicator (Q i \<inter> A) x"
```
```   736       "\<And>x i. (indicator A x * indicator Q0 x :: pextreal) =
```
```   737         indicator (Q0 \<inter> A) x" by (auto simp: indicator_def)
```
```   738     have "(\<integral>\<^isup>+x. ?f x * indicator A x \<partial>M) =
```
```   739       (\<Sum>\<^isub>\<infinity> i. \<nu> (Q i \<inter> A)) + \<omega> * \<mu> (Q0 \<inter> A)"
```
```   740       unfolding f[OF `A \<in> sets M`]
```
```   741       apply (simp del: pextreal_times(2) add: field_simps *)
```
```   742       apply (subst positive_integral_add)
```
```   743       apply (fastsimp intro: Q0 `A \<in> sets M`)
```
```   744       apply (fastsimp intro: Q_sets `A \<in> sets M` borel_measurable_psuminf borel)
```
```   745       apply (subst positive_integral_cmult_indicator)
```
```   746       apply (fastsimp intro: Q0 `A \<in> sets M`)
```
```   747       unfolding psuminf_cmult_right[symmetric]
```
```   748       apply (subst positive_integral_psuminf)
```
```   749       apply (fastsimp intro: `A \<in> sets M` Q_sets borel)
```
```   750       apply (simp add: *)
```
```   751       done
```
```   752     moreover have "(\<Sum>\<^isub>\<infinity>i. \<nu> (Q i \<inter> A)) = \<nu> ((\<Union>i. Q i) \<inter> A)"
```
```   753       using Q Q_sets `A \<in> sets M`
```
```   754       by (intro v.measure_countably_additive[of "\<lambda>i. Q i \<inter> A", unfolded comp_def, simplified])
```
```   755          (auto simp: disjoint_family_on_def)
```
```   756     moreover have "\<omega> * \<mu> (Q0 \<inter> A) = \<nu> (Q0 \<inter> A)"
```
```   757     proof -
```
```   758       have "Q0 \<inter> A \<in> sets M" using Q0(1) `A \<in> sets M` by blast
```
```   759       from in_Q0[OF this] show ?thesis by auto
```
```   760     qed
```
```   761     moreover have "Q0 \<inter> A \<in> sets M" "((\<Union>i. Q i) \<inter> A) \<in> sets M"
```
```   762       using Q_sets `A \<in> sets M` Q0(1) by (auto intro!: countable_UN)
```
```   763     moreover have "((\<Union>i. Q i) \<inter> A) \<union> (Q0 \<inter> A) = A" "((\<Union>i. Q i) \<inter> A) \<inter> (Q0 \<inter> A) = {}"
```
```   764       using `A \<in> sets M` sets_into_space Q0 by auto
```
```   765     ultimately show "\<nu> A = (\<integral>\<^isup>+x. ?f x * indicator A x \<partial>M)"
```
```   766       using v.measure_additive[simplified, of "(\<Union>i. Q i) \<inter> A" "Q0 \<inter> A"]
```
```   767       by simp
```
```   768   qed
```
```   769 qed
```
```   770
```
```   771 lemma (in sigma_finite_measure) Radon_Nikodym:
```
```   772   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
```
```   773   assumes "absolutely_continuous \<nu>"
```
```   774   shows "\<exists>f \<in> borel_measurable M. \<forall>A\<in>sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   775 proof -
```
```   776   from Ex_finite_integrable_function
```
```   777   obtain h where finite: "integral\<^isup>P M h \<noteq> \<omega>" and
```
```   778     borel: "h \<in> borel_measurable M" and
```
```   779     pos: "\<And>x. x \<in> space M \<Longrightarrow> 0 < h x" and
```
```   780     "\<And>x. x \<in> space M \<Longrightarrow> h x < \<omega>" by auto
```
```   781   let "?T A" = "(\<integral>\<^isup>+x. h x * indicator A x \<partial>M)"
```
```   782   let ?MT = "M\<lparr> measure := ?T \<rparr>"
```
```   783   from measure_space_density[OF borel] finite
```
```   784   interpret T: finite_measure ?MT
```
```   785     where "space ?MT = space M" and "sets ?MT = sets M" and "measure ?MT = ?T"
```
```   786     unfolding finite_measure_def finite_measure_axioms_def
```
```   787     by (simp_all cong: positive_integral_cong)
```
```   788   have "\<And>N. N \<in> sets M \<Longrightarrow> {x \<in> space M. h x \<noteq> 0 \<and> indicator N x \<noteq> (0::pextreal)} = N"
