src/HOL/Library/positivstellensatz.ML
 author wenzelm Sun Nov 26 21:08:32 2017 +0100 (2017-11-26) changeset 67091 1393c2340eec parent 63667 24126c564d8a child 67232 a00f5a71e672 permissions -rw-r--r--
more symbols;
```     1 (*  Title:      HOL/Library/positivstellensatz.ML
```
```     2     Author:     Amine Chaieb, University of Cambridge
```
```     3
```
```     4 A generic arithmetic prover based on Positivstellensatz certificates
```
```     5 --- also implements Fourier-Motzkin elimination as a special case
```
```     6 Fourier-Motzkin elimination.
```
```     7 *)
```
```     8
```
```     9 (* A functor for finite mappings based on Tables *)
```
```    10
```
```    11 signature FUNC =
```
```    12 sig
```
```    13   include TABLE
```
```    14   val apply : 'a table -> key -> 'a
```
```    15   val applyd :'a table -> (key -> 'a) -> key -> 'a
```
```    16   val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a table -> 'a table -> 'a table
```
```    17   val dom : 'a table -> key list
```
```    18   val tryapplyd : 'a table -> key -> 'a -> 'a
```
```    19   val updatep : (key * 'a -> bool) -> key * 'a -> 'a table -> 'a table
```
```    20   val choose : 'a table -> key * 'a
```
```    21   val onefunc : key * 'a -> 'a table
```
```    22 end;
```
```    23
```
```    24 functor FuncFun(Key: KEY) : FUNC =
```
```    25 struct
```
```    26
```
```    27 structure Tab = Table(Key);
```
```    28
```
```    29 open Tab;
```
```    30
```
```    31 fun dom a = sort Key.ord (Tab.keys a);
```
```    32 fun applyd f d x = case Tab.lookup f x of
```
```    33    SOME y => y
```
```    34  | NONE => d x;
```
```    35
```
```    36 fun apply f x = applyd f (fn _ => raise Tab.UNDEF x) x;
```
```    37 fun tryapplyd f a d = applyd f (K d) a;
```
```    38 fun updatep p (k,v) t = if p (k, v) then t else update (k,v) t
```
```    39 fun combine f z a b =
```
```    40   let
```
```    41     fun h (k,v) t = case Tab.lookup t k of
```
```    42         NONE => Tab.update (k,v) t
```
```    43       | SOME v' => let val w = f v v'
```
```    44         in if z w then Tab.delete k t else Tab.update (k,w) t end;
```
```    45   in Tab.fold h a b end;
```
```    46
```
```    47 fun choose f =
```
```    48   (case Tab.min f of
```
```    49     SOME entry => entry
```
```    50   | NONE => error "FuncFun.choose : Completely empty function")
```
```    51
```
```    52 fun onefunc kv = update kv empty
```
```    53
```
```    54 end;
```
```    55
```
```    56 (* Some standard functors and utility functions for them *)
```
```    57
```
```    58 structure FuncUtil =
```
```    59 struct
```
```    60
```
```    61 structure Intfunc = FuncFun(type key = int val ord = int_ord);
```
```    62 structure Ratfunc = FuncFun(type key = Rat.rat val ord = Rat.ord);
```
```    63 structure Intpairfunc = FuncFun(type key = int*int val ord = prod_ord int_ord int_ord);
```
```    64 structure Symfunc = FuncFun(type key = string val ord = fast_string_ord);
```
```    65 structure Termfunc = FuncFun(type key = term val ord = Term_Ord.fast_term_ord);
```
```    66
```
```    67 val cterm_ord = Term_Ord.fast_term_ord o apply2 Thm.term_of
```
```    68
```
```    69 structure Ctermfunc = FuncFun(type key = cterm val ord = cterm_ord);
```
```    70
```
```    71 type monomial = int Ctermfunc.table;
```
```    72
```
```    73 val monomial_ord = list_ord (prod_ord cterm_ord int_ord) o apply2 Ctermfunc.dest
```
```    74
```
```    75 structure Monomialfunc = FuncFun(type key = monomial val ord = monomial_ord)
```
```    76
```
```    77 type poly = Rat.rat Monomialfunc.table;
```
```    78
```
```    79 (* The ordering so we can create canonical HOL polynomials.                  *)
```
```    80
```
```    81 fun dest_monomial mon = sort (cterm_ord o apply2 fst) (Ctermfunc.dest mon);
```
```    82
```
```    83 fun monomial_order (m1,m2) =
```
```    84   if Ctermfunc.is_empty m2 then LESS
```
```    85   else if Ctermfunc.is_empty m1 then GREATER
```
```    86   else
```
```    87     let
```
```    88       val mon1 = dest_monomial m1
```
```    89       val mon2 = dest_monomial m2
```
```    90       val deg1 = fold (Integer.add o snd) mon1 0
```
```    91       val deg2 = fold (Integer.add o snd) mon2 0
```
```    92     in if deg1 < deg2 then GREATER
```
```    93        else if deg1 > deg2 then LESS
```
```    94        else list_ord (prod_ord cterm_ord int_ord) (mon1,mon2)
```
```    95     end;
```
```    96
```
```    97 end
```
```    98
```
```    99 (* positivstellensatz datatype and prover generation *)
```
```   100
```
```   101 signature REAL_ARITH =
```
```   102 sig
```
```   103
```
```   104   datatype positivstellensatz =
```
```   105     Axiom_eq of int
```
```   106   | Axiom_le of int
```
```   107   | Axiom_lt of int
```
```   108   | Rational_eq of Rat.rat
```
```   109   | Rational_le of Rat.rat
```
```   110   | Rational_lt of Rat.rat
```
```   111   | Square of FuncUtil.poly
```
```   112   | Eqmul of FuncUtil.poly * positivstellensatz
```
```   113   | Sum of positivstellensatz * positivstellensatz
```
```   114   | Product of positivstellensatz * positivstellensatz;
```
```   115
```
```   116   datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree
```
```   117
```
```   118   datatype tree_choice = Left | Right
```
```   119
```
```   120   type prover = tree_choice list ->
```
```   121     (thm list * thm list * thm list -> positivstellensatz -> thm) ->
```
```   122       thm list * thm list * thm list -> thm * pss_tree
```
