src/HOL/Tools/record.ML
author wenzelm
Mon Feb 15 20:32:21 2010 +0100 (2010-02-15)
changeset 35135 1667fd3b051d
parent 35133 a68e4972fd31
child 35136 34206672b168
permissions -rw-r--r--
tuned errors;
tuned;
     1 (*  Title:      HOL/Tools/record.ML
     2     Author:     Wolfgang Naraschewski, TU Muenchen
     3     Author:     Markus Wenzel, TU Muenchen
     4     Author:     Norbert Schirmer, TU Muenchen
     5     Author:     Thomas Sewell, NICTA
     6 
     7 Extensible records with structural subtyping.
     8 *)
     9 
    10 signature BASIC_RECORD =
    11 sig
    12   val record_simproc: simproc
    13   val record_eq_simproc: simproc
    14   val record_upd_simproc: simproc
    15   val record_split_simproc: (term -> int) -> simproc
    16   val record_ex_sel_eq_simproc: simproc
    17   val record_split_tac: int -> tactic
    18   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    19   val record_split_name: string
    20   val record_split_wrapper: string * wrapper
    21   val print_record_type_abbr: bool Unsynchronized.ref
    22   val print_record_type_as_fields: bool Unsynchronized.ref
    23 end;
    24 
    25 signature RECORD =
    26 sig
    27   include BASIC_RECORD
    28   val timing: bool Unsynchronized.ref
    29   val updateN: string
    30   val ext_typeN: string
    31   val extN: string
    32   val makeN: string
    33   val moreN: string
    34   val last_extT: typ -> (string * typ list) option
    35   val dest_recTs: typ -> (string * typ list) list
    36   val get_extT_fields: theory -> typ -> (string * typ) list * (string * typ)
    37   val get_recT_fields: theory -> typ -> (string * typ) list * (string * typ)
    38   val get_parent: theory -> string -> (typ list * string) option
    39   val get_extension: theory -> string -> (string * typ list) option
    40   val get_extinjects: theory -> thm list
    41   val get_simpset: theory -> simpset
    42   val print_records: theory -> unit
    43   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
    44   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
    45   val add_record: bool -> string list * string -> string option -> (string * string * mixfix) list
    46     -> theory -> theory
    47   val add_record_i: bool -> string list * string -> (typ list * string) option
    48     -> (string * typ * mixfix) list -> theory -> theory
    49   val setup: theory -> theory
    50 end;
    51 
    52 
    53 signature ISO_TUPLE_SUPPORT =
    54 sig
    55   val add_iso_tuple_type: bstring * string list -> typ * typ -> theory -> (term * term) * theory
    56   val mk_cons_tuple: term * term -> term
    57   val dest_cons_tuple: term -> term * term
    58   val iso_tuple_intros_tac: int -> tactic
    59   val named_cterm_instantiate: (string * cterm) list -> thm -> thm
    60 end;
    61 
    62 structure Iso_Tuple_Support: ISO_TUPLE_SUPPORT =
    63 struct
    64 
    65 val isoN = "_Tuple_Iso";
    66 
    67 val iso_tuple_intro = @{thm isomorphic_tuple_intro};
    68 val iso_tuple_intros = Tactic.build_net @{thms isomorphic_tuple.intros};
    69 
    70 val tuple_iso_tuple = (@{const_name tuple_iso_tuple}, @{thm tuple_iso_tuple});
    71 
    72 fun named_cterm_instantiate values thm =
    73   let
    74     fun match name ((name', _), _) = name = name';
    75     fun getvar name =
    76       (case find_first (match name) (Term.add_vars (prop_of thm) []) of
    77         SOME var => cterm_of (theory_of_thm thm) (Var var)
    78       | NONE => raise THM ("named_cterm_instantiate: " ^ name, 0, [thm]));
    79   in
    80     cterm_instantiate (map (apfst getvar) values) thm
    81   end;
    82 
    83 structure Iso_Tuple_Thms = Theory_Data
    84 (
    85   type T = thm Symtab.table;
    86   val empty = Symtab.make [tuple_iso_tuple];
    87   val extend = I;
    88   fun merge data = Symtab.merge Thm.eq_thm_prop data;   (* FIXME handle Symtab.DUP ?? *)
    89 );
    90 
    91 fun do_typedef name repT alphas thy =
    92   let
    93     fun get_thms thy name =
    94       let
    95         val {Rep_inject = rep_inject, Abs_name = absN, abs_type = absT,
    96           Abs_inverse = abs_inverse, ...} = Typedef.the_info thy name;
    97         val rewrite_rule =
    98           MetaSimplifier.rewrite_rule [@{thm iso_tuple_UNIV_I}, @{thm iso_tuple_True_simp}];
    99       in
   100         (map rewrite_rule [rep_inject, abs_inverse], Const (absN, repT --> absT), absT)
   101       end;
   102   in
   103     thy
   104     |> Typecopy.typecopy (Binding.name name, alphas) repT NONE
   105     |-> (fn (name, _) => `(fn thy => get_thms thy name))
   106   end;
   107 
   108 fun mk_cons_tuple (left, right) =
   109   let
   110     val (leftT, rightT) = (fastype_of left, fastype_of right);
   111     val prodT = HOLogic.mk_prodT (leftT, rightT);
   112     val isomT = Type (@{type_name tuple_isomorphism}, [prodT, leftT, rightT]);
   113   in
   114     Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> prodT) $
   115       Const (fst tuple_iso_tuple, isomT) $ left $ right