```
```   789     using sets_into_space pos by (force simp: indicator_def)
```
```   790   then have "T.absolutely_continuous \<nu>" using assms(2) borel
```
```   791     unfolding T.absolutely_continuous_def absolutely_continuous_def
```
```   792     by (fastsimp simp: borel_measurable_indicator positive_integral_0_iff)
```
```   793   from T.Radon_Nikodym_finite_measure_infinite[simplified, OF assms(1) this]
```
```   794   obtain f where f_borel: "f \<in> borel_measurable M" and
```
```   795     fT: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+ x. f x * indicator A x \<partial>?MT)"
```
```   796     by (auto simp: measurable_def)
```
```   797   show ?thesis
```
```   798   proof (safe intro!: bexI[of _ "\<lambda>x. h x * f x"])
```
```   799     show "(\<lambda>x. h x * f x) \<in> borel_measurable M"
```
```   800       using borel f_borel by (auto intro: borel_measurable_pextreal_times)
```
```   801     fix A assume "A \<in> sets M"
```
```   802     then have "(\<lambda>x. f x * indicator A x) \<in> borel_measurable M"
```
```   803       using f_borel by (auto intro: borel_measurable_pextreal_times borel_measurable_indicator)
```
```   804     from positive_integral_translated_density[OF borel this]
```
```   805     show "\<nu> A = (\<integral>\<^isup>+x. h x * f x * indicator A x \<partial>M)"
```
```   806       unfolding fT[OF `A \<in> sets M`] by (simp add: field_simps)
```
```   807   qed
```
```   808 qed
```
```   809
```
```   810 section "Uniqueness of densities"
```
```   811
```
```   812 lemma (in measure_space) finite_density_unique:
```
```   813   assumes borel: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
```
```   814   and fin: "integral\<^isup>P M f < \<omega>"
```
```   815   shows "(\<forall>A\<in>sets M. (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. g x * indicator A x \<partial>M))
```
```   816     \<longleftrightarrow> (AE x. f x = g x)"
```
```   817     (is "(\<forall>A\<in>sets M. ?P f A = ?P g A) \<longleftrightarrow> _")
```
```   818 proof (intro iffI ballI)
```
```   819   fix A assume eq: "AE x. f x = g x"
```
```   820   then show "?P f A = ?P g A"
```
```   821     by (auto intro: positive_integral_cong_AE)
```
```   822 next
```
```   823   assume eq: "\<forall>A\<in>sets M. ?P f A = ?P g A"
```
```   824   from this[THEN bspec, OF top] fin
```
```   825   have g_fin: "integral\<^isup>P M g < \<omega>" by (simp cong: positive_integral_cong)
```
```   826   { fix f g assume borel: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
```
```   827       and g_fin: "integral\<^isup>P M g < \<omega>" and eq: "\<forall>A\<in>sets M. ?P f A = ?P g A"
```
```   828     let ?N = "{x\<in>space M. g x < f x}"
```
```   829     have N: "?N \<in> sets M" using borel by simp
```
```   830     have "?P (\<lambda>x. (f x - g x)) ?N = (\<integral>\<^isup>+x. f x * indicator ?N x - g x * indicator ?N x \<partial>M)"
```
```   831       by (auto intro!: positive_integral_cong simp: indicator_def)
```
```   832     also have "\<dots> = ?P f ?N - ?P g ?N"
```
```   833     proof (rule positive_integral_diff)
```
```   834       show "(\<lambda>x. f x * indicator ?N x) \<in> borel_measurable M" "(\<lambda>x. g x * indicator ?N x) \<in> borel_measurable M"
```
```   835         using borel N by auto
```
```   836       have "?P g ?N \<le> integral\<^isup>P M g"
```
```   837         by (auto intro!: positive_integral_mono simp: indicator_def)
```
```   838       then show "?P g ?N \<noteq> \<omega>" using g_fin by auto
```
```   839       fix x assume "x \<in> space M"
```
```   840       show "g x * indicator ?N x \<le> f x * indicator ?N x"
```
```   841         by (auto simp: indicator_def)
```
```   842     qed
```
```   843     also have "\<dots> = 0"
