1 (* Title: HOL/Probability/Independent_Family.thy
2 Author: Johannes Hölzl, TU München
5 header {* Independent families of events, event sets, and random variables *}
7 theory Independent_Family
8 imports Probability_Measure
11 definition (in prob_space)
12 "indep_events A I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
14 definition (in prob_space)
15 "indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow>
16 (\<forall>A\<in>(\<Pi> j\<in>J. F j). prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
18 definition (in prob_space)
19 "indep_sets2 A B \<longleftrightarrow> indep_sets (bool_case A B) UNIV"
21 definition (in prob_space)
22 "indep_rv M' X I \<longleftrightarrow>
23 (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
24 indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
26 lemma (in prob_space) indep_sets_finite_index_sets:
27 "indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
28 proof (intro iffI allI impI)
29 assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
30 show "indep_sets F I" unfolding indep_sets_def
31 proof (intro conjI ballI allI impI)
32 fix i assume "i \<in> I"
33 with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
34 by (auto simp: indep_sets_def)
35 qed (insert *, auto simp: indep_sets_def)
36 qed (auto simp: indep_sets_def)
38 lemma (in prob_space) indep_sets_mono_index:
39 "J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
40 unfolding indep_sets_def by auto
42 lemma (in prob_space) indep_sets_mono_sets:
43 assumes indep: "indep_sets F I"
44 assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
45 shows "indep_sets G I"
47 have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
49 moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
50 using mono by (auto simp: Pi_iff)
51 ultimately show ?thesis
52 using indep by (auto simp: indep_sets_def)
55 lemma (in prob_space) indep_setsI:
56 assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
57 and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
58 shows "indep_sets F I"
59 using assms unfolding indep_sets_def by (auto simp: Pi_iff)
61 lemma (in prob_space) indep_setsD:
62 assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
63 shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
64 using assms unfolding indep_sets_def by auto
66 lemma dynkin_systemI':
67 assumes 1: "\<And> A. A \<in> sets M \<Longrightarrow> A \<subseteq> space M"
68 assumes empty: "{} \<in> sets M"
69 assumes Diff: "\<And> A. A \<in> sets M \<Longrightarrow> space M - A \<in> sets M"
70 assumes 2: "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> sets M
71 \<Longrightarrow> (\<Union>i::nat. A i) \<in> sets M"
72 shows "dynkin_system M"
74 from Diff[OF empty] have "space M \<in> sets M" by auto
75 from 1 this Diff 2 show ?thesis
76 by (intro dynkin_systemI) auto
79 lemma (in prob_space) indep_sets_dynkin:
80 assumes indep: "indep_sets F I"
81 shows "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) I"
82 (is "indep_sets ?F I")
83 proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
84 fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
85 with indep have "indep_sets F J"
86 by (subst (asm) indep_sets_finite_index_sets) auto
87 { fix J K assume "indep_sets F K"
88 let "?G S i" = "if i \<in> S then ?F i else F i"
89 assume "finite J" "J \<subseteq> K"
90 then have "indep_sets (?G J) K"
93 moreover def G \<equiv> "?G J"
94 ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
95 by (auto simp: indep_sets_def)
96 let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
97 { fix X assume X: "X \<in> events"
98 assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
99 \<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
100 have "indep_sets (G(j := {X})) K"
101 proof (rule indep_setsI)
102 fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
105 fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
106 show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
109 with J have "A j = X" by auto
112 assume "J = {j}" then show ?thesis by simp
114 assume "J \<noteq> {j}"
115 have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
116 using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
117 also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
119 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
120 using J `J \<noteq> {j}` `j \<in> J` by auto
121 show "\<forall>i\<in>J - {j}. A i \<in> G i"
124 also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
125 using `A j = X` by simp
126 also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
127 unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob (A i)"]
128 using `j \<in> J` by (simp add: insert_absorb)
129 finally show ?thesis .