   116   end;
   117 
   118 fun dest_cons_tuple (Const (@{const_name iso_tuple_cons}, _) $ Const _ $ t $ u) = (t, u)
   119   | dest_cons_tuple t = raise TERM ("dest_cons_tuple", [t]);
   120 
   121 fun add_iso_tuple_type (name, alphas) (leftT, rightT) thy =
   122   let
   123     val repT = HOLogic.mk_prodT (leftT, rightT);
   124 
   125     val (([rep_inject, abs_inverse], absC, absT), typ_thy) =
   126       thy
   127       |> do_typedef name repT alphas
   128       ||> Sign.add_path name;
   129 
   130     (*construct a type and body for the isomorphism constant by
   131       instantiating the theorem to which the definition will be applied*)
   132     val intro_inst =
   133       rep_inject RS named_cterm_instantiate [("abst", cterm_of typ_thy absC)] iso_tuple_intro;
   134     val (_, body) = Logic.dest_equals (List.last (prems_of intro_inst));
   135     val isomT = fastype_of body;
   136     val isom_bind = Binding.name (name ^ isoN);
   137     val isom_name = Sign.full_name typ_thy isom_bind;
   138     val isom = Const (isom_name, isomT);
   139     val isom_spec = (Thm.def_name (name ^ isoN), Logic.mk_equals (isom, body));
   140 
   141     val ([isom_def], cdef_thy) =
   142       typ_thy
   143       |> Sign.add_consts_i [Syntax.no_syn (isom_bind, isomT)]
   144       |> PureThy.add_defs false [Thm.no_attributes (apfst Binding.name isom_spec)];
   145 
   146     val iso_tuple = isom_def RS (abs_inverse RS (rep_inject RS iso_tuple_intro));
   147     val cons = Const (@{const_name iso_tuple_cons}, isomT --> leftT --> rightT --> absT);
   148 
   149     val thm_thy =
   150       cdef_thy
   151       |> Iso_Tuple_Thms.map (Symtab.insert Thm.eq_thm_prop (isom_name, iso_tuple))
   152       |> Sign.parent_path
   153       |> Code.add_default_eqn isom_def;
   154   in
   155     ((isom, cons $ isom), thm_thy)
   156   end;
   157 
   158 val iso_tuple_intros_tac =
   159   resolve_from_net_tac iso_tuple_intros THEN'
   160   CSUBGOAL (fn (cgoal, i) =>
   161     let
   162       val thy = Thm.theory_of_cterm cgoal;
   163       val goal = Thm.term_of cgoal;
   164 
   165       val isthms = Iso_Tuple_Thms.get thy;
   166       fun err s t = raise TERM ("iso_tuple_intros_tac: " ^ s, [t]);
   167 
   168       val goal' = Envir.beta_eta_contract goal;
   169       val is =
   170         (case goal' of
   171           Const (@{const_name Trueprop}, _) $
   172             (Const (@{const_name isomorphic_tuple}, _) $ Const is) => is
   173         | _ => err "unexpected goal format" goal');
   174       val isthm =
   175         (case Symtab.lookup isthms (#1 is) of
   176           SOME isthm => isthm
   177         | NONE => err "no thm found for constant" (Const is));
   178     in rtac isthm i end);
   179 
   180 end;
   181 
   182 
   183 structure Record: RECORD =
   184 struct
   185 
   186 val eq_reflection = @{thm eq_reflection};
   187 val atomize_all = @{thm HOL.atomize_all};
   188 val atomize_imp = @{thm HOL.atomize_imp};
   189 val meta_allE = @{thm Pure.meta_allE};
   190 val prop_subst = @{thm prop_subst};
   191 val K_record_comp = @{thm K_record_comp};
   192 val K_comp_convs = [@{thm o_apply}, K_record_comp]
   193 val o_assoc = @{thm o_assoc};
   194 val id_apply = @{thm id_apply};
   195 val id_o_apps = [@{thm id_apply}, @{thm id_o}, @{thm o_id}];
   196 val Not_eq_iff = @{thm Not_eq_iff};
   197 
   198 val refl_conj_eq = @{thm refl_conj_eq};
   199 
   200 val surject_assistI = @{thm iso_tuple_surjective_proof_assistI};
   201 val surject_assist_idE = @{thm iso_tuple_surjective_proof_assist_idE};
   202 
   203 val updacc_accessor_eqE = @{thm update_accessor_accessor_eqE};
   204 val updacc_updator_eqE = @{thm update_accessor_updator_eqE};
   205 val updacc_eq_idI = @{thm iso_tuple_update_accessor_eq_assist_idI};
   206 val updacc_eq_triv = @{thm iso_tuple_update_accessor_eq_assist_triv};
   207 
   208 val updacc_foldE = @{thm update_accessor_congruence_foldE};
   209 val updacc_unfoldE = @{thm update_accessor_congruence_unfoldE};
   210 val updacc_noopE = @{thm update_accessor_noopE};
   211 val updacc_noop_compE = @{thm update_accessor_noop_compE};
   212 val updacc_cong_idI = @{thm update_accessor_cong_assist_idI};
   213 val updacc_cong_triv = @{thm update_accessor_cong_assist_triv};
   214 val updacc_cong_from_eq = @{thm iso_tuple_update_accessor_cong_from_eq};
   215 
   216 val o_eq_dest = @{thm o_eq_dest};
   217 val o_eq_id_dest = @{thm o_eq_id_dest};
   218 val o_eq_dest_lhs = @{thm o_eq_dest_lhs};
   219 
   220 
   221 
   222 (** name components **)
   223 
   224 val rN = "r";
   225 val wN = "w";
   226 val moreN = "more";
   227 val schemeN = "_scheme";
   228 val ext_typeN = "_ext_type";
   229 val inner_typeN = "_inner_type";
   230 val extN ="_ext";
   231 val updateN = "_update";
   232 val makeN = "make";
   233 val fields_selN = "fields";
   234 val extendN = "extend";
   235 val truncateN = "truncate";
   236 
   237 
   238 
   239 (*** utilities ***)
   240 
   241 fun but_last xs = fst (split_last xs);
   242 