```
```   844       using eq[THEN bspec, OF N] by simp
```
```   845     finally have "\<mu> {x\<in>space M. (f x - g x) * indicator ?N x \<noteq> 0} = 0"
```
```   846       using borel N by (subst (asm) positive_integral_0_iff) auto
```
```   847     moreover have "{x\<in>space M. (f x - g x) * indicator ?N x \<noteq> 0} = ?N"
```
```   848       by (auto simp: pextreal_zero_le_diff)
```
```   849     ultimately have "?N \<in> null_sets" using N by simp }
```
```   850   from this[OF borel g_fin eq] this[OF borel(2,1) fin]
```
```   851   have "{x\<in>space M. g x < f x} \<union> {x\<in>space M. f x < g x} \<in> null_sets"
```
```   852     using eq by (intro null_sets_Un) auto
```
```   853   also have "{x\<in>space M. g x < f x} \<union> {x\<in>space M. f x < g x} = {x\<in>space M. f x \<noteq> g x}"
```
```   854     by auto
```
```   855   finally show "AE x. f x = g x"
```
```   856     unfolding almost_everywhere_def by auto
```
```   857 qed
```
```   858
```
```   859 lemma (in finite_measure) density_unique_finite_measure:
```
```   860   assumes borel: "f \<in> borel_measurable M" "f' \<in> borel_measurable M"
```
```   861   assumes f: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)"
```
```   862     (is "\<And>A. A \<in> sets M \<Longrightarrow> ?P f A = ?P f' A")
```
```   863   shows "AE x. f x = f' x"
```
```   864 proof -
```
```   865   let "?\<nu> A" = "?P f A" and "?\<nu>' A" = "?P f' A"
```
```   866   let "?f A x" = "f x * indicator A x" and "?f' A x" = "f' x * indicator A x"
```
```   867   interpret M: measure_space "M\<lparr> measure := ?\<nu>\<rparr>"
```
```   868     using borel(1) by (rule measure_space_density) simp
```
```   869   have ac: "absolutely_continuous ?\<nu>"
```
```   870     using f by (rule density_is_absolutely_continuous)
```
```   871   from split_space_into_finite_sets_and_rest[OF `measure_space (M\<lparr> measure := ?\<nu>\<rparr>)` ac]
```
```   872   obtain Q0 and Q :: "nat \<Rightarrow> 'a set"
```
```   873     where Q: "disjoint_family Q" "range Q \<subseteq> sets M"
```
```   874     and Q0: "Q0 \<in> sets M" "Q0 = space M - (\<Union>i. Q i)"
```
```   875     and in_Q0: "\<And>A. A \<in> sets M \<Longrightarrow> A \<subseteq> Q0 \<Longrightarrow> \<mu> A = 0 \<and> ?\<nu> A = 0 \<or> 0 < \<mu> A \<and> ?\<nu> A = \<omega>"
```
```   876     and Q_fin: "\<And>i. ?\<nu> (Q i) \<noteq> \<omega>" by force
```
```   877   from Q have Q_sets: "\<And>i. Q i \<in> sets M" by auto
```
```   878   let ?N = "{x\<in>space M. f x \<noteq> f' x}"
```
```   879   have "?N \<in> sets M" using borel by auto
```
```   880   have *: "\<And>i x A. \<And>y::pextreal. y * indicator (Q i) x * indicator A x = y * indicator (Q i \<inter> A) x"
```
```   881     unfolding indicator_def by auto
```
```   882   have "\<forall>i. AE x. ?f (Q i) x = ?f' (Q i) x" using borel Q_fin Q
```
```   883     by (intro finite_density_unique[THEN iffD1] allI)
```
```   884        (auto intro!: borel_measurable_pextreal_times f Int simp: *)
```
```   885   moreover have "AE x. ?f Q0 x = ?f' Q0 x"
```
```   886   proof (rule AE_I')
```
```   887     { fix f :: "'a \<Rightarrow> pextreal" assume borel: "f \<in> borel_measurable M"
```
```   888         and eq: "\<And>A. A \<in> sets M \<Longrightarrow> ?\<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   889       let "?A i" = "Q0 \<inter> {x \<in> space M. f x < of_nat i}"
```
```   890       have "(\<Union>i. ?A i) \<in> null_sets"
```
```   891       proof (rule null_sets_UN)
```
```   892         fix i have "?A i \<in> sets M"
```
```   893           using borel Q0(1) by auto
```
```   894         have "?\<nu> (?A i) \<le> (\<integral>\<^isup>+x. of_nat i * indicator (?A i) x \<partial>M)"
```
```   895           unfolding eq[OF `?A i \<in> sets M`]
