1 (* Title: HOL/Algebra/Group.thy
2 Author: Clemens Ballarin, started 4 February 2003
4 Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
8 imports Lattice "~~/src/HOL/Library/FuncSet"
11 section {* Monoids and Groups *}
13 subsection {* Definitions *}
16 Definitions follow \cite{Jacobson:1985}.
19 record 'a monoid = "'a partial_object" +
20 mult :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<otimes>\<index>" 70)
21 one :: 'a ("\<one>\<index>")
24 m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\<index> _" [81] 80)
25 where "inv\<^bsub>G\<^esub> x = (THE y. y \<in> carrier G & x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)"
28 Units :: "_ => 'a set"
29 --{*The set of invertible elements*}
30 where "Units G = {y. y \<in> carrier G & (\<exists>x \<in> carrier G. x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> & y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)}"
33 pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr "'(^')\<index>" 75)
35 overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
37 definition "nat_pow G a n = nat_rec \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) n"
40 overloading int_pow == "pow :: [_, 'a, int] => 'a"
42 definition "int_pow G a z =
43 (let p = nat_rec \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a)
44 in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))"
49 assumes m_closed [intro, simp]:
50 "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G"
52 "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk>
53 \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
54 and one_closed [intro, simp]: "\<one> \<in> carrier G"
55 and l_one [simp]: "x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x"
56 and r_one [simp]: "x \<in> carrier G \<Longrightarrow> x \<otimes> \<one> = x"
61 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
62 and one_closed: "\<one> \<in> carrier G"
64 "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
65 (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
66 and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
67 and r_one: "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x"
69 by (fast intro!: monoid.intro intro: assms)
71 lemma (in monoid) Units_closed [dest]:
72 "x \<in> Units G ==> x \<in> carrier G"
73 by (unfold Units_def) fast
75 lemma (in monoid) inv_unique:
76 assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>"
77 and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
80 from G eq have "y = y \<otimes> (x \<otimes> y')" by simp
81 also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc)
82 also from G eq have "... = y'" by simp
83 finally show ?thesis .
86 lemma (in monoid) Units_m_closed [intro, simp]:
87 assumes x: "x \<in> Units G" and y: "y \<in> Units G"
88 shows "x \<otimes> y \<in> Units G"
90 from x obtain x' where x: "x \<in> carrier G" "x' \<in> carrier G" and xinv: "x \<otimes> x' = \<one>" "x' \<otimes> x = \<one>"
91 unfolding Units_def by fast
92 from y obtain y' where y: "y \<in> carrier G" "y' \<in> carrier G" and yinv: "y \<otimes> y' = \<one>" "y' \<otimes> y = \<one>"
93 unfolding Units_def by fast
94 from x y xinv yinv have "y' \<otimes> (x' \<otimes> x) \<otimes> y = \<one>" by simp
95 moreover from x y xinv yinv have "x \<otimes> (y \<otimes> y') \<otimes> x' = \<one>" by simp
97 ultimately show ?thesis unfolding Units_def
98 -- "Must avoid premature use of @{text hyp_subst_tac}."