   243 fun varifyT midx =
   244   let fun varify (a, S) = TVar ((a, midx + 1), S);
   245   in map_type_tfree varify end;
   246 
   247 
   248 (* timing *)
   249 
   250 val timing = Unsynchronized.ref false;
   251 fun timeit_msg s x = if ! timing then (warning s; timeit x) else x ();
   252 fun timing_msg s = if ! timing then warning s else ();
   253 
   254 
   255 (* syntax *)
   256 
   257 val Trueprop = HOLogic.mk_Trueprop;
   258 fun All xs t = Term.list_all_free (xs, t);
   259 
   260 infix 9 $$;
   261 infix 0 :== ===;
   262 infixr 0 ==>;
   263 
   264 val op $$ = Term.list_comb;
   265 val op :== = Primitive_Defs.mk_defpair;
   266 val op === = Trueprop o HOLogic.mk_eq;
   267 val op ==> = Logic.mk_implies;
   268 
   269 
   270 (* constructor *)
   271 
   272 fun mk_extC (name, T) Ts = (suffix extN name, Ts ---> T);
   273 
   274 fun mk_ext (name, T) ts =
   275   let val Ts = map fastype_of ts
   276   in list_comb (Const (mk_extC (name, T) Ts), ts) end;
   277 
   278 
   279 (* selector *)
   280 
   281 fun mk_selC sT (c, T) = (c, sT --> T);
   282 
   283 fun mk_sel s (c, T) =
   284   let val sT = fastype_of s
   285   in Const (mk_selC sT (c, T)) $ s end;
   286 
   287 
   288 (* updates *)
   289 
   290 fun mk_updC sfx sT (c, T) = (suffix sfx c, (T --> T) --> sT --> sT);
   291 
   292 fun mk_upd' sfx c v sT =
   293   let val vT = domain_type (fastype_of v);
   294   in Const (mk_updC sfx sT (c, vT)) $ v end;
   295 
   296 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s;
   297 
   298 
   299 (* types *)
   300 
   301 fun dest_recT (typ as Type (c_ext_type, Ts as (_ :: _))) =
   302       (case try (unsuffix ext_typeN) c_ext_type of
   303         NONE => raise TYPE ("Record.dest_recT", [typ], [])
   304       | SOME c => ((c, Ts), List.last Ts))
   305   | dest_recT typ = raise TYPE ("Record.dest_recT", [typ], []);
   306 
   307 val is_recT = can dest_recT;
   308 
   309 fun dest_recTs T =
   310   let val ((c, Ts), U) = dest_recT T
   311   in (c, Ts) :: dest_recTs U
   312   end handle TYPE _ => [];
   313 
   314 fun last_extT T =
   315   let val ((c, Ts), U) = dest_recT T in
   316     (case last_extT U of
   317       NONE => SOME (c, Ts)
   318     | SOME l => SOME l)
   319   end handle TYPE _ => NONE;
   320 
   321 fun rec_id i T =
   322   let
   323     val rTs = dest_recTs T;
   324     val rTs' = if i < 0 then rTs else take i rTs;
   325   in implode (map #1 rTs') end;
   326 
   327 
   328 
   329 (*** extend theory by record definition ***)
   330 
   331 (** record info **)
   332 
   333 (* type record_info and parent_info *)
   334 
   335 type record_info =
   336  {args: (string * sort) list,
   337   parent: (typ list * string) option,
   338   fields: (string * typ) list,
   339   extension: (string * typ list),
   340   induct: thm,
   341   extdef: thm};
   342 
   343 fun make_record_info args parent fields extension induct extdef =
   344  {args = args, parent = parent, fields = fields, extension = extension,
   345   induct = induct, extdef = extdef}: record_info;
   346 
   347 
   348 type parent_info =
   349  {name: string,
   350   fields: (string * typ) list,
   351   extension: (string * typ list),
   352   induct: thm,
   353   extdef: thm};
   354 
   355 fun make_parent_info name fields extension induct extdef =
   356  {name = name, fields = fields, extension = extension,
   357   induct = induct, extdef = extdef}: parent_info;
   358 
   359 
   360 (* theory data *)
   361 
   362 type record_data =
   363  {records: record_info Symtab.table,
   364   sel_upd:
   365    {selectors: (int * bool) Symtab.table,
   366     updates: string Symtab.table,
   367     simpset: Simplifier.simpset,
   368     defset: Simplifier.simpset,
   369     foldcong: Simplifier.simpset,
   370     unfoldcong: Simplifier.simpset},
   371   equalities: thm Symtab.table,
   372   extinjects: thm list,
   373   extsplit: thm Symtab.table,  (*maps extension name to split rule*)
   374   splits: (thm * thm * thm * thm) Symtab.table,  (*!!, ALL, EX - split-equalities, induct rule*)
   375   extfields: (string * typ) list Symtab.table,  (*maps extension to its fields*)
   376   fieldext: (string * typ list) Symtab.table};  (*maps field to its extension*)
   377 
   378 fun make_record_data
   379     records sel_upd equalities extinjects extsplit splits extfields fieldext =
   380  {records = records, sel_upd = sel_upd,
   381   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
   382   extfields = extfields, fieldext = fieldext }: record_data;
   383 
   384 structure RecordsData = Theory_Data
   385 (
   386   type T = record_data;
   387   val empty =
   388     make_record_data Symtab.empty
   389       {selectors = Symtab.empty, updates = Symtab.empty,
   390           simpset = HOL_basic_ss, defset = HOL_basic_ss,
   391           foldcong = HOL_basic_ss, unfoldcong = HOL_basic_ss}
   392        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   393   val extend = I;
   394   fun merge
   395    ({records = recs1,