```   123   type cert_conv = cterm -> thm * pss_tree
```
```   124
```
```   125   val gen_gen_real_arith :
```
```   126     Proof.context -> (Rat.rat -> cterm) * conv * conv * conv *
```
```   127      conv * conv * conv * conv * conv * conv * prover -> cert_conv
```
```   128   val real_linear_prover : (thm list * thm list * thm list -> positivstellensatz -> thm) ->
```
```   129     thm list * thm list * thm list -> thm * pss_tree
```
```   130
```
```   131   val gen_real_arith : Proof.context ->
```
```   132     (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * prover -> cert_conv
```
```   133
```
```   134   val gen_prover_real_arith : Proof.context -> prover -> cert_conv
```
```   135
```
```   136   val is_ratconst : cterm -> bool
```
```   137   val dest_ratconst : cterm -> Rat.rat
```
```   138   val cterm_of_rat : Rat.rat -> cterm
```
```   139
```
```   140 end
```
```   141
```
```   142 structure RealArith : REAL_ARITH =
```
```   143 struct
```
```   144
```
```   145 open Conv
```
```   146 (* ------------------------------------------------------------------------- *)
```
```   147 (* Data structure for Positivstellensatz refutations.                        *)
```
```   148 (* ------------------------------------------------------------------------- *)
```
```   149
```
```   150 datatype positivstellensatz =
```
```   151     Axiom_eq of int
```
```   152   | Axiom_le of int
```
```   153   | Axiom_lt of int
```
```   154   | Rational_eq of Rat.rat
```
```   155   | Rational_le of Rat.rat
```
```   156   | Rational_lt of Rat.rat
```
```   157   | Square of FuncUtil.poly
```
```   158   | Eqmul of FuncUtil.poly * positivstellensatz
```
```   159   | Sum of positivstellensatz * positivstellensatz
```
```   160   | Product of positivstellensatz * positivstellensatz;
```
```   161          (* Theorems used in the procedure *)
```
```   162
```
```   163 datatype pss_tree = Trivial | Cert of positivstellensatz | Branch of pss_tree * pss_tree
```
```   164 datatype tree_choice = Left | Right
```
```   165 type prover = tree_choice list ->
```
```   166   (thm list * thm list * thm list -> positivstellensatz -> thm) ->
```
```   167     thm list * thm list * thm list -> thm * pss_tree
```
```   168 type cert_conv = cterm -> thm * pss_tree
```
```   169
```
```   170
```
```   171     (* Some useful derived rules *)
```
```   172 fun deduct_antisym_rule tha thb =
```
```   173     Thm.equal_intr (Thm.implies_intr (Thm.cprop_of thb) tha)
```
```   174      (Thm.implies_intr (Thm.cprop_of tha) thb);
```
```   175
```
```   176 fun prove_hyp tha thb =
```
```   177   if exists (curry op aconv (Thm.concl_of tha)) (Thm.hyps_of thb)  (* FIXME !? *)
```
```   178   then Thm.equal_elim (Thm.symmetric (deduct_antisym_rule tha thb)) tha else thb;
```
```   179
```
```   180 val pth = @{lemma "(((x::real) < y) \<equiv> (y - x > 0))" and "((x \<le> y) \<equiv> (y - x \<ge> 0))" and
```
```   181      "((x = y) \<equiv> (x - y = 0))" and "((\<not>(x < y)) \<equiv> (x - y \<ge> 0))" and
```
```   182      "((\<not>(x \<le> y)) \<equiv> (x - y > 0))" and "((\<not>(x = y)) \<equiv> (x - y > 0 \<or> -(x - y) > 0))"
```
```   183   by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)};
```
```   184
```
```   185 val pth_final = @{lemma "(\<not>p \<Longrightarrow> False) \<Longrightarrow> p" by blast}
```
```   186 val pth_add =
```
```   187   @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 )" and "( x = 0 ==> y >= 0 ==> x + y >= 0)" and
```
```   188     "(x = 0 ==> y > 0 ==> x + y > 0)" and "(x >= 0 ==> y = 0 ==> x + y >= 0)" and
```
```   189     "(x >= 0 ==> y >= 0 ==> x + y >= 0)" and "(x >= 0 ==> y > 0 ==> x + y > 0)" and
```
```   190     "(x > 0 ==> y = 0 ==> x + y > 0)" and "(x > 0 ==> y >= 0 ==> x + y > 0)" and
```
```   191     "(x > 0 ==> y > 0 ==> x + y > 0)" by simp_all};
```
```   192
```
```   193 val pth_mul =
```
```   194   @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0)" and "(x = 0 ==> y >= 0 ==> x * y = 0)" and
```
```   195     "(x = 0 ==> y > 0 ==> x * y = 0)" and "(x >= 0 ==> y = 0 ==> x * y = 0)" and
```
```   196     "(x >= 0 ==> y >= 0 ==> x * y >= 0)" and "(x >= 0 ==> y > 0 ==> x * y >= 0)" and
```
```   197     "(x > 0 ==>  y = 0 ==> x * y = 0)" and "(x > 0 ==> y >= 0 ==> x * y >= 0)" and
```
```   198     "(x > 0 ==>  y > 0 ==> x * y > 0)"
```
```   199   by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified]
```
```   200     mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])};
```
```   201
```
```   202 val pth_emul = @{lemma "y = (0::real) ==> x * y = 0"  by simp};
```
```   203 val pth_square = @{lemma "x * x >= (0::real)"  by simp};
```
```   204
```
```   205 val weak_dnf_simps =
```
```   206   List.take (@{thms simp_thms}, 34) @
```
```   207     @{lemma "((P \<and> (Q \<or> R)) = ((P\<and>Q) \<or> (P\<and>R)))" and "((Q \<or> R) \<and> P) = ((Q\<and>P) \<or> (R\<and>P))" and
```
```   208       "(P \<and> Q) = (Q \<and> P)" and "((P \<or> Q) = (Q \<or> P))" by blast+};
```
```   209
```
```   210 (*
```
```   211 val nnfD_simps =
```
```   212   @{lemma "((~(P & Q)) = (~P | ~Q))" and "((~(P | Q)) = (~P & ~Q) )" and
```
```   213     "((P --> Q) = (~P | Q) )" and "((P = Q) = ((P & Q) | (~P & ~ Q)))" and
```
```   214     "((~(P = Q)) = ((P & ~ Q) | (~P & Q)) )" and "((~ ~(P)) = P)" by blast+};
```
```   215 *)
```
```   216
```
```   217 val choice_iff = @{lemma "(\<forall>x. \<exists>y. P x y) = (\<exists>f. \<forall>x. P x (f x))" by metis};
```
```   218 val prenex_simps =
```
```   219   map (fn th => th RS sym)