```
```   896           by (auto intro!: positive_integral_mono simp: indicator_def)
```
```   897         also have "\<dots> = of_nat i * \<mu> (?A i)"
```
```   898           using `?A i \<in> sets M` by (auto intro!: positive_integral_cmult_indicator)
```
```   899         also have "\<dots> < \<omega>"
```
```   900           using `?A i \<in> sets M`[THEN finite_measure] by auto
```
```   901         finally have "?\<nu> (?A i) \<noteq> \<omega>" by simp
```
```   902         then show "?A i \<in> null_sets" using in_Q0[OF `?A i \<in> sets M`] `?A i \<in> sets M` by auto
```
```   903       qed
```
```   904       also have "(\<Union>i. ?A i) = Q0 \<inter> {x\<in>space M. f x < \<omega>}"
```
```   905         by (auto simp: less_\<omega>_Ex_of_nat)
```
```   906       finally have "Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>} \<in> null_sets" by (simp add: pextreal_less_\<omega>) }
```
```   907     from this[OF borel(1) refl] this[OF borel(2) f]
```
```   908     have "Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>} \<in> null_sets" "Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>} \<in> null_sets" by simp_all
```
```   909     then show "(Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>}) \<union> (Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>}) \<in> null_sets" by (rule null_sets_Un)
```
```   910     show "{x \<in> space M. ?f Q0 x \<noteq> ?f' Q0 x} \<subseteq>
```
```   911       (Q0 \<inter> {x\<in>space M. f x \<noteq> \<omega>}) \<union> (Q0 \<inter> {x\<in>space M. f' x \<noteq> \<omega>})" by (auto simp: indicator_def)
```
```   912   qed
```
```   913   moreover have "\<And>x. (?f Q0 x = ?f' Q0 x) \<longrightarrow> (\<forall>i. ?f (Q i) x = ?f' (Q i) x) \<longrightarrow>
```
```   914     ?f (space M) x = ?f' (space M) x"
```
```   915     by (auto simp: indicator_def Q0)
```
```   916   ultimately have "AE x. ?f (space M) x = ?f' (space M) x"
```
```   917     by (auto simp: all_AE_countable)
```
```   918   then show "AE x. f x = f' x" by auto
```
```   919 qed
```
```   920
```
```   921 lemma (in sigma_finite_measure) density_unique:
```
```   922   assumes borel: "f \<in> borel_measurable M" "f' \<in> borel_measurable M"
```
```   923   assumes f: "\<And>A. A \<in> sets M \<Longrightarrow> (\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)"
```
```   924     (is "\<And>A. A \<in> sets M \<Longrightarrow> ?P f A = ?P f' A")
```
```   925   shows "AE x. f x = f' x"
```
```   926 proof -
```
```   927   obtain h where h_borel: "h \<in> borel_measurable M"
```
```   928     and fin: "integral\<^isup>P M h \<noteq> \<omega>" and pos: "\<And>x. x \<in> space M \<Longrightarrow> 0 < h x \<and> h x < \<omega>"
```
```   929     using Ex_finite_integrable_function by auto
```
```   930   interpret h: measure_space "M\<lparr> measure := \<lambda>A. (\<integral>\<^isup>+x. h x * indicator A x \<partial>M) \<rparr>"
```
```   931     using h_borel by (rule measure_space_density) simp
```
```   932   interpret h: finite_measure "M\<lparr> measure := \<lambda>A. (\<integral>\<^isup>+x. h x * indicator A x \<partial>M) \<rparr>"
```
```   933     by default (simp cong: positive_integral_cong add: fin)
```
```   934   let ?fM = "M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)\<rparr>"
```
```   935   interpret f: measure_space ?fM
```
```   936     using borel(1) by (rule measure_space_density) simp
```
```   937   let ?f'M = "M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. f' x * indicator A x \<partial>M)\<rparr>"
```
```   938   interpret f': measure_space ?f'M
```
```   939     using borel(2) by (rule measure_space_density) simp
```
```   940   { fix A assume "A \<in> sets M"
```