99 apply (rule_tac CollectI)
102 apply (rule bexI [where x = "y' \<otimes> x'"])
103 apply (auto simp: m_assoc)
107 lemma (in monoid) Units_one_closed [intro, simp]:
108 "\<one> \<in> Units G"
109 by (unfold Units_def) auto
111 lemma (in monoid) Units_inv_closed [intro, simp]:
112 "x \<in> Units G ==> inv x \<in> carrier G"
113 apply (unfold Units_def m_inv_def, auto)
114 apply (rule theI2, fast)
115 apply (fast intro: inv_unique, fast)
118 lemma (in monoid) Units_l_inv_ex:
119 "x \<in> Units G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
120 by (unfold Units_def) auto
122 lemma (in monoid) Units_r_inv_ex:
123 "x \<in> Units G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>"
124 by (unfold Units_def) auto
126 lemma (in monoid) Units_l_inv [simp]:
127 "x \<in> Units G ==> inv x \<otimes> x = \<one>"
128 apply (unfold Units_def m_inv_def, auto)
129 apply (rule theI2, fast)
130 apply (fast intro: inv_unique, fast)
133 lemma (in monoid) Units_r_inv [simp]:
134 "x \<in> Units G ==> x \<otimes> inv x = \<one>"
135 apply (unfold Units_def m_inv_def, auto)
136 apply (rule theI2, fast)
137 apply (fast intro: inv_unique, fast)
140 lemma (in monoid) Units_inv_Units [intro, simp]:
141 "x \<in> Units G ==> inv x \<in> Units G"
143 assume x: "x \<in> Units G"
144 show "inv x \<in> Units G"
145 by (auto simp add: Units_def
146 intro: Units_l_inv Units_r_inv x Units_closed [OF x])
149 lemma (in monoid) Units_l_cancel [simp]:
150 "[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==>
151 (x \<otimes> y = x \<otimes> z) = (y = z)"
153 assume eq: "x \<otimes> y = x \<otimes> z"
154 and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
155 then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z"
156 by (simp add: m_assoc Units_closed del: Units_l_inv)
157 with G show "y = z" by simp
160 and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
161 then show "x \<otimes> y = x \<otimes> z" by simp
164 lemma (in monoid) Units_inv_inv [simp]:
165 "x \<in> Units G ==> inv (inv x) = x"
167 assume x: "x \<in> Units G"
168 then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x" by simp
169 with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
172 lemma (in monoid) inv_inj_on_Units:
173 "inj_on (m_inv G) (Units G)"
176 assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y"
177 then have "inv (inv x) = inv (inv y)" by simp
178 with G show "x = y" by simp
181 lemma (in monoid) Units_inv_comm:
182 assumes inv: "x \<otimes> y = \<one>"
183 and G: "x \<in> Units G" "y \<in> Units G"
184 shows "y \<otimes> x = \<one>"
186 from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed)
187 with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
192 lemma (in monoid) nat_pow_closed [intro, simp]:
193 "x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G"
194 by (induct n) (simp_all add: nat_pow_def)
196 lemma (in monoid) nat_pow_0 [simp]:
197 "x (^) (0::nat) = \<one>"
198 by (simp add: nat_pow_def)
200 lemma (in monoid) nat_pow_Suc [simp]:
201 "x (^) (Suc n) = x (^) n \<otimes> x"
202 by (simp add: nat_pow_def)
204 lemma (in monoid) nat_pow_one [simp]:
205 "\<one> (^) (n::nat) = \<one>"
206 by (induct n) simp_all
208 lemma (in monoid) nat_pow_mult:
209 "x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)"
210 by (induct m) (simp_all add: m_assoc [THEN sym])
212 lemma (in monoid) nat_pow_pow:
213 "x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
214 by (induct m) (simp, simp add: nat_pow_mult add_commute)
217 (* Jacobson defines submonoid here. *)
218 (* Jacobson defines the order of a monoid here. *)
221 subsection {* Groups *}
224 A group is a monoid all of whose elements are invertible.
227 locale group = monoid +
228 assumes Units: "carrier G <= Units G"
230 lemma (in group) is_group: "group G" by (rule group_axioms)
234 assumes m_closed [simp]:
235 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
236 and one_closed [simp]: "\<one> \<in> carrier G"
238 "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
239 (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
240 and l_one [simp]: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
241 and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
244 have l_cancel [simp]:
245 "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
246 (x \<otimes> y = x \<otimes> z) = (y = z)"
249 assume eq: "x \<otimes> y = x \<otimes> z"
250 and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
251 with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
252 and l_inv: "x_inv \<otimes> x = \<one>" by fast
253 from G eq xG have "(x_inv \<otimes> x) \<otimes> y = (x_inv \<otimes> x) \<otimes> z"
254 by (simp add: m_assoc)
255 with G show "y = z" by (simp add: l_inv)
259 and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
260 then show "x \<otimes> y = x \<otimes> z" by simp
263 "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x"
266 assume x: "x \<in> carrier G"
267 with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
268 and l_inv: "x_inv \<otimes> x = \<one>" by fast
269 from x xG have "x_inv \<otimes> (x \<otimes> \<one>) = x_inv \<otimes> x"
270 by (simp add: m_assoc [symmetric] l_inv)
271 with x xG show "x \<otimes> \<one> = x" by simp