```
```   220     ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @
```
```   221       @{thms "HOL.all_simps"(1-4)} @ @{thms "ex_simps"(1-4)});
```
```   222
```
```   223 val real_abs_thms1 = @{lemma
```
```   224   "((-1 * \<bar>x::real\<bar> \<ge> r) = (-1 * x \<ge> r \<and> 1 * x \<ge> r))" and
```
```   225   "((-1 * \<bar>x\<bar> + a \<ge> r) = (a + -1 * x \<ge> r \<and> a + 1 * x \<ge> r))" and
```
```   226   "((a + -1 * \<bar>x\<bar> \<ge> r) = (a + -1 * x \<ge> r \<and> a + 1 * x \<ge> r))" and
```
```   227   "((a + -1 * \<bar>x\<bar> + b \<ge> r) = (a + -1 * x + b \<ge> r \<and> a + 1 * x + b \<ge> r))" and
```
```   228   "((a + b + -1 * \<bar>x\<bar> \<ge> r) = (a + b + -1 * x \<ge> r \<and> a + b + 1 * x \<ge> r))" and
```
```   229   "((a + b + -1 * \<bar>x\<bar> + c \<ge> r) = (a + b + -1 * x + c \<ge> r \<and> a + b + 1 * x + c \<ge> r))" and
```
```   230   "((-1 * max x y \<ge> r) = (-1 * x \<ge> r \<and> -1 * y \<ge> r))" and
```
```   231   "((-1 * max x y + a \<ge> r) = (a + -1 * x \<ge> r \<and> a + -1 * y \<ge> r))" and
```
```   232   "((a + -1 * max x y \<ge> r) = (a + -1 * x \<ge> r \<and> a + -1 * y \<ge> r))" and
```
```   233   "((a + -1 * max x y + b \<ge> r) = (a + -1 * x + b \<ge> r \<and> a + -1 * y  + b \<ge> r))" and
```
```   234   "((a + b + -1 * max x y \<ge> r) = (a + b + -1 * x \<ge> r \<and> a + b + -1 * y \<ge> r))" and
```
```   235   "((a + b + -1 * max x y + c \<ge> r) = (a + b + -1 * x + c \<ge> r \<and> a + b + -1 * y  + c \<ge> r))" and
```
```   236   "((1 * min x y \<ge> r) = (1 * x \<ge> r \<and> 1 * y \<ge> r))" and
```
```   237   "((1 * min x y + a \<ge> r) = (a + 1 * x \<ge> r \<and> a + 1 * y \<ge> r))" and
```
```   238   "((a + 1 * min x y \<ge> r) = (a + 1 * x \<ge> r \<and> a + 1 * y \<ge> r))" and
```
```   239   "((a + 1 * min x y + b \<ge> r) = (a + 1 * x + b \<ge> r \<and> a + 1 * y  + b \<ge> r))" and
```
```   240   "((a + b + 1 * min x y \<ge> r) = (a + b + 1 * x \<ge> r \<and> a + b + 1 * y \<ge> r))" and
```
```   241   "((a + b + 1 * min x y + c \<ge> r) = (a + b + 1 * x + c \<ge> r \<and> a + b + 1 * y  + c \<ge> r))" and
```
```   242   "((min x y \<ge> r) = (x \<ge> r \<and> y \<ge> r))" and
```
```   243   "((min x y + a \<ge> r) = (a + x \<ge> r \<and> a + y \<ge> r))" and
```
```   244   "((a + min x y \<ge> r) = (a + x \<ge> r \<and> a + y \<ge> r))" and
```
```   245   "((a + min x y + b \<ge> r) = (a + x + b \<ge> r \<and> a + y  + b \<ge> r))" and
```
```   246   "((a + b + min x y \<ge> r) = (a + b + x \<ge> r \<and> a + b + y \<ge> r))" and
```
```   247   "((a + b + min x y + c \<ge> r) = (a + b + x + c \<ge> r \<and> a + b + y + c \<ge> r))" and
```
```   248   "((-1 * \<bar>x\<bar> > r) = (-1 * x > r \<and> 1 * x > r))" and
```
```   249   "((-1 * \<bar>x\<bar> + a > r) = (a + -1 * x > r \<and> a + 1 * x > r))" and
```
```   250   "((a + -1 * \<bar>x\<bar> > r) = (a + -1 * x > r \<and> a + 1 * x > r))" and
```
```   251   "((a + -1 * \<bar>x\<bar> + b > r) = (a + -1 * x + b > r \<and> a + 1 * x + b > r))" and
```
```   252   "((a + b + -1 * \<bar>x\<bar> > r) = (a + b + -1 * x > r \<and> a + b + 1 * x > r))" and
```
```   253   "((a + b + -1 * \<bar>x\<bar> + c > r) = (a + b + -1 * x + c > r \<and> a + b + 1 * x + c > r))" and
```
```   254   "((-1 * max x y > r) = ((-1 * x > r) \<and> -1 * y > r))" and
```
```   255   "((-1 * max x y + a > r) = (a + -1 * x > r \<and> a + -1 * y > r))" and
```
```   256   "((a + -1 * max x y > r) = (a + -1 * x > r \<and> a + -1 * y > r))" and
```
```   257   "((a + -1 * max x y + b > r) = (a + -1 * x + b > r \<and> a + -1 * y  + b > r))" and
```
```   258   "((a + b + -1 * max x y > r) = (a + b + -1 * x > r \<and> a + b + -1 * y > r))" and
```
```   259   "((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r \<and> a + b + -1 * y  + c > r))" and
```
```   260   "((min x y > r) = (x > r \<and> y > r))" and
```
```   261   "((min x y + a > r) = (a + x > r \<and> a + y > r))" and
```
```   262   "((a + min x y > r) = (a + x > r \<and> a + y > r))" and
```
```   263   "((a + min x y + b > r) = (a + x + b > r \<and> a + y  + b > r))" and
```
```   264   "((a + b + min x y > r) = (a + b + x > r \<and> a + b + y > r))" and
```
```   265   "((a + b + min x y + c > r) = (a + b + x + c > r \<and> a + b + y + c > r))"
```
```   266   by auto};
```
```   267
```
```   268 val abs_split' = @{lemma "P \<bar>x::'a::linordered_idom\<bar> == (x \<ge> 0 \<and> P x \<or> x < 0 \<and> P (-x))"
```
```   269   by (atomize (full)) (auto split: abs_split)};
```
```   270
```
```   271 val max_split = @{lemma "P (max x y) \<equiv> ((x::'a::linorder) \<le> y \<and> P y \<or> x > y \<and> P x)"
```
```   272   by (atomize (full)) (cases "x \<le> y", auto simp add: max_def)};
```
```   273
```
```   274 val min_split = @{lemma "P (min x y) \<equiv> ((x::'a::linorder) \<le> y \<and> P x \<or> x > y \<and> P y)"
```
```   275   by (atomize (full)) (cases "x \<le> y", auto simp add: min_def)};
```
```   276
```
```   277
```
```   278          (* Miscellaneous *)
```
```   279 fun literals_conv bops uops cv =
```
```   280   let
```
```   281     fun h t =
```
```   282       (case Thm.term_of t of
```
```   283         b\$_\$_ => if member (op aconv) bops b then binop_conv h t else cv t
```
```   284       | u\$_ => if member (op aconv) uops u then arg_conv h t else cv t
```
```   285       | _ => cv t)
```
```   286   in h end;
```
```   287
```
```   288 fun cterm_of_rat x =
```
```   289   let
```
```   290     val (a, b) = Rat.dest x
```
```   291   in