```   941     then have " {x \<in> space M. h x \<noteq> 0 \<and> indicator A x \<noteq> (0::pextreal)} = A"
```
```   942       using pos sets_into_space by (force simp: indicator_def)
```
```   943     then have "(\<integral>\<^isup>+x. h x * indicator A x \<partial>M) = 0 \<longleftrightarrow> A \<in> null_sets"
```
```   944       using h_borel `A \<in> sets M` by (simp add: positive_integral_0_iff) }
```
```   945   note h_null_sets = this
```
```   946   { fix A assume "A \<in> sets M"
```
```   947     have "(\<integral>\<^isup>+x. h x * (f x * indicator A x) \<partial>M) = (\<integral>\<^isup>+x. h x * indicator A x \<partial>?fM)"
```
```   948       using `A \<in> sets M` h_borel borel
```
```   949       by (simp add: positive_integral_translated_density ac_simps cong: positive_integral_cong)
```
```   950     also have "\<dots> = (\<integral>\<^isup>+x. h x * indicator A x \<partial>?f'M)"
```
```   951       by (rule f'.positive_integral_cong_measure) (simp_all add: f)
```
```   952     also have "\<dots> = (\<integral>\<^isup>+x. h x * (f' x * indicator A x) \<partial>M)"
```
```   953       using `A \<in> sets M` h_borel borel
```
```   954       by (simp add: positive_integral_translated_density ac_simps cong: positive_integral_cong)
```
```   955     finally have "(\<integral>\<^isup>+x. h x * (f x * indicator A x) \<partial>M) = (\<integral>\<^isup>+x. h x * (f' x * indicator A x) \<partial>M)" . }
```
```   956   then have "h.almost_everywhere (\<lambda>x. f x = f' x)"
```
```   957     using h_borel borel
```
```   958     apply (intro h.density_unique_finite_measure)
```
```   959     apply (simp add: measurable_def)
```
```   960     apply (simp add: measurable_def)
```
```   961     by (simp add: positive_integral_translated_density)
```
```   962   then show "AE x. f x = f' x"
```
```   963     unfolding h.almost_everywhere_def almost_everywhere_def
```
```   964     by (auto simp add: h_null_sets)
```
```   965 qed
```
```   966
```
```   967 lemma (in sigma_finite_measure) sigma_finite_iff_density_finite:
```
```   968   assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" (is "measure_space ?N")
```
```   969     and f: "f \<in> borel_measurable M"
```
```   970     and eq: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```   971   shows "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>) \<longleftrightarrow> (AE x. f x \<noteq> \<omega>)"
```
```   972 proof
```
```   973   assume "sigma_finite_measure ?N"
```
```   974   then interpret \<nu>: sigma_finite_measure ?N
```
```   975     where "borel_measurable ?N = borel_measurable M" and "measure ?N = \<nu>"
```
```   976     and "sets ?N = sets M" and "space ?N = space M" by (auto simp: measurable_def)
```
```   977   from \<nu>.Ex_finite_integrable_function obtain h where
```
```   978     h: "h \<in> borel_measurable M" "integral\<^isup>P ?N h \<noteq> \<omega>"
```
```   979     and fin: "\<forall>x\<in>space M. 0 < h x \<and> h x < \<omega>" by auto
```
```   980   have "AE x. f x * h x \<noteq> \<omega>"
```
```   981   proof (rule AE_I')
```
```   982     have "integral\<^isup>P ?N h = (\<integral>\<^isup>+x. f x * h x \<partial>M)" using f h
```
```   983       by (subst \<nu>.positive_integral_cong_measure[symmetric,
```
```   984           of "M\<lparr> measure := \<lambda> A. \<integral>\<^isup>+x. f x * indicator A x \<partial>M \<rparr>"])
```
```   985          (auto intro!: positive_integral_translated_density simp: eq)
```
```   986     then have "(\<integral>\<^isup>+x. f x * h x \<partial>M) \<noteq> \<omega>"
```
```   987       using h(2) by simp
```
```   988     then show "(\<lambda>x. f x * h x) -` {\<omega>} \<inter> space M \<in> null_sets"
```
```   989       using f h(1) by (auto intro!: positive_integral_omega borel_measurable_vimage)
```