   396      sel_upd =
   397       {selectors = sels1, updates = upds1,
   398        simpset = ss1, defset = ds1,
   399        foldcong = fc1, unfoldcong = uc1},
   400      equalities = equalities1,
   401      extinjects = extinjects1,
   402      extsplit = extsplit1,
   403      splits = splits1,
   404      extfields = extfields1,
   405      fieldext = fieldext1},
   406     {records = recs2,
   407      sel_upd =
   408       {selectors = sels2, updates = upds2,
   409        simpset = ss2, defset = ds2,
   410        foldcong = fc2, unfoldcong = uc2},
   411      equalities = equalities2,
   412      extinjects = extinjects2,
   413      extsplit = extsplit2,
   414      splits = splits2,
   415      extfields = extfields2,
   416      fieldext = fieldext2}) =
   417     make_record_data
   418       (Symtab.merge (K true) (recs1, recs2))
   419       {selectors = Symtab.merge (K true) (sels1, sels2),
   420         updates = Symtab.merge (K true) (upds1, upds2),
   421         simpset = Simplifier.merge_ss (ss1, ss2),
   422         defset = Simplifier.merge_ss (ds1, ds2),
   423         foldcong = Simplifier.merge_ss (fc1, fc2),
   424         unfoldcong = Simplifier.merge_ss (uc1, uc2)}
   425       (Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
   426       (Thm.merge_thms (extinjects1, extinjects2))
   427       (Symtab.merge Thm.eq_thm_prop (extsplit1, extsplit2))
   428       (Symtab.merge (fn ((a, b, c, d), (w, x, y, z)) =>
   429           Thm.eq_thm (a, w) andalso Thm.eq_thm (b, x) andalso
   430           Thm.eq_thm (c, y) andalso Thm.eq_thm (d, z)) (splits1, splits2))
   431       (Symtab.merge (K true) (extfields1, extfields2))
   432       (Symtab.merge (K true) (fieldext1, fieldext2));
   433 );
   434 
   435 fun print_records thy =
   436   let
   437     val {records = recs, ...} = RecordsData.get thy;
   438     val prt_typ = Syntax.pretty_typ_global thy;
   439 
   440     fun pretty_parent NONE = []
   441       | pretty_parent (SOME (Ts, name)) =
   442           [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   443 
   444     fun pretty_field (c, T) = Pretty.block
   445       [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
   446         Pretty.brk 1, Pretty.quote (prt_typ T)];
   447 
   448     fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   449       Pretty.block (Pretty.fbreaks (Pretty.block
   450         [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   451         pretty_parent parent @ map pretty_field fields));
   452   in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   453 
   454 
   455 (* access 'records' *)
   456 
   457 val get_record = Symtab.lookup o #records o RecordsData.get;
   458 
   459 fun put_record name info thy =
   460   let
   461     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   462       RecordsData.get thy;
   463     val data = make_record_data (Symtab.update (name, info) records)
   464       sel_upd equalities extinjects extsplit splits extfields fieldext;
   465   in RecordsData.put data thy end;
   466 
   467 
   468 (* access 'sel_upd' *)
   469 
   470 val get_sel_upd = #sel_upd o RecordsData.get;
   471 
   472 val is_selector = Symtab.defined o #selectors o get_sel_upd;
   473 val get_updates = Symtab.lookup o #updates o get_sel_upd;
   474 fun get_ss_with_context getss thy = Simplifier.theory_context thy (getss (get_sel_upd thy));
   475 
   476 val get_simpset = get_ss_with_context #simpset;
   477 val get_sel_upd_defs = get_ss_with_context #defset;
   478 
   479 fun get_update_details u thy =
   480   let val sel_upd = get_sel_upd thy in
   481     (case Symtab.lookup (#updates sel_upd) u of
   482       SOME s =>
   483         let val SOME (dep, ismore) = Symtab.lookup (#selectors sel_upd) s
   484         in SOME (s, dep, ismore) end
   485     | NONE => NONE)
   486   end;
   487 
   488 fun put_sel_upd names more depth simps defs (folds, unfolds) thy =
   489   let
   490     val all = names @ [more];
   491     val sels = map (rpair (depth, false)) names @ [(more, (depth, true))];
   492     val upds = map (suffix updateN) all ~~ all;
   493 
   494     val {records, sel_upd = {selectors, updates, simpset, defset, foldcong, unfoldcong},
   495       equalities, extinjects, extsplit, splits, extfields, fieldext} = RecordsData.get thy;
   496     val data = make_record_data records
   497       {selectors = fold Symtab.update_new sels selectors,
   498         updates = fold Symtab.update_new upds updates,
   499         simpset = Simplifier.addsimps (simpset, simps),
   500         defset = Simplifier.addsimps (defset, defs),
   501         foldcong = foldcong addcongs folds,
   502         unfoldcong = unfoldcong addcongs unfolds}
   503        equalities extinjects extsplit splits extfields fieldext;
   504   in RecordsData.put data thy end;
   505 
   506 
   507 (* access 'equalities' *)
   508 
   509 fun add_record_equalities name thm thy =
   510   let
   511     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   512       RecordsData.get thy;