274 "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>"
277 assume x: "x \<in> carrier G"
278 with l_inv_ex obtain y where y: "y \<in> carrier G"
279 and l_inv: "y \<otimes> x = \<one>" by fast
280 from x y have "y \<otimes> (x \<otimes> y) = y \<otimes> \<one>"
281 by (simp add: m_assoc [symmetric] l_inv r_one)
282 with x y have r_inv: "x \<otimes> y = \<one>"
284 from x y show "\<exists>y \<in> carrier G. y \<otimes> x = \<one> & x \<otimes> y = \<one>"
285 by (fast intro: l_inv r_inv)
287 then have carrier_subset_Units: "carrier G <= Units G"
288 by (unfold Units_def) fast
289 show ?thesis by default (auto simp: r_one m_assoc carrier_subset_Units)
292 lemma (in monoid) group_l_invI:
294 "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
296 by (rule groupI) (auto intro: m_assoc l_inv_ex)
298 lemma (in group) Units_eq [simp]:
299 "Units G = carrier G"
301 show "Units G <= carrier G" by fast
303 show "carrier G <= Units G" by (rule Units)
306 lemma (in group) inv_closed [intro, simp]:
307 "x \<in> carrier G ==> inv x \<in> carrier G"
308 using Units_inv_closed by simp
310 lemma (in group) l_inv_ex [simp]:
311 "x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
312 using Units_l_inv_ex by simp
314 lemma (in group) r_inv_ex [simp]:
315 "x \<in> carrier G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>"
316 using Units_r_inv_ex by simp
318 lemma (in group) l_inv [simp]:
319 "x \<in> carrier G ==> inv x \<otimes> x = \<one>"
320 using Units_l_inv by simp
323 subsection {* Cancellation Laws and Basic Properties *}
325 lemma (in group) l_cancel [simp]:
326 "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
327 (x \<otimes> y = x \<otimes> z) = (y = z)"
328 using Units_l_inv by simp
330 lemma (in group) r_inv [simp]:
331 "x \<in> carrier G ==> x \<otimes> inv x = \<one>"
333 assume x: "x \<in> carrier G"
334 then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>"
335 by (simp add: m_assoc [symmetric])
336 with x show ?thesis by (simp del: r_one)
339 lemma (in group) r_cancel [simp]:
340 "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
341 (y \<otimes> x = z \<otimes> x) = (y = z)"
343 assume eq: "y \<otimes> x = z \<otimes> x"
344 and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
345 then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)"
346 by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
347 with G show "y = z" by simp
350 and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
351 then show "y \<otimes> x = z \<otimes> x" by simp
354 lemma (in group) inv_one [simp]:
355 "inv \<one> = \<one>"
357 have "inv \<one> = \<one> \<otimes> (inv \<one>)" by (simp del: r_inv Units_r_inv)
358 moreover have "... = \<one>" by simp
359 finally show ?thesis .
362 lemma (in group) inv_inv [simp]:
363 "x \<in> carrier G ==> inv (inv x) = x"
364 using Units_inv_inv by simp
366 lemma (in group) inv_inj:
367 "inj_on (m_inv G) (carrier G)"
368 using inv_inj_on_Units by simp
370 lemma (in group) inv_mult_group:
371 "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x"
373 assume G: "x \<in> carrier G" "y \<in> carrier G"
374 then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)"
375 by (simp add: m_assoc) (simp add: m_assoc [symmetric])
376 with G show ?thesis by (simp del: l_inv Units_l_inv)
379 lemma (in group) inv_comm:
380 "[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>"
381 by (rule Units_inv_comm) auto
383 lemma (in group) inv_equality:
384 "[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y"
385 apply (simp add: m_inv_def)
386 apply (rule the_equality)
387 apply (simp add: inv_comm [of y x])
388 apply (rule r_cancel [THEN iffD1], auto)
393 lemma (in group) int_pow_def2:
394 "a (^) (z::int) = (if z < 0 then inv (a (^) (nat (-z))) else a (^) (nat z))"
395 by (simp add: int_pow_def nat_pow_def Let_def)
397 lemma (in group) int_pow_0 [simp]:
398 "x (^) (0::int) = \<one>"
399 by (simp add: int_pow_def2)
401 lemma (in group) int_pow_one [simp]:
402 "\<one> (^) (z::int) = \<one>"
403 by (simp add: int_pow_def2)
406 subsection {* Subgroups *}
409 fixes H and G (structure)
410 assumes subset: "H \<subseteq> carrier G"
411 and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
412 and one_closed [simp]: "\<one> \<in> H"
413 and m_inv_closed [intro,simp]: "x \<in> H \<Longrightarrow> inv x \<in> H"
415 lemma (in subgroup) is_subgroup:
416 "subgroup H G" by (rule subgroup_axioms)
418 declare (in subgroup) group.intro [intro]
420 lemma (in subgroup) mem_carrier [simp]:
421 "x \<in> H \<Longrightarrow> x \<in> carrier G"
422 using subset by blast
424 lemma subgroup_imp_subset:
425 "subgroup H G \<Longrightarrow> H \<subseteq> carrier G"
426 by (rule subgroup.subset)
428 lemma (in subgroup) subgroup_is_group [intro]:
430 shows "group (G\<lparr>carrier := H\<rparr>)"
432 interpret group G by fact
434 apply (rule monoid.group_l_invI)
435 apply (unfold_locales) [1]
436 apply (auto intro: m_assoc l_inv mem_carrier)
441 Since @{term H} is nonempty, it contains some element @{term x}. Since
442 it is closed under inverse, it contains @{text "inv x"}. Since
443 it is closed under product, it contains @{text "x \<otimes> inv x = \<one>"}.