```   990   qed auto
```
```   991   then show "AE x. f x \<noteq> \<omega>"
```
```   992     using fin by (auto elim!: AE_Ball_mp)
```
```   993 next
```
```   994   assume AE: "AE x. f x \<noteq> \<omega>"
```
```   995   from sigma_finite guess Q .. note Q = this
```
```   996   interpret \<nu>: measure_space ?N
```
```   997     where "borel_measurable ?N = borel_measurable M" and "measure ?N = \<nu>"
```
```   998     and "sets ?N = sets M" and "space ?N = space M" using \<nu> by (auto simp: measurable_def)
```
```   999   def A \<equiv> "\<lambda>i. f -` (case i of 0 \<Rightarrow> {\<omega>} | Suc n \<Rightarrow> {.. of_nat (Suc n)}) \<inter> space M"
```
```  1000   { fix i j have "A i \<inter> Q j \<in> sets M"
```
```  1001     unfolding A_def using f Q
```
```  1002     apply (rule_tac Int)
```
```  1003     by (cases i) (auto intro: measurable_sets[OF f]) }
```
```  1004   note A_in_sets = this
```
```  1005   let "?A n" = "case prod_decode n of (i,j) \<Rightarrow> A i \<inter> Q j"
```
```  1006   show "sigma_finite_measure ?N"
```
```  1007   proof (default, intro exI conjI subsetI allI)
```
```  1008     fix x assume "x \<in> range ?A"
```
```  1009     then obtain n where n: "x = ?A n" by auto
```
```  1010     then show "x \<in> sets ?N" using A_in_sets by (cases "prod_decode n") auto
```
```  1011   next
```
```  1012     have "(\<Union>i. ?A i) = (\<Union>i j. A i \<inter> Q j)"
```
```  1013     proof safe
```
```  1014       fix x i j assume "x \<in> A i" "x \<in> Q j"
```
```  1015       then show "x \<in> (\<Union>i. case prod_decode i of (i, j) \<Rightarrow> A i \<inter> Q j)"
```
```  1016         by (intro UN_I[of "prod_encode (i,j)"]) auto
```
```  1017     qed auto
```
```  1018     also have "\<dots> = (\<Union>i. A i) \<inter> space M" using Q by auto
```
```  1019     also have "(\<Union>i. A i) = space M"
```
```  1020     proof safe
```
```  1021       fix x assume x: "x \<in> space M"
```
```  1022       show "x \<in> (\<Union>i. A i)"
```
```  1023       proof (cases "f x")
```
```  1024         case infinite then show ?thesis using x unfolding A_def by (auto intro: exI[of _ 0])
```
```  1025       next
```
```  1026         case (preal r)
```
```  1027         with less_\<omega>_Ex_of_nat[of "f x"] obtain n where "f x < of_nat n" by auto
```
```  1028         then show ?thesis using x preal unfolding A_def by (auto intro!: exI[of _ "Suc n"])
```
```  1029       qed
```
```  1030     qed (auto simp: A_def)
```
```  1031     finally show "(\<Union>i. ?A i) = space ?N" by simp
```
```  1032   next
```
```  1033     fix n obtain i j where
```
```  1034       [simp]: "prod_decode n = (i, j)" by (cases "prod_decode n") auto
```
```  1035     have "(\<integral>\<^isup>+x. f x * indicator (A i \<inter> Q j) x \<partial>M) \<noteq> \<omega>"
```
```  1036     proof (cases i)
```
```  1037       case 0
```
```  1038       have "AE x. f x * indicator (A i \<inter> Q j) x = 0"
```
```  1039         using AE by (auto simp: A_def `i = 0`)
```
```  1040       from positive_integral_cong_AE[OF this] show ?thesis by simp
```
```  1041     next
```
```  1042       case (Suc n)
```
```  1043       then have "(\<integral>\<^isup>+x. f x * indicator (A i \<inter> Q j) x \<partial>M) \<le>
```
```  1044         (\<integral>\<^isup>+x. of_nat (Suc n) * indicator (Q j) x \<partial>M)"
```
```  1045         by (auto intro!: positive_integral_mono simp: indicator_def A_def)
```
```  1046       also have "\<dots> = of_nat (Suc n) * \<mu> (Q j)"
```
```  1047         using Q by (auto intro!: positive_integral_cmult_indicator)
```
```  1048       also have "\<dots> < \<omega>"
```
```  1049         using Q by auto
```
```  1050       finally show ?thesis by simp
```
```  1051     qed
```