```
```   292     if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a
```
```   293     else Thm.apply (Thm.apply @{cterm "op / :: real => _"}
```
```   294       (Numeral.mk_cnumber @{ctyp "real"} a))
```
```   295       (Numeral.mk_cnumber @{ctyp "real"} b)
```
```   296   end;
```
```   297
```
```   298 fun dest_ratconst t =
```
```   299   case Thm.term_of t of
```
```   300     Const(@{const_name divide}, _)\$a\$b => Rat.make(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd)
```
```   301   | _ => Rat.of_int (HOLogic.dest_number (Thm.term_of t) |> snd)
```
```   302 fun is_ratconst t = can dest_ratconst t
```
```   303
```
```   304 (*
```
```   305 fun find_term p t = if p t then t else
```
```   306  case t of
```
```   307   a\$b => (find_term p a handle TERM _ => find_term p b)
```
```   308  | Abs (_,_,t') => find_term p t'
```
```   309  | _ => raise TERM ("find_term",[t]);
```
```   310 *)
```
```   311
```
```   312 fun find_cterm p t =
```
```   313   if p t then t else
```
```   314   case Thm.term_of t of
```
```   315     _\$_ => (find_cterm p (Thm.dest_fun t) handle CTERM _ => find_cterm p (Thm.dest_arg t))
```
```   316   | Abs (_,_,_) => find_cterm p (Thm.dest_abs NONE t |> snd)
```
```   317   | _ => raise CTERM ("find_cterm",[t]);
```
```   318
```
```   319 fun is_comb t = (case Thm.term_of t of _ \$ _ => true | _ => false);
```
```   320
```
```   321 fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct'))
```
```   322   handle CTERM _ => false;
```
```   323
```
```   324
```
```   325 (* Map back polynomials to HOL.                         *)
```
```   326
```
```   327 fun cterm_of_varpow x k = if k = 1 then x else Thm.apply (Thm.apply @{cterm "op ^ :: real => _"} x)
```
```   328   (Numeral.mk_cnumber @{ctyp nat} k)
```
```   329
```
```   330 fun cterm_of_monomial m =
```
```   331   if FuncUtil.Ctermfunc.is_empty m then @{cterm "1::real"}
```
```   332   else
```
```   333     let
```
```   334       val m' = FuncUtil.dest_monomial m
```
```   335       val vps = fold_rev (fn (x,k) => cons (cterm_of_varpow x k)) m' []
```
```   336     in foldr1 (fn (s, t) => Thm.apply (Thm.apply @{cterm "op * :: real => _"} s) t) vps
```
```   337     end
```
```   338
```
```   339 fun cterm_of_cmonomial (m,c) =
```
```   340   if FuncUtil.Ctermfunc.is_empty m then cterm_of_rat c
```
```   341   else if c = @1 then cterm_of_monomial m
```
```   342   else Thm.apply (Thm.apply @{cterm "op *::real => _"} (cterm_of_rat c)) (cterm_of_monomial m);
```
```   343
```
```   344 fun cterm_of_poly p =
```
```   345   if FuncUtil.Monomialfunc.is_empty p then @{cterm "0::real"}
```
```   346   else
```
```   347     let
```
```   348       val cms = map cterm_of_cmonomial
```
```   349         (sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p))
```
```   350     in foldr1 (fn (t1, t2) => Thm.apply(Thm.apply @{cterm "op + :: real => _"} t1) t2) cms
```
```   351     end;
```
```   352
```
```   353 (* A general real arithmetic prover *)
```
```   354
```
```   355 fun gen_gen_real_arith ctxt (mk_numeric,
```
```   356        numeric_eq_conv,numeric_ge_conv,numeric_gt_conv,
```
```   357        poly_conv,poly_neg_conv,poly_add_conv,poly_mul_conv,
```
```   358        absconv1,absconv2,prover) =
```
```   359   let
```
```   360     val pre_ss = put_simpset HOL_basic_ss ctxt addsimps
```
```   361       @{thms simp_thms ex_simps all_simps not_all not_ex ex_disj_distrib
```
```   362           all_conj_distrib if_bool_eq_disj}
```
```   363     val prenex_ss = put_simpset HOL_basic_ss ctxt addsimps prenex_simps
```
```   364     val skolemize_ss = put_simpset HOL_basic_ss ctxt addsimps [choice_iff]
```
```   365     val presimp_conv = Simplifier.rewrite pre_ss
```
```   366     val prenex_conv = Simplifier.rewrite prenex_ss
```
```   367     val skolemize_conv = Simplifier.rewrite skolemize_ss
```
```   368     val weak_dnf_ss = put_simpset HOL_basic_ss ctxt addsimps weak_dnf_simps
```
```   369     val weak_dnf_conv = Simplifier.rewrite weak_dnf_ss
```
```   370     fun eqT_elim th = Thm.equal_elim (Thm.symmetric th) @{thm TrueI}
```
```   371     fun oprconv cv ct =
```
```   372       let val g = Thm.dest_fun2 ct
```
```   373       in if g aconvc @{cterm "op <= :: real => _"}
```
```   374             orelse g aconvc @{cterm "op < :: real => _"}
```
```   375          then arg_conv cv ct else arg1_conv cv ct
```
```   376       end
```
```   377
```
```   378     fun real_ineq_conv th ct =
```
```   379       let
```
```   380         val th' = (Thm.instantiate (Thm.match (Thm.lhs_of th, ct)) th
```
```   381           handle Pattern.MATCH => raise CTERM ("real_ineq_conv", [ct]))
```
```   382       in Thm.transitive th' (oprconv poly_conv (Thm.rhs_of th'))
```
```   383       end
```
```   384     val [real_lt_conv, real_le_conv, real_eq_conv,
```
```   385          real_not_lt_conv, real_not_le_conv, _] =
```
```   386          map real_ineq_conv pth
```
```   387     fun match_mp_rule ths ths' =
```
```   388       let
```
```   389         fun f ths ths' = case ths of [] => raise THM("match_mp_rule",0,ths)
```
```   390           | th::ths => (ths' MRS th handle THM _ => f ths ths')
```
```   391       in f ths ths' end
```
```   392     fun mul_rule th th' = fconv_rule (arg_conv (oprconv poly_mul_conv))
```
```   393          (match_mp_rule pth_mul [th, th'])
```
```   394     fun add_rule th th' = fconv_rule (arg_conv (oprconv poly_add_conv))
```
```   395          (match_mp_rule pth_add [th, th'])
```