446 lemma (in group) one_in_subset:
447 "[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
451 text {* A characterization of subgroups: closed, non-empty subset. *}
453 lemma (in group) subgroupI:
454 assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
455 and inv: "!!a. a \<in> H \<Longrightarrow> inv a \<in> H"
456 and mult: "!!a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H"
458 proof (simp add: subgroup_def assms)
459 show "\<one> \<in> H" by (rule one_in_subset) (auto simp only: assms)
462 declare monoid.one_closed [iff] group.inv_closed [simp]
463 monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
465 lemma subgroup_nonempty:
467 by (blast dest: subgroup.one_closed)
469 lemma (in subgroup) finite_imp_card_positive:
470 "finite (carrier G) ==> 0 < card H"
471 proof (rule classical)
472 assume "finite (carrier G)" and a: "~ 0 < card H"
473 then have "finite H" by (blast intro: finite_subset [OF subset])
474 with is_subgroup a have "subgroup {} G" by simp
475 with subgroup_nonempty show ?thesis by contradiction
479 lemma (in monoid) Units_subgroup:
480 "subgroup (Units G) G"
484 subsection {* Direct Products *}
487 DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid" (infixr "\<times>\<times>" 80) where
488 "G \<times>\<times> H =
489 \<lparr>carrier = carrier G \<times> carrier H,
490 mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')),
491 one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>"
493 lemma DirProd_monoid:
494 assumes "monoid G" and "monoid H"
495 shows "monoid (G \<times>\<times> H)"
497 interpret G: monoid G by fact
498 interpret H: monoid H by fact
500 show ?thesis by (unfold monoid_def DirProd_def, auto)
504 text{*Does not use the previous result because it's easier just to use auto.*}
506 assumes "group G" and "group H"
507 shows "group (G \<times>\<times> H)"
509 interpret G: group G by fact
510 interpret H: group H by fact
511 show ?thesis by (rule groupI)
512 (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
513 simp add: DirProd_def)
516 lemma carrier_DirProd [simp]:
517 "carrier (G \<times>\<times> H) = carrier G \<times> carrier H"
518 by (simp add: DirProd_def)
520 lemma one_DirProd [simp]:
521 "\<one>\<^bsub>G \<times>\<times> H\<^esub> = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)"
522 by (simp add: DirProd_def)
524 lemma mult_DirProd [simp]:
525 "(g, h) \<otimes>\<^bsub>(G \<times>\<times> H)\<^esub> (g', h') = (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')"
526 by (simp add: DirProd_def)
528 lemma inv_DirProd [simp]:
529 assumes "group G" and "group H"
530 assumes g: "g \<in> carrier G"
531 and h: "h \<in> carrier H"
532 shows "m_inv (G \<times>\<times> H) (g, h) = (inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h)"
534 interpret G: group G by fact
535 interpret H: group H by fact
536 interpret Prod: group "G \<times>\<times> H"
537 by (auto intro: DirProd_group group.intro group.axioms assms)
538 show ?thesis by (simp add: Prod.inv_equality g h)
542 subsection {* Homomorphisms and Isomorphisms *}
545 hom :: "_ => _ => ('a => 'b) set" where
547 {h. h \<in> carrier G -> carrier H &
548 (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y)}"
550 lemma (in group) hom_compose:
551 "[|h \<in> hom G H; i \<in> hom H I|] ==> compose (carrier G) i h \<in> hom G I"
552 by (fastforce simp add: hom_def compose_def)
555 iso :: "_ => _ => ('a => 'b) set" (infixr "\<cong>" 60)
556 where "G \<cong> H = {h. h \<in> hom G H & bij_betw h (carrier G) (carrier H)}"
558 lemma iso_refl: "(%x. x) \<in> G \<cong> G"
559 by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
561 lemma (in group) iso_sym:
562 "h \<in> G \<cong> H \<Longrightarrow> inv_into (carrier G) h \<in> H \<cong> G"
563 apply (simp add: iso_def bij_betw_inv_into)
564 apply (subgoal_tac "inv_into (carrier G) h \<in> carrier H \<rightarrow> carrier G")
565 prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])
566 apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)
569 lemma (in group) iso_trans:
570 "[|h \<in> G \<cong> H; i \<in> H \<cong> I|] ==> (compose (carrier G) i h) \<in> G \<cong> I"
571 by (auto simp add: iso_def hom_compose bij_betw_compose)
573 lemma DirProd_commute_iso:
574 shows "(\<lambda>(x,y). (y,x)) \<in> (G \<times>\<times> H) \<cong> (H \<times>\<times> G)"
575 by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
577 lemma DirProd_assoc_iso:
578 shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> (G \<times>\<times> H \<times>\<times> I) \<cong> (G \<times>\<times> (H \<times>\<times> I))"
579 by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
582 text{*Basis for homomorphism proofs: we assume two groups @{term G} and
583 @{term H}, with a homomorphism @{term h} between them*}
584 locale group_hom = G: group G + H: group H for G (structure) and H (structure) +
586 assumes homh: "h \<in> hom G H"
588 lemma (in group_hom) hom_mult [simp]:
589 "[| x \<in> carrier G; y \<in> carrier G |] ==> h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y"
591 assume "x \<in> carrier G" "y \<in> carrier G"
592 with homh [unfolded hom_def] show ?thesis by simp
595 lemma (in group_hom) hom_closed [simp]:
596 "x \<in> carrier G ==> h x \<in> carrier H"
598 assume "x \<in> carrier G"
599 with homh [unfolded hom_def] show ?thesis by auto
602 lemma (in group_hom) one_closed [simp]:
603 "h \<one> \<in> carrier H"
606 lemma (in group_hom) hom_one [simp]:
607 "h \<one> = \<one>\<^bsub>H\<^esub>"
609 have "h \<one> \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = h \<one> \<otimes>\<^bsub>H\<^esub> h \<one>"
610 by (simp add: hom_mult [symmetric] del: hom_mult)
611 then show ?thesis by (simp del: r_one)
614 lemma (in group_hom) inv_closed [simp]:
615 "x \<in> carrier G ==> h (inv x) \<in> carrier H"
618 lemma (in group_hom) hom_inv [simp]:
619 "x \<in> carrier G ==> h (inv x) = inv\<^bsub>H\<^esub> (h x)"
621 assume x: "x \<in> carrier G"
622 then have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = \<one>\<^bsub>H\<^esub>"
623 by (simp add: hom_mult [symmetric] del: hom_mult)
624 also from x have "... = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)"
625 by (simp add: hom_mult [symmetric] del: hom_mult)
626 finally have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)" .
627 with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)
631 subsection {* Commutative Structures *}
634 Naming convention: multiplicative structures that are commutative
635 are called \emph{commutative}, additive structures are called
639 locale comm_monoid = monoid +
640 assumes m_comm: "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x"
642 lemma (in comm_monoid) m_lcomm:
643 "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> \<Longrightarrow>
644 x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
646 assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
647 from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc)
648 also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm)
649 also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc)
650 finally show ?thesis .
653 lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
658 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
659 and one_closed: "\<one> \<in> carrier G"
661 "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
662 (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
663 and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
665 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
666 shows "comm_monoid G"
668 by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
669 intro: assms simp: m_closed one_closed m_comm)
671 lemma (in monoid) monoid_comm_monoidI:
673 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
674 shows "comm_monoid G"
675 by (rule comm_monoidI) (auto intro: m_assoc m_comm)
677 (*lemma (in comm_monoid) r_one [simp]:
678 "x \<in> carrier G ==> x \<otimes> \<one> = x"
680 assume G: "x \<in> carrier G"
681 then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm)
682 also from G have "... = x" by simp
683 finally show ?thesis .