132 assume "j \<notin> J"
133 with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
135 by (intro indep_setsD[OF G(1)]) auto
138 note indep_sets_insert = this
139 have "dynkin_system \<lparr> space = space M, sets = ?D \<rparr>"
140 proof (rule dynkin_systemI', simp_all, safe)
141 show "indep_sets (G(j := {{}})) K"
142 by (rule indep_sets_insert) auto
144 fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
145 show "indep_sets (G(j := {space M - X})) K"
146 proof (rule indep_sets_insert)
147 fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
148 then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
150 have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
151 prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
152 using A_sets sets_into_space X `J \<noteq> {}`
153 by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
154 also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
155 using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
156 by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
157 finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
158 prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
160 have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
161 using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
162 then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
163 using prob_space by simp }
165 have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
166 using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
167 then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
168 using `finite J` `j \<notin> J` by (auto intro!: setprod_cong) }
169 ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
170 by (simp add: field_simps)
171 also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
172 using X A by (simp add: finite_measure_compl)
173 finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
176 fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
177 then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
178 show "indep_sets (G(j := {\<Union>k. F k})) K"
179 proof (rule indep_sets_insert)
180 fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
181 then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
183 have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
184 using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
185 moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
186 proof (rule finite_measure_UNION)
187 show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
188 using disj by (rule disjoint_family_on_bisimulation) auto
189 show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
190 using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: Int)
193 from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
194 by (subst indep_setsD[OF F(2)]) (auto intro!: setprod_cong split: split_if_asm)
195 also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
196 using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
197 finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
198 ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
201 have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
202 using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
203 then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
204 using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
206 show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
207 by (auto dest!: sums_unique)
209 qed (insert sets_into_space, auto)
210 then have mono: "sets (dynkin \<lparr>space = space M, sets = G j\<rparr>) \<subseteq>
211 sets \<lparr>space = space M, sets = {E \<in> events. indep_sets (G(j := {E})) K}\<rparr>"
212 proof (rule dynkin_system.dynkin_subset, simp_all, safe)
213 fix X assume "X \<in> G j"
214 then show "X \<in> events" using G `j \<in> K` by auto
215 from `indep_sets G K`
216 show "indep_sets (G(j := {X})) K"
217 by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
219 have "indep_sets (G(j:=?D)) K"
220 proof (rule indep_setsI)
221 fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
224 fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
225 show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
228 with A have indep: "indep_sets (G(j := {A j})) K" by auto
229 from J A show ?thesis
230 by (intro indep_setsD[OF indep]) auto
232 assume "j \<notin> J"
233 with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
235 by (intro indep_setsD[OF G(1)]) auto
238 then have "indep_sets (G(j:=sets (dynkin \<lparr>space = space M, sets = G j\<rparr>))) K"
239 by (rule indep_sets_mono_sets) (insert mono, auto)
241 by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
242 qed (insert `indep_sets F K`, simp) }
243 from this[OF `indep_sets F J` `finite J` subset_refl]
244 show "indep_sets (\<lambda>i. sets (dynkin \<lparr> space = space M, sets = F i \<rparr>)) J"
245 by (rule indep_sets_mono_sets) auto
248 lemma (in prob_space) indep_sets_sigma:
249 assumes indep: "indep_sets F I"
250 assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
251 shows "indep_sets (\<lambda>i. sets (sigma \<lparr> space = space M, sets = F i \<rparr>)) I"
253 from indep_sets_dynkin[OF indep]
255 proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
256 fix i assume "i \<in> I"
257 with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
258 with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
262 lemma (in prob_space) indep_sets_sigma_sets:
263 assumes "indep_sets F I"
264 assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable \<lparr> space = space M, sets = F i \<rparr>"
265 shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
266 using indep_sets_sigma[OF assms] by (simp add: sets_sigma)
268 lemma (in prob_space) indep_sets2_eq:
269 "indep_sets2 A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
270 unfolding indep_sets2_def
271 proof (intro iffI ballI conjI)
272 assume indep: "indep_sets (bool_case A B) UNIV"
273 { fix a b assume "a \<in> A" "b \<in> B"
274 with indep_setsD[OF indep, of UNIV "bool_case a b"]
275 show "prob (a \<inter> b) = prob a * prob b"
276 unfolding UNIV_bool by (simp add: ac_simps) }
277 from indep show "A \<subseteq> events" "B \<subseteq> events"
278 unfolding indep_sets_def UNIV_bool by auto
280 assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
281 show "indep_sets (bool_case A B) UNIV"
282 proof (rule indep_setsI)
283 fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
284 using * by (auto split: bool.split)
286 fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
287 then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
288 by (auto simp: UNIV_bool)
289 then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
294 lemma (in prob_space) indep_sets2_sigma_sets:
295 assumes "indep_sets2 A B"
296 assumes A: "Int_stable \<lparr> space = space M, sets = A \<rparr>"
297 assumes B: "Int_stable \<lparr> space = space M, sets = B \<rparr>"
298 shows "indep_sets2 (sigma_sets (space M) A) (sigma_sets (space M) B)"
300 have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
301 proof (rule indep_sets_sigma_sets)
302 show "indep_sets (bool_case A B) UNIV"
303 by (rule `indep_sets2 A B`[unfolded indep_sets2_def])
304 fix i show "Int_stable \<lparr>space = space M, sets = case i of True \<Rightarrow> A | False \<Rightarrow> B\<rparr>"
305 using A B by (cases i) auto
308 unfolding indep_sets2_def
309 by (rule indep_sets_mono_sets) (auto split: bool.split)