   513     val data = make_record_data records sel_upd
   514       (Symtab.update_new (name, thm) equalities) extinjects extsplit splits extfields fieldext;
   515   in RecordsData.put data thy end;
   516 
   517 val get_equalities = Symtab.lookup o #equalities o RecordsData.get;
   518 
   519 
   520 (* access 'extinjects' *)
   521 
   522 fun add_extinjects thm thy =
   523   let
   524     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   525       RecordsData.get thy;
   526     val data =
   527       make_record_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects)
   528         extsplit splits extfields fieldext;
   529   in RecordsData.put data thy end;
   530 
   531 val get_extinjects = rev o #extinjects o RecordsData.get;
   532 
   533 
   534 (* access 'extsplit' *)
   535 
   536 fun add_extsplit name thm thy =
   537   let
   538     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   539       RecordsData.get thy;
   540     val data = make_record_data records sel_upd
   541       equalities extinjects (Symtab.update_new (name, thm) extsplit) splits
   542       extfields fieldext;
   543   in RecordsData.put data thy end;
   544 
   545 
   546 (* access 'splits' *)
   547 
   548 fun add_record_splits name thmP thy =
   549   let
   550     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   551       RecordsData.get thy;
   552     val data = make_record_data records sel_upd
   553       equalities extinjects extsplit (Symtab.update_new (name, thmP) splits)
   554       extfields fieldext;
   555   in RecordsData.put data thy end;
   556 
   557 val get_splits = Symtab.lookup o #splits o RecordsData.get;
   558 
   559 
   560 (* parent/extension of named record *)
   561 
   562 val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o RecordsData.get);
   563 val get_extension = Option.map #extension oo (Symtab.lookup o #records o RecordsData.get);
   564 
   565 
   566 (* access 'extfields' *)
   567 
   568 fun add_extfields name fields thy =
   569   let
   570     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   571       RecordsData.get thy;
   572     val data =
   573       make_record_data records sel_upd
   574         equalities extinjects extsplit splits
   575         (Symtab.update_new (name, fields) extfields) fieldext;
   576   in RecordsData.put data thy end;
   577 
   578 val get_extfields = Symtab.lookup o #extfields o RecordsData.get;
   579 
   580 fun get_extT_fields thy T =
   581   let
   582     val ((name, Ts), moreT) = dest_recT T;
   583     val recname =
   584       let val (nm :: _ :: rst) = rev (Long_Name.explode name)   (* FIXME !? *)
   585       in Long_Name.implode (rev (nm :: rst)) end;
   586     val midx = maxidx_of_typs (moreT :: Ts);
   587     val varifyT = varifyT midx;
   588     val {records, extfields, ...} = RecordsData.get thy;
   589     val (flds, (more, _)) = split_last (Symtab.lookup_list extfields name);
   590     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
   591 
   592     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) (Vartab.empty);
   593     val flds' = map (apsnd (Envir.norm_type subst o varifyT)) flds;
   594   in (flds', (more, moreT)) end;
   595 
   596 fun get_recT_fields thy T =
   597   let
   598     val (root_flds, (root_more, root_moreT)) = get_extT_fields thy T;
   599     val (rest_flds, rest_more) =
   600       if is_recT root_moreT then get_recT_fields thy root_moreT
   601       else ([], (root_more, root_moreT));
   602   in (root_flds @ rest_flds, rest_more) end;
   603 
   604 
   605 (* access 'fieldext' *)
   606 
   607 fun add_fieldext extname_types fields thy =
   608   let
   609     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   610       RecordsData.get thy;
   611     val fieldext' =
   612       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
   613     val data =
   614       make_record_data records sel_upd equalities extinjects
   615         extsplit splits extfields fieldext';
   616   in RecordsData.put data thy end;
   617 
   618 val get_fieldext = Symtab.lookup o #fieldext o RecordsData.get;
   619 
   620 
   621 (* parent records *)
   622 
   623 fun add_parents _ NONE parents = parents
   624   | add_parents thy (SOME (types, name)) parents =
   625       let
   626         fun err msg = error (msg ^ " parent record " ^ quote name);
   627 
   628         val {args, parent, fields, extension, induct, extdef} =
   629           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   630         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   631 
   632         fun bad_inst ((x, S), T) =
   633           if Sign.of_sort thy (T, S) then NONE else SOME x
   634         val bads = map_filter bad_inst (args ~~ types);
   635         val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
   636 
   637         val inst = map fst args ~~ types;
   638         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
   639         val parent' = Option.map (apfst (map subst)) parent;