686 lemma (in comm_monoid) nat_pow_distr:
687 "[| x \<in> carrier G; y \<in> carrier G |] ==>
688 (x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n"
689 by (induct n) (simp, simp add: m_ac)
691 locale comm_group = comm_monoid + group
693 lemma (in group) group_comm_groupI:
694 assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==>
695 x \<otimes> y = y \<otimes> x"
697 by default (simp_all add: m_comm)
702 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
703 and one_closed: "\<one> \<in> carrier G"
705 "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
706 (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
708 "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
709 and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x"
710 and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>"
712 by (fast intro: group.group_comm_groupI groupI assms)
714 lemma (in comm_group) inv_mult:
715 "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y"
716 by (simp add: m_ac inv_mult_group)
719 subsection {* The Lattice of Subgroups of a Group *}
721 text_raw {* \label{sec:subgroup-lattice} *}
723 theorem (in group) subgroups_partial_order:
724 "partial_order (| carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq> |)"
727 lemma (in group) subgroup_self:
728 "subgroup (carrier G) G"
729 by (rule subgroupI) auto
731 lemma (in group) subgroup_imp_group:
732 "subgroup H G ==> group (G(| carrier := H |))"
733 by (erule subgroup.subgroup_is_group) (rule group_axioms)
735 lemma (in group) is_monoid [intro, simp]:
737 by (auto intro: monoid.intro m_assoc)
739 lemma (in group) subgroup_inv_equality:
740 "[| subgroup H G; x \<in> H |] ==> m_inv (G (| carrier := H |)) x = inv x"
741 apply (rule_tac inv_equality [THEN sym])
742 apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
743 apply (rule subsetD [OF subgroup.subset], assumption+)
744 apply (rule subsetD [OF subgroup.subset], assumption)
745 apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified], assumption+)
748 theorem (in group) subgroups_Inter:
749 assumes subgr: "(!!H. H \<in> A ==> subgroup H G)"
750 and not_empty: "A ~= {}"
751 shows "subgroup (\<Inter>A) G"
752 proof (rule subgroupI)
753 from subgr [THEN subgroup.subset] and not_empty
754 show "\<Inter>A \<subseteq> carrier G" by blast
756 from subgr [THEN subgroup.one_closed]
757 show "\<Inter>A ~= {}" by blast
759 fix x assume "x \<in> \<Inter>A"
760 with subgr [THEN subgroup.m_inv_closed]
761 show "inv x \<in> \<Inter>A" by blast
763 fix x y assume "x \<in> \<Inter>A" "y \<in> \<Inter>A"
764 with subgr [THEN subgroup.m_closed]
765 show "x \<otimes> y \<in> \<Inter>A" by blast
768 theorem (in group) subgroups_complete_lattice:
769 "complete_lattice (| carrier = {H. subgroup H G}, eq = op =, le = op \<subseteq> |)"
770 (is "complete_lattice ?L")
771 proof (rule partial_order.complete_lattice_criterion1)
772 show "partial_order ?L" by (rule subgroups_partial_order)
774 have "greatest ?L (carrier G) (carrier ?L)"
775 by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
776 then show "\<exists>G. greatest ?L G (carrier ?L)" ..
779 assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
780 then have Int_subgroup: "subgroup (\<Inter>A) G"
781 by (fastforce intro: subgroups_Inter)
782 have "greatest ?L (\<Inter>A) (Lower ?L A)" (is "greatest _ ?Int _")
783 proof (rule greatest_LowerI)
785 assume H: "H \<in> A"
786 with L have subgroupH: "subgroup H G" by auto
787 from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H")
788 by (rule subgroup_imp_group)
789 from groupH have monoidH: "monoid ?H"
790 by (rule group.is_monoid)
791 from H have Int_subset: "?Int \<subseteq> H" by fastforce
792 then show "le ?L ?Int H" by simp
795 assume H: "H \<in> Lower ?L A"
796 with L Int_subgroup show "le ?L H ?Int"
797 by (fastforce simp: Lower_def intro: Inter_greatest)
799 show "A \<subseteq> carrier ?L" by (rule L)
801 show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
803 then show "\<exists>I. greatest ?L I (Lower ?L A)" ..