```   396     fun emul_rule ct th = fconv_rule (arg_conv (oprconv poly_mul_conv))
```
```   397        (Thm.instantiate' [] [SOME ct] (th RS pth_emul))
```
```   398     fun square_rule t = fconv_rule (arg_conv (oprconv poly_conv))
```
```   399        (Thm.instantiate' [] [SOME t] pth_square)
```
```   400
```
```   401     fun hol_of_positivstellensatz(eqs,les,lts) proof =
```
```   402       let
```
```   403         fun translate prf =
```
```   404           case prf of
```
```   405             Axiom_eq n => nth eqs n
```
```   406           | Axiom_le n => nth les n
```
```   407           | Axiom_lt n => nth lts n
```
```   408           | Rational_eq x => eqT_elim(numeric_eq_conv(Thm.apply @{cterm Trueprop}
```
```   409                           (Thm.apply (Thm.apply @{cterm "op =::real => _"} (mk_numeric x))
```
```   410                                @{cterm "0::real"})))
```
```   411           | Rational_le x => eqT_elim(numeric_ge_conv(Thm.apply @{cterm Trueprop}
```
```   412                           (Thm.apply (Thm.apply @{cterm "op <=::real => _"}
```
```   413                                      @{cterm "0::real"}) (mk_numeric x))))
```
```   414           | Rational_lt x => eqT_elim(numeric_gt_conv(Thm.apply @{cterm Trueprop}
```
```   415                       (Thm.apply (Thm.apply @{cterm "op <::real => _"} @{cterm "0::real"})
```
```   416                         (mk_numeric x))))
```
```   417           | Square pt => square_rule (cterm_of_poly pt)
```
```   418           | Eqmul(pt,p) => emul_rule (cterm_of_poly pt) (translate p)
```
```   419           | Sum(p1,p2) => add_rule (translate p1) (translate p2)
```
```   420           | Product(p1,p2) => mul_rule (translate p1) (translate p2)
```
```   421       in fconv_rule (first_conv [numeric_ge_conv, numeric_gt_conv, numeric_eq_conv, all_conv])
```
```   422           (translate proof)
```
```   423       end
```
```   424
```
```   425     val init_conv = presimp_conv then_conv
```
```   426         nnf_conv ctxt then_conv skolemize_conv then_conv prenex_conv then_conv
```
```   427         weak_dnf_conv
```
```   428
```
```   429     val concl = Thm.dest_arg o Thm.cprop_of
```
```   430     fun is_binop opr ct = (Thm.dest_fun2 ct aconvc opr handle CTERM _ => false)
```
```   431     val is_req = is_binop @{cterm "op =:: real => _"}
```
```   432     val is_ge = is_binop @{cterm "op <=:: real => _"}
```
```   433     val is_gt = is_binop @{cterm "op <:: real => _"}
```
```   434     val is_conj = is_binop @{cterm HOL.conj}
```
```   435     val is_disj = is_binop @{cterm HOL.disj}
```
```   436     fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2})
```
```   437     fun disj_cases th th1 th2 =
```
```   438       let
```
```   439         val (p,q) = Thm.dest_binop (concl th)
```
```   440         val c = concl th1
```
```   441         val _ =
```
```   442           if c aconvc (concl th2) then ()
```
```   443           else error "disj_cases : conclusions not alpha convertible"
```
```   444       in Thm.implies_elim (Thm.implies_elim
```
```   445           (Thm.implies_elim (Thm.instantiate' [] (map SOME [p,q,c]) @{thm disjE}) th)
```
```   446           (Thm.implies_intr (Thm.apply @{cterm Trueprop} p) th1))
```
```   447         (Thm.implies_intr (Thm.apply @{cterm Trueprop} q) th2)
```
```   448       end
```
```   449     fun overall cert_choice dun ths =
```
```   450       case ths of
```
```   451         [] =>
```
```   452         let
```
```   453           val (eq,ne) = List.partition (is_req o concl) dun
```
```   454           val (le,nl) = List.partition (is_ge o concl) ne
```
```   455           val lt = filter (is_gt o concl) nl
```
```   456         in prover (rev cert_choice) hol_of_positivstellensatz (eq,le,lt) end
```
```   457       | th::oths =>
```
```   458         let
```
```   459           val ct = concl th
```
```   460         in
```
```   461           if is_conj ct then
```
```   462             let
```
```   463               val (th1,th2) = conj_pair th
```
```   464             in overall cert_choice dun (th1::th2::oths) end
```
```   465           else if is_disj ct then
```
```   466             let
```
```   467               val (th1, cert1) =
```
```   468                 overall (Left::cert_choice) dun
```
```   469                   (Thm.assume (Thm.apply @{cterm Trueprop} (Thm.dest_arg1 ct))::oths)
```
```   470               val (th2, cert2) =
```
```   471                 overall (Right::cert_choice) dun
```
```   472                   (Thm.assume (Thm.apply @{cterm Trueprop} (Thm.dest_arg ct))::oths)
```
```   473             in (disj_cases th th1 th2, Branch (cert1, cert2)) end
```
```   474           else overall cert_choice (th::dun) oths
```
```   475         end
```
```   476     fun dest_binary b ct =
```
```   477         if is_binop b ct then Thm.dest_binop ct
```
```   478         else raise CTERM ("dest_binary",[b,ct])
```
```   479     val dest_eq = dest_binary @{cterm "op = :: real => _"}
```
```   480     val neq_th = nth pth 5
```
```   481     fun real_not_eq_conv ct =
```
```   482       let
```
```   483         val (l,r) = dest_eq (Thm.dest_arg ct)
```
```   484         val th = Thm.instantiate ([],[((("x", 0), @{typ real}),l),((("y", 0), @{typ real}),r)]) neq_th
```
```   485         val th_p = poly_conv(Thm.dest_arg(Thm.dest_arg1(Thm.rhs_of th)))
```
```   486         val th_x = Drule.arg_cong_rule @{cterm "uminus :: real => _"} th_p
```
```   487         val th_n = fconv_rule (arg_conv poly_neg_conv) th_x
```