```  1052     then show "measure ?N (?A n) \<noteq> \<omega>"
```
```  1053       using A_in_sets Q eq by auto
```
```  1054   qed
```
```  1055 qed
```
```  1056
```
```  1057 section "Radon-Nikodym derivative"
```
```  1058
```
```  1059 definition
```
```  1060   "RN_deriv M \<nu> \<equiv> SOME f. f \<in> borel_measurable M \<and>
```
```  1061     (\<forall>A \<in> sets M. \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M))"
```
```  1062
```
```  1063 lemma (in sigma_finite_measure) RN_deriv_cong:
```
```  1064   assumes cong: "\<And>A. A \<in> sets M \<Longrightarrow> measure M' A = \<mu> A" "sets M' = sets M" "space M' = space M"
```
```  1065     and \<nu>: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu>' A = \<nu> A"
```
```  1066   shows "RN_deriv M' \<nu>' x = RN_deriv M \<nu> x"
```
```  1067 proof -
```
```  1068   interpret \<mu>': sigma_finite_measure M'
```
```  1069     using cong by (rule sigma_finite_measure_cong)
```
```  1070   show ?thesis
```
```  1071     unfolding RN_deriv_def
```
```  1072     by (simp add: cong \<nu> positive_integral_cong_measure[OF cong] measurable_def)
```
```  1073 qed
```
```  1074
```
```  1075 lemma (in sigma_finite_measure) RN_deriv:
```
```  1076   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
```
```  1077   assumes "absolutely_continuous \<nu>"
```
```  1078   shows "RN_deriv M \<nu> \<in> borel_measurable M" (is ?borel)
```
```  1079   and "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)"
```
```  1080     (is "\<And>A. _ \<Longrightarrow> ?int A")
```
```  1081 proof -
```
```  1082   note Ex = Radon_Nikodym[OF assms, unfolded Bex_def]
```
```  1083   thus ?borel unfolding RN_deriv_def by (rule someI2_ex) auto
```
```  1084   fix A assume "A \<in> sets M"
```
```  1085   from Ex show "?int A" unfolding RN_deriv_def
```
```  1086     by (rule someI2_ex) (simp add: `A \<in> sets M`)
```
```  1087 qed
```
```  1088
```
```  1089 lemma (in sigma_finite_measure) RN_deriv_positive_integral:
```
```  1090   assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
```
```  1091     and f: "f \<in> borel_measurable M"
```
```  1092   shows "integral\<^isup>P (M\<lparr>measure := \<nu>\<rparr>) f = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * f x \<partial>M)"
```
```  1093 proof -
```
```  1094   interpret \<nu>: measure_space "M\<lparr>measure := \<nu>\<rparr>" by fact
```
```  1095   have "integral\<^isup>P (M\<lparr>measure := \<nu>\<rparr>) f =
```
```  1096     integral\<^isup>P (M\<lparr>measure := \<lambda>A. (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)\<rparr>) f"
```
```  1097     by (intro \<nu>.positive_integral_cong_measure[symmetric])
```
```  1098        (simp_all add:  RN_deriv(2)[OF \<nu>, symmetric])
```
```  1099   also have "\<dots> = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * f x \<partial>M)"
```
```  1100     by (intro positive_integral_translated_density)
```
```  1101        (simp_all add: RN_deriv[OF \<nu>] f)
```
```  1102   finally show ?thesis .
```
```  1103 qed
```
```  1104
```
```  1105 lemma (in sigma_finite_measure) RN_deriv_unique:
```
```  1106   assumes \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
```
```  1107   and f: "f \<in> borel_measurable M"
```
```  1108   and eq: "\<And>A. A \<in> sets M \<Longrightarrow> \<nu> A = (\<integral>\<^isup>+x. f x * indicator A x \<partial>M)"
```
```  1109   shows "AE x. f x = RN_deriv M \<nu> x"
```
```  1110 proof (rule density_unique[OF f RN_deriv(1)[OF \<nu>]])
```
```  1111   fix A assume A: "A \<in> sets M"
```
```  1112   show "(\<integral>\<^isup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^isup>+x. RN_deriv M \<nu> x * indicator A x \<partial>M)"
```
```  1113     unfolding eq[OF A, symmetric] RN_deriv(2)[OF \<nu> A, symmetric] ..