   640         val fields' = map (apsnd subst) fields;
   641         val extension' = apsnd (map subst) extension;
   642       in
   643         add_parents thy parent'
   644           (make_parent_info name fields' extension' induct extdef :: parents)
   645       end;
   646 
   647 
   648 
   649 (** concrete syntax for records **)
   650 
   651 (* decode type *)
   652 
   653 fun decode_type thy t =
   654   let
   655     fun get_sort xs n = AList.lookup (op =) xs (n: indexname) |> the_default (Sign.defaultS thy);
   656     val map_sort = Sign.intern_sort thy;
   657   in
   658     Syntax.typ_of_term (get_sort (Syntax.term_sorts map_sort t)) map_sort t
   659     |> Sign.intern_tycons thy
   660   end;
   661 
   662 
   663 (* parse translations *)
   664 
   665 fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
   666       if c = mark then Syntax.const (suffix sfx name) $ Abs ("_", dummyT, arg)
   667       else raise TERM ("gen_field_tr: " ^ mark, [t])
   668   | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);
   669 
   670 fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
   671       if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
   672       else [gen_field_tr mark sfx tm]
   673   | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];
   674 
   675 
   676 fun record_update_tr [t, u] =
   677       fold (curry op $)
   678         (gen_fields_tr @{syntax_const "_updates"} @{syntax_const "_update"} updateN u) t
   679   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   680 
   681 fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
   682   | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
   683   | update_name_tr (((c as Const (@{syntax_const "_constrain"}, _)) $ t $ ty) :: ts) =
   684       (* FIXME @{type_syntax} *)
   685       (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
   686   | update_name_tr ts = raise TERM ("update_name_tr", ts);
   687 
   688 fun dest_ext_field mark (t as (Const (c, _) $ Const (name, _) $ arg)) =
   689       if c = mark then (name, arg)
   690       else raise TERM ("dest_ext_field: " ^ mark, [t])
   691   | dest_ext_field _ t = raise TERM ("dest_ext_field", [t]);
   692 
   693 fun dest_ext_fields sep mark (trm as (Const (c, _) $ t $ u)) =
   694       if c = sep then dest_ext_field mark t :: dest_ext_fields sep mark u
   695       else [dest_ext_field mark trm]
   696   | dest_ext_fields _ mark t = [dest_ext_field mark t];
   697 
   698 fun gen_ext_fields_tr sep mark sfx more ctxt t =
   699   let
   700     val thy = ProofContext.theory_of ctxt;
   701     fun err msg = raise TERM ("error in record input: " ^ msg, [t]);
   702 
   703     val fieldargs = dest_ext_fields sep mark t;
   704     fun splitargs (field :: fields) ((name, arg) :: fargs) =
   705           if can (unsuffix name) field
   706           then
   707             let val (args, rest) = splitargs fields fargs
   708             in (arg :: args, rest) end
   709           else err ("expecting field " ^ field ^ " but got " ^ name)
   710       | splitargs [] (fargs as (_ :: _)) = ([], fargs)
   711       | splitargs (_ :: _) [] = err "expecting more fields"
   712       | splitargs _ _ = ([], []);
   713 
   714     fun mk_ext (fargs as (name, _) :: _) =
   715           (case get_fieldext thy (Sign.intern_const thy name) of
   716             SOME (ext, _) =>
   717               (case get_extfields thy ext of
   718                 SOME flds =>
   719                   let
   720                     val (args, rest) = splitargs (map fst (but_last flds)) fargs;
   721                     val more' = mk_ext rest;
   722                   in list_comb (Syntax.const (suffix sfx ext), args @ [more']) end
   723               | NONE => err ("no fields defined for " ^ ext))
   724           | NONE => err (name ^ " is no proper field"))
   725       | mk_ext [] = more;
   726   in mk_ext fieldargs end;
   727 
   728 fun gen_ext_type_tr sep mark sfx more ctxt t =
   729   let
   730     val thy = ProofContext.theory_of ctxt;
   731     fun err msg = raise TERM ("error in record-type input: " ^ msg, [t]);
   732 
   733     val fieldargs = dest_ext_fields sep mark t;
   734     fun splitargs (field :: fields) ((name, arg) :: fargs) =
   735           if can (unsuffix name) field then
   736             let val (args, rest) = splitargs fields fargs
   737             in (arg :: args, rest) end
   738           else err ("expecting field " ^ field ^ " but got " ^ name)
   739       | splitargs [] (fargs as (_ :: _)) = ([], fargs)
   740       | splitargs (_ :: _) [] = err "expecting more fields"
   741       | splitargs _ _ = ([], []);
   742 
   743     fun mk_ext (fargs as (name, _) :: _) =
   744           (case get_fieldext thy (Sign.intern_const thy name) of
   745             SOME (ext, alphas) =>
   746               (case get_extfields thy ext of
   747                 SOME flds =>
   748                  (let
   749                     val flds' = but_last flds;
   750                     val types = map snd flds';