```   488         val th' = Drule.binop_cong_rule @{cterm HOL.disj}
```
```   489           (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_p)
```
```   490           (Drule.arg_cong_rule (Thm.apply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_n)
```
```   491       in Thm.transitive th th'
```
```   492       end
```
```   493     fun equal_implies_1_rule PQ =
```
```   494       let
```
```   495         val P = Thm.lhs_of PQ
```
```   496       in Thm.implies_intr P (Thm.equal_elim PQ (Thm.assume P))
```
```   497       end
```
```   498     (*FIXME!!! Copied from groebner.ml*)
```
```   499     val strip_exists =
```
```   500       let
```
```   501         fun h (acc, t) =
```
```   502           case Thm.term_of t of
```
```   503             Const(@{const_name Ex},_)\$Abs(_,_,_) =>
```
```   504               h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc))
```
```   505           | _ => (acc,t)
```
```   506       in fn t => h ([],t)
```
```   507       end
```
```   508     fun name_of x =
```
```   509       case Thm.term_of x of
```
```   510         Free(s,_) => s
```
```   511       | Var ((s,_),_) => s
```
```   512       | _ => "x"
```
```   513
```
```   514     fun mk_forall x th =
```
```   515       let
```
```   516         val T = Thm.typ_of_cterm x
```
```   517         val all = Thm.cterm_of ctxt (Const (@{const_name All}, (T --> @{typ bool}) --> @{typ bool}))
```
```   518       in Drule.arg_cong_rule all (Thm.abstract_rule (name_of x) x th) end
```
```   519
```
```   520     val specl = fold_rev (fn x => fn th => Thm.instantiate' [] [SOME x] (th RS spec));
```
```   521
```
```   522     fun ext T = Thm.cterm_of ctxt (Const (@{const_name Ex}, (T --> @{typ bool}) --> @{typ bool}))
```
```   523     fun mk_ex v t = Thm.apply (ext (Thm.typ_of_cterm v)) (Thm.lambda v t)
```
```   524
```
```   525     fun choose v th th' =
```
```   526       case Thm.concl_of th of
```
```   527         @{term Trueprop} \$ (Const(@{const_name Ex},_)\$_) =>
```
```   528         let
```
```   529           val p = (funpow 2 Thm.dest_arg o Thm.cprop_of) th
```
```   530           val T = (hd o Thm.dest_ctyp o Thm.ctyp_of_cterm) p
```
```   531           val th0 = fconv_rule (Thm.beta_conversion true)
```
```   532             (Thm.instantiate' [SOME T] [SOME p, (SOME o Thm.dest_arg o Thm.cprop_of) th'] exE)
```
```   533           val pv = (Thm.rhs_of o Thm.beta_conversion true)
```
```   534             (Thm.apply @{cterm Trueprop} (Thm.apply p v))
```
```   535           val th1 = Thm.forall_intr v (Thm.implies_intr pv th')
```
```   536         in Thm.implies_elim (Thm.implies_elim th0 th) th1  end
```
```   537       | _ => raise THM ("choose",0,[th, th'])
```
```   538
```
```   539     fun simple_choose v th =
```
```   540       choose v
```
```   541         (Thm.assume
```
```   542           ((Thm.apply @{cterm Trueprop} o mk_ex v) (Thm.dest_arg (hd (Thm.chyps_of th))))) th
```
```   543
```
```   544     val strip_forall =
```
```   545       let
```
```   546         fun h (acc, t) =
```
```   547           case Thm.term_of t of
```
```   548             Const(@{const_name All},_)\$Abs(_,_,_) =>
```
```   549               h (Thm.dest_abs NONE (Thm.dest_arg t) |>> (fn v => v::acc))
```
```   550           | _ => (acc,t)
```
```   551       in fn t => h ([],t)
```
```   552       end
```
```   553
```
```   554     fun f ct =
```
```   555       let
```
```   556         val nnf_norm_conv' =
```
```   557           nnf_conv ctxt then_conv
```
```   558           literals_conv [@{term HOL.conj}, @{term HOL.disj}] []
```
```   559           (Conv.cache_conv
```
```   560             (first_conv [real_lt_conv, real_le_conv,
```
```   561                          real_eq_conv, real_not_lt_conv,
```
```   562                          real_not_le_conv, real_not_eq_conv, all_conv]))
```
```   563         fun absremover ct = (literals_conv [@{term HOL.conj}, @{term HOL.disj}] []
```
```   564                   (try_conv (absconv1 then_conv binop_conv (arg_conv poly_conv))) then_conv
```
```   565                   try_conv (absconv2 then_conv nnf_norm_conv' then_conv binop_conv absremover)) ct
```
```   566         val nct = Thm.apply @{cterm Trueprop} (Thm.apply @{cterm "Not"} ct)
```
```   567         val th0 = (init_conv then_conv arg_conv nnf_norm_conv') nct
```
```   568         val tm0 = Thm.dest_arg (Thm.rhs_of th0)
```
```   569         val (th, certificates) =
```
```   570           if tm0 aconvc @{cterm False} then (equal_implies_1_rule th0, Trivial) else
```
```   571           let
```
```   572             val (evs,bod) = strip_exists tm0
```
```   573             val (avs,ibod) = strip_forall bod
```
```   574             val th1 = Drule.arg_cong_rule @{cterm Trueprop} (fold mk_forall avs (absremover ibod))
```
```   575             val (th2, certs) = overall [] [] [specl avs (Thm.assume (Thm.rhs_of th1))]
```
```   576             val th3 =
```
```   577               fold simple_choose evs
```
```   578                 (prove_hyp (Thm.equal_elim th1 (Thm.assume (Thm.apply @{cterm Trueprop} bod))) th2)
```
```   579           in (Drule.implies_intr_hyps (prove_hyp (Thm.equal_elim th0 (Thm.assume nct)) th3), certs)
```
```   580           end
```
```   581       in (Thm.implies_elim (Thm.instantiate' [] [SOME ct] pth_final) th, certificates)
```
```   582       end
```
```   583   in f
```
```   584   end;
```
```   585
```
```   586 (* A linear arithmetic prover *)
```
```   587 local
```
```   588   val linear_add = FuncUtil.Ctermfunc.combine (curry op +) (fn z => z = @0)