```
```  1114 qed
```
```  1115
```
```  1116 lemma (in sigma_finite_measure) RN_deriv_finite:
```
```  1117   assumes sfm: "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>)" and ac: "absolutely_continuous \<nu>"
```
```  1118   shows "AE x. RN_deriv M \<nu> x \<noteq> \<omega>"
```
```  1119 proof -
```
```  1120   interpret \<nu>: sigma_finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
```
```  1121   have \<nu>: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" by default
```
```  1122   from sfm show ?thesis
```
```  1123     using sigma_finite_iff_density_finite[OF \<nu> RN_deriv[OF \<nu> ac]] by simp
```
```  1124 qed
```
```  1125
```
```  1126 lemma (in sigma_finite_measure)
```
```  1127   assumes \<nu>: "sigma_finite_measure (M\<lparr>measure := \<nu>\<rparr>)" "absolutely_continuous \<nu>"
```
```  1128     and f: "f \<in> borel_measurable M"
```
```  1129   shows RN_deriv_integrable: "integrable (M\<lparr>measure := \<nu>\<rparr>) f \<longleftrightarrow>
```
```  1130       integrable M (\<lambda>x. real (RN_deriv M \<nu> x) * f x)" (is ?integrable)
```
```  1131     and RN_deriv_integral: "integral\<^isup>L (M\<lparr>measure := \<nu>\<rparr>) f =
```
```  1132       (\<integral>x. real (RN_deriv M \<nu> x) * f x \<partial>M)" (is ?integral)
```
```  1133 proof -
```
```  1134   interpret \<nu>: sigma_finite_measure "M\<lparr>measure := \<nu>\<rparr>" by fact
```
```  1135   have ms: "measure_space (M\<lparr>measure := \<nu>\<rparr>)" by default
```
```  1136   have minus_cong: "\<And>A B A' B'::pextreal. A = A' \<Longrightarrow> B = B' \<Longrightarrow> real A - real B = real A' - real B'" by simp
```
```  1137   have f': "(\<lambda>x. - f x) \<in> borel_measurable M" using f by auto
```
```  1138   have Nf: "f \<in> borel_measurable (M\<lparr>measure := \<nu>\<rparr>)" using f unfolding measurable_def by auto
```
```  1139   { fix f :: "'a \<Rightarrow> real"
```
```  1140     { fix x assume *: "RN_deriv M \<nu> x \<noteq> \<omega>"
```
```  1141       have "Real (real (RN_deriv M \<nu> x)) * Real (f x) = Real (real (RN_deriv M \<nu> x) * f x)"
```
```  1142         by (simp add: mult_le_0_iff)
```
```  1143       then have "RN_deriv M \<nu> x * Real (f x) = Real (real (RN_deriv M \<nu> x) * f x)"
```
```  1144         using * by (simp add: Real_real) }
```
```  1145     then have "(\<integral>\<^isup>+x. RN_deriv M \<nu> x * Real (f x) \<partial>M) = (\<integral>\<^isup>+x. Real (real (RN_deriv M \<nu> x) * f x) \<partial>M)"
```
```  1146       using RN_deriv_finite[OF \<nu>] by (auto intro: positive_integral_cong_AE) }
```
```  1147   with this this f f' Nf
```
```  1148   show ?integral ?integrable
```
```  1149     unfolding lebesgue_integral_def integrable_def
```
```  1150     by (auto intro!: RN_deriv(1)[OF ms \<nu>(2)] minus_cong
```
```  1151              simp: RN_deriv_positive_integral[OF ms \<nu>(2)])
```
```  1152 qed
```
```  1153
```
```  1154 lemma (in sigma_finite_measure) RN_deriv_singleton:
```
```  1155   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
```
```  1156   and ac: "absolutely_continuous \<nu>"
```
```  1157   and "{x} \<in> sets M"
```
```  1158   shows "\<nu> {x} = RN_deriv M \<nu> x * \<mu> {x}"
```
```  1159 proof -
```
```  1160   note deriv = RN_deriv[OF assms(1, 2)]
```
```  1161   from deriv(2)[OF `{x} \<in> sets M`]
```
```  1162   have "\<nu> {x} = (\<integral>\<^isup>+w. RN_deriv M \<nu> x * indicator {x} w \<partial>M)"
```
```  1163     by (auto simp: indicator_def intro!: positive_integral_cong)
```
```  1164   thus ?thesis using positive_integral_cmult_indicator[OF `{x} \<in> sets M`]
```
```  1165     by auto
```
```  1166 qed
```
```  1167
```
```  1168 theorem (in finite_measure_space) RN_deriv_finite_measure:
```
```  1169   assumes "measure_space (M\<lparr>measure := \<nu>\<rparr>)"
```
```  1170   and ac: "absolutely_continuous \<nu>"
```
```  1171   and "x \<in> space M"
```
```  1172   shows "\<nu> {x} = RN_deriv M \<nu> x * \<mu> {x}"
```
```  1173 proof -
```
```  1174   have "{x} \<in> sets M" using sets_eq_Pow `x \<in> space M` by auto
```
```  1175   from RN_deriv_singleton[OF assms(1,2) this] show ?thesis .
```
```  1176 qed
```
```  1177
```
```  1178 end
```