   751                     val (args, rest) = splitargs (map fst flds') fargs;
   752                     val argtypes = map (Sign.certify_typ thy o decode_type thy) args;
   753                     val midx = fold Term.maxidx_typ argtypes 0;
   754                     val varifyT = varifyT midx;
   755                     val vartypes = map varifyT types;
   756 
   757                     val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes) Vartab.empty;
   758                     val alphas' =
   759                       map (Syntax.term_of_typ (! Syntax.show_sorts) o Envir.norm_type subst o varifyT)
   760                         (but_last alphas);
   761 
   762                     val more' = mk_ext rest;
   763                   in
   764                     list_comb (Syntax.const (suffix sfx ext), alphas' @ [more'])
   765                   end handle Type.TYPE_MATCH =>
   766                     raise err "type is no proper record (extension)")
   767               | NONE => err ("no fields defined for " ^ ext))
   768           | NONE => err (name ^ " is no proper field"))
   769       | mk_ext [] = more;
   770 
   771   in mk_ext fieldargs end;
   772 
   773 fun gen_adv_record_tr sep mark sfx unit ctxt [t] =
   774       gen_ext_fields_tr sep mark sfx unit ctxt t
   775   | gen_adv_record_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   776 
   777 fun gen_adv_record_scheme_tr sep mark sfx ctxt [t, more] =
   778       gen_ext_fields_tr sep mark sfx more ctxt t
   779   | gen_adv_record_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   780 
   781 fun gen_adv_record_type_tr sep mark sfx unit ctxt [t] =
   782       gen_ext_type_tr sep mark sfx unit ctxt t
   783   | gen_adv_record_type_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   784 
   785 fun gen_adv_record_type_scheme_tr sep mark sfx ctxt [t, more] =
   786       gen_ext_type_tr sep mark sfx more ctxt t
   787   | gen_adv_record_type_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   788 
   789 val adv_record_tr =
   790   gen_adv_record_tr @{syntax_const "_fields"} @{syntax_const "_field"} extN HOLogic.unit;
   791 
   792 val adv_record_scheme_tr =
   793   gen_adv_record_scheme_tr @{syntax_const "_fields"} @{syntax_const "_field"} extN;
   794 
   795 val adv_record_type_tr =
   796   gen_adv_record_type_tr
   797     @{syntax_const "_field_types"} @{syntax_const "_field_type"} ext_typeN
   798     (Syntax.term_of_typ false (HOLogic.unitT));
   799 
   800 val adv_record_type_scheme_tr =
   801   gen_adv_record_type_scheme_tr
   802     @{syntax_const "_field_types"} @{syntax_const "_field_type"} ext_typeN;
   803 
   804 
   805 val parse_translation =
   806  [(@{syntax_const "_record_update"}, record_update_tr),
   807   (@{syntax_const "_update_name"}, update_name_tr)];
   808 
   809 val adv_parse_translation =
   810  [(@{syntax_const "_record"}, adv_record_tr),
   811   (@{syntax_const "_record_scheme"}, adv_record_scheme_tr),
   812   (@{syntax_const "_record_type"}, adv_record_type_tr),
   813   (@{syntax_const "_record_type_scheme"}, adv_record_type_scheme_tr)];
   814 
   815 
   816 (* print translations *)
   817 
   818 val print_record_type_abbr = Unsynchronized.ref true;
   819 val print_record_type_as_fields = Unsynchronized.ref true;
   820 
   821 fun gen_field_upds_tr' mark sfx (tm as Const (name_field, _) $ k $ u) =
   822       let
   823         val t =
   824           (case k of
   825             Abs (_, _, Abs (_, _, t) $ Bound 0) =>
   826               if null (loose_bnos t) then t else raise Match
   827           | Abs (_, _, t) =>
   828               if null (loose_bnos t) then t else raise Match
   829           | _ => raise Match);
   830       in
   831         (case try (unsuffix sfx) name_field of
   832           SOME name =>
   833             apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_field_upds_tr' mark sfx u)
   834         | NONE => ([], tm))
   835       end
   836   | gen_field_upds_tr' _ _ tm = ([], tm);
   837 
   838 fun record_update_tr' tm =
   839   let val (ts, u) = gen_field_upds_tr' @{syntax_const "_update"} updateN tm in
   840     if null ts then raise Match
   841     else
   842       Syntax.const @{syntax_const "_record_update"} $ u $
   843         foldr1 (fn (v, w) => Syntax.const @{syntax_const "_updates"} $ v $ w) (rev ts)
   844   end;
   845 
   846 fun gen_field_tr' sfx tr' name =
   847   let val name_sfx = suffix sfx name
   848   in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
   849 
   850 fun record_tr' sep mark record record_scheme unit ctxt t =
   851   let
   852     val thy = ProofContext.theory_of ctxt;
   853 
   854     fun field_lst t =
   855       (case strip_comb t of
   856         (Const (ext, _), args as (_ :: _)) =>
   857           (case try (unsuffix extN) (Sign.intern_const thy ext) of
   858             SOME ext' =>
   859               (case get_extfields thy ext' of
   860                 SOME flds =>
   861                  (let
   862                     val f :: fs = but_last (map fst flds);