```
```   589   fun linear_cmul c = FuncUtil.Ctermfunc.map (fn _ => fn x => c * x)
```
```   590   val one_tm = @{cterm "1::real"}
```
```   591   fun contradictory p (e,_) = ((FuncUtil.Ctermfunc.is_empty e) andalso not(p @0)) orelse
```
```   592      ((eq_set (op aconvc) (FuncUtil.Ctermfunc.dom e, [one_tm])) andalso
```
```   593        not(p(FuncUtil.Ctermfunc.apply e one_tm)))
```
```   594
```
```   595   fun linear_ineqs vars (les,lts) =
```
```   596     case find_first (contradictory (fn x => x > @0)) lts of
```
```   597       SOME r => r
```
```   598     | NONE =>
```
```   599       (case find_first (contradictory (fn x => x > @0)) les of
```
```   600          SOME r => r
```
```   601        | NONE =>
```
```   602          if null vars then error "linear_ineqs: no contradiction" else
```
```   603          let
```
```   604            val ineqs = les @ lts
```
```   605            fun blowup v =
```
```   606              length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) ineqs) +
```
```   607              length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) ineqs) *
```
```   608              length(filter (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 < @0) ineqs)
```
```   609            val v = fst(hd(sort (fn ((_,i),(_,j)) => int_ord (i,j))
```
```   610              (map (fn v => (v,blowup v)) vars)))
```
```   611            fun addup (e1,p1) (e2,p2) acc =
```
```   612              let
```
```   613                val c1 = FuncUtil.Ctermfunc.tryapplyd e1 v @0
```
```   614                val c2 = FuncUtil.Ctermfunc.tryapplyd e2 v @0
```
```   615              in
```
```   616                if c1 * c2 >= @0 then acc else
```
```   617                let
```
```   618                  val e1' = linear_cmul (abs c2) e1
```
```   619                  val e2' = linear_cmul (abs c1) e2
```
```   620                  val p1' = Product(Rational_lt (abs c2), p1)
```
```   621                  val p2' = Product(Rational_lt (abs c1), p2)
```
```   622                in (linear_add e1' e2',Sum(p1',p2'))::acc
```
```   623                end
```
```   624              end
```
```   625            val (les0,les1) =
```
```   626              List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) les
```
```   627            val (lts0,lts1) =
```
```   628              List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 = @0) lts
```
```   629            val (lesp,lesn) =
```
```   630              List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) les1
```
```   631            val (ltsp,ltsn) =
```
```   632              List.partition (fn (e,_) => FuncUtil.Ctermfunc.tryapplyd e v @0 > @0) lts1
```
```   633            val les' = fold_rev (fn ep1 => fold_rev (addup ep1) lesp) lesn les0
```
```   634            val lts' = fold_rev (fn ep1 => fold_rev (addup ep1) (lesp@ltsp)) ltsn
```
```   635                       (fold_rev (fn ep1 => fold_rev (addup ep1) (lesn@ltsn)) ltsp lts0)
```
```   636          in linear_ineqs (remove (op aconvc) v vars) (les',lts')
```
```   637          end)
```
```   638
```
```   639   fun linear_eqs(eqs,les,lts) =
```
```   640     case find_first (contradictory (fn x => x = @0)) eqs of
```
```   641       SOME r => r
```
```   642     | NONE =>
```
```   643       (case eqs of
```
```   644          [] =>
```
```   645          let val vars = remove (op aconvc) one_tm
```
```   646              (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom o fst) (les@lts) [])
```
```   647          in linear_ineqs vars (les,lts) end
```
```   648        | (e,p)::es =>
```
```   649          if FuncUtil.Ctermfunc.is_empty e then linear_eqs (es,les,lts) else
```
```   650          let
```
```   651            val (x,c) = FuncUtil.Ctermfunc.choose (FuncUtil.Ctermfunc.delete_safe one_tm e)
```
```   652            fun xform (inp as (t,q)) =
```
```   653              let val d = FuncUtil.Ctermfunc.tryapplyd t x @0 in
```
```   654                if d = @0 then inp else
```
```   655                let
```
```   656                  val k = ~ d * abs c / c
```
```   657                  val e' = linear_cmul k e
```
```   658                  val t' = linear_cmul (abs c) t
```
```   659                  val p' = Eqmul(FuncUtil.Monomialfunc.onefunc (FuncUtil.Ctermfunc.empty, k),p)
```
```   660                  val q' = Product(Rational_lt (abs c), q)
```
```   661                in (linear_add e' t',Sum(p',q'))
```
```   662                end
```
```   663              end
```
```   664          in linear_eqs(map xform es,map xform les,map xform lts)
```
```   665          end)
```
```   666
```
```   667   fun linear_prover (eq,le,lt) =
```
```   668     let
```
```   669       val eqs = map_index (fn (n, p) => (p,Axiom_eq n)) eq
```
```   670       val les = map_index (fn (n, p) => (p,Axiom_le n)) le
```
```   671       val lts = map_index (fn (n, p) => (p,Axiom_lt n)) lt
```
```   672     in linear_eqs(eqs,les,lts)
```
```   673     end
```
```   674
```
```   675   fun lin_of_hol ct =
```
```   676     if ct aconvc @{cterm "0::real"} then FuncUtil.Ctermfunc.empty
```
```   677     else if not (is_comb ct) then FuncUtil.Ctermfunc.onefunc (ct, @1)
```
```   678     else if is_ratconst ct then FuncUtil.Ctermfunc.onefunc (one_tm, dest_ratconst ct)
```
```   679     else
```
```   680       let val (lop,r) = Thm.dest_comb ct
```
```   681       in
```
```   682         if not (is_comb lop) then FuncUtil.Ctermfunc.onefunc (ct, @1)
```
```   683         else
```
```   684           let val (opr,l) = Thm.dest_comb lop
```
```   685           in
```
```   686             if opr aconvc @{cterm "op + :: real =>_"}
```
```   687             then linear_add (lin_of_hol l) (lin_of_hol r)
```
```   688             else if opr aconvc @{cterm "op * :: real =>_"}
```
```   689                     andalso is_ratconst l then FuncUtil.Ctermfunc.onefunc (r, dest_ratconst l)
```
```   690             else FuncUtil.Ctermfunc.onefunc (ct, @1)
```
```   691           end
```
```   692       end
```
```   693
```
```   694   fun is_alien ct =
```
```   695     case Thm.term_of ct of
```
```   696       Const(@{const_name "of_nat"}, _)\$ n => not (can HOLogic.dest_number n)
```
```   697     | Const(@{const_name "of_int"}, _)\$ n => not (can HOLogic.dest_number n)
```
```   698     | _ => false
```
```   699 in
```
```   700 fun real_linear_prover translator (eq,le,lt) =
```
```   701   let
```
```   702     val lhs = lin_of_hol o Thm.dest_arg1 o Thm.dest_arg o Thm.cprop_of
```
```   703     val rhs = lin_of_hol o Thm.dest_arg o Thm.dest_arg o Thm.cprop_of
```
```   704     val eq_pols = map lhs eq
```
```   705     val le_pols = map rhs le
```
```   706     val lt_pols = map rhs lt
```
```   707     val aliens = filter is_alien
```
```   708       (fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom)
```
```   709                 (eq_pols @ le_pols @ lt_pols) [])
```
```   710     val le_pols' = le_pols @ map (fn v => FuncUtil.Ctermfunc.onefunc (v,@1)) aliens
```
```   711     val (_,proof) = linear_prover (eq_pols,le_pols',lt_pols)
```
```   712     val le' = le @ map (fn a => Thm.instantiate' [] [SOME (Thm.dest_arg a)] @{thm of_nat_0_le_iff}) aliens
```
```   713   in ((translator (eq,le',lt) proof), Trivial)
```
```   714   end
```
```   715 end;
```
```   716
```
```   717 (* A less general generic arithmetic prover dealing with abs,max and min*)
```
```   718
```
```   719 local
```
```   720   val absmaxmin_elim_ss1 =
```
```   721     simpset_of (put_simpset HOL_basic_ss @{context} addsimps real_abs_thms1)
```
```   722   fun absmaxmin_elim_conv1 ctxt =
```
```   723     Simplifier.rewrite (put_simpset absmaxmin_elim_ss1 ctxt)
```
```   724
```
```   725   val absmaxmin_elim_conv2 =
```
```   726     let
```
```   727       val pth_abs = Thm.instantiate' [SOME @{ctyp real}] [] abs_split'
```
```   728       val pth_max = Thm.instantiate' [SOME @{ctyp real}] [] max_split
```
```   729       val pth_min = Thm.instantiate' [SOME @{ctyp real}] [] min_split
```
```   730       val abs_tm = @{cterm "abs :: real => _"}
```
```   731       val p_v = (("P", 0), @{typ "real \<Rightarrow> bool"})
```
```   732       val x_v = (("x", 0), @{typ real})
```
```   733       val y_v = (("y", 0), @{typ real})
```
```   734       val is_max = is_binop @{cterm "max :: real => _"}
```
```   735       val is_min = is_binop @{cterm "min :: real => _"}
```
```   736       fun is_abs t = is_comb t andalso Thm.dest_fun t aconvc abs_tm
```
```   737       fun eliminate_construct p c tm =
```
```   738         let
```
```   739           val t = find_cterm p tm
```
```   740           val th0 = (Thm.symmetric o Thm.beta_conversion false) (Thm.apply (Thm.lambda t tm) t)
```
```   741           val (p,ax) = (Thm.dest_comb o Thm.rhs_of) th0
```
```   742         in fconv_rule(arg_conv(binop_conv (arg_conv (Thm.beta_conversion false))))
```
```   743                      (Thm.transitive th0 (c p ax))
```
```   744         end
```
```   745
```
```   746       val elim_abs = eliminate_construct is_abs
```
```   747         (fn p => fn ax =>
```
```   748           Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax)]) pth_abs)
```
```   749       val elim_max = eliminate_construct is_max
```
```   750         (fn p => fn ax =>
```
```   751           let val (ax,y) = Thm.dest_comb ax
```
```   752           in Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax), (y_v,y)])
```
```   753                              pth_max end)
```
```   754       val elim_min = eliminate_construct is_min
```
```   755         (fn p => fn ax =>
```
```   756           let val (ax,y) = Thm.dest_comb ax
```
```   757           in Thm.instantiate ([], [(p_v,p), (x_v, Thm.dest_arg ax), (y_v,y)])
```
```   758                              pth_min end)
```
```   759     in first_conv [elim_abs, elim_max, elim_min, all_conv]
```
```   760     end;
```
```   761 in
```
```   762 fun gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul,prover) =
```
```   763   gen_gen_real_arith ctxt
```
```   764     (mkconst,eq,ge,gt,norm,neg,add,mul,
```
```   765      absmaxmin_elim_conv1 ctxt,absmaxmin_elim_conv2,prover)
```
```   766 end;
```
```   767
```
```   768 (* An instance for reals*)
```
```   769
```
```   770 fun gen_prover_real_arith ctxt prover =
```
```   771   let
```
```   772     fun simple_cterm_ord t u = Term_Ord.term_ord (Thm.term_of t, Thm.term_of u) = LESS
```
```   773     val {add, mul, neg, pow = _, sub = _, main} =
```
```   774         Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt
```
```   775         (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
```
```   776         simple_cterm_ord
```
```   777   in gen_real_arith ctxt
```
```   778      (cterm_of_rat,
```
```   779       Numeral_Simprocs.field_comp_conv ctxt,
```
```   780       Numeral_Simprocs.field_comp_conv ctxt,
```
```   781       Numeral_Simprocs.field_comp_conv ctxt,
```
```   782       main ctxt, neg ctxt, add ctxt, mul ctxt, prover)
```
```   783   end;
```
```   784
```
```   785 end
```