   863                     val flds' = Sign.extern_const thy f :: map Long_Name.base_name fs;
   864                     val (args', more) = split_last args;
   865                   in (flds' ~~ args') @ field_lst more end
   866                   handle Library.UnequalLengths => [("", t)])
   867               | NONE => [("", t)])
   868           | NONE => [("", t)])
   869        | _ => [("", t)]);
   870 
   871     val (flds, (_, more)) = split_last (field_lst t);
   872     val _ = if null flds then raise Match else ();
   873     val flds' = map (fn (n, t) => Syntax.const mark $ Syntax.const n $ t) flds;
   874     val flds'' = foldr1 (fn (x, y) => Syntax.const sep $ x $ y) flds';
   875   in
   876     if unit more
   877     then Syntax.const record $ flds''
   878     else Syntax.const record_scheme $ flds'' $ more
   879   end;
   880 
   881 fun gen_record_tr' name =
   882   let
   883     val name_sfx = suffix extN name;
   884     val unit = fn Const (@{const_syntax Product_Type.Unity}, _) => true | _ => false;
   885     fun tr' ctxt ts =
   886       record_tr' @{syntax_const "_fields"} @{syntax_const "_field"}
   887         @{syntax_const "_record"} @{syntax_const "_record_scheme"} unit ctxt
   888         (list_comb (Syntax.const name_sfx, ts));
   889   in (name_sfx, tr') end;
   890 
   891 fun print_translation names =
   892   map (gen_field_tr' updateN record_update_tr') names;
   893 
   894 
   895 (* record_type_abbr_tr' *)
   896 
   897 (*try to reconstruct the record name type abbreviation from
   898   the (nested) extension types*)
   899 fun record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt tm =
   900   let
   901     val thy = ProofContext.theory_of ctxt;
   902 
   903     (*tm is term representation of a (nested) field type. We first reconstruct the
   904       type from tm so that we can continue on the type level rather then the term level*)
   905 
   906     (* FIXME !??? *)
   907     (*WORKAROUND:
   908       If a record type occurs in an error message of type inference there
   909       may be some internal frees donoted by ??:
   910       (Const "_tfree",_) $ Free ("??'a", _).
   911 
   912       This will unfortunately be translated to Type ("??'a", []) instead of
   913       TFree ("??'a", _) by typ_of_term, which will confuse unify below.
   914       fixT works around.*)
   915     fun fixT (T as Type (x, [])) =
   916           if String.isPrefix "??'" x then TFree (x, Sign.defaultS thy) else T
   917       | fixT (Type (x, xs)) = Type (x, map fixT xs)
   918       | fixT T = T;
   919 
   920     val T = fixT (decode_type thy tm);
   921     val midx = maxidx_of_typ T;
   922     val varifyT = varifyT midx;
   923 
   924     fun mk_type_abbr subst name alphas =
   925       let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas) in
   926         Syntax.term_of_typ (! Syntax.show_sorts)
   927           (Sign.extern_typ thy (Envir.norm_type subst abbrT))
   928       end;
   929 
   930     fun match rT T = Sign.typ_match thy (varifyT rT, T) Vartab.empty;
   931   in
   932     if ! print_record_type_abbr then
   933       (case last_extT T of
   934         SOME (name, _) =>
   935           if name = lastExt then
   936            (let val subst = match schemeT T in
   937               if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree (zeta, Sign.defaultS thy))))
   938               then mk_type_abbr subst abbr alphas
   939               else mk_type_abbr subst (suffix schemeN abbr) (alphas @ [zeta])
   940             end handle Type.TYPE_MATCH => default_tr' ctxt tm)
   941           else raise Match (*give print translation of specialised record a chance*)
   942       | _ => raise Match)
   943     else default_tr' ctxt tm
   944   end;
   945 
   946 fun record_type_tr' sep mark record record_scheme ctxt t =
   947   let
   948     val thy = ProofContext.theory_of ctxt;
   949 
   950     val T = decode_type thy t;
   951     val varifyT = varifyT (Term.maxidx_of_typ T);
   952 
   953     fun term_of_type T = Syntax.term_of_typ (! Syntax.show_sorts) (Sign.extern_typ thy T);
   954 
   955     fun field_lst T =
   956       (case T of
   957         Type (ext, args) =>
   958           (case try (unsuffix ext_typeN) ext of
   959             SOME ext' =>
   960               (case get_extfields thy ext' of
   961                 SOME flds =>
   962                   (case get_fieldext thy (fst (hd flds)) of
   963                     SOME (_, alphas) =>
   964                      (let
   965                         val f :: fs = but_last flds;
   966                         val flds' = apfst (Sign.extern_const thy) f ::
   967                           map (apfst Long_Name.base_name) fs;
   968                         val (args', more) = split_last args;
   969                         val alphavars = map varifyT (but_last alphas);
   970                         val subst = fold2 (curry (Sign.typ_match thy)) alphavars args' Vartab.empty;
   971                         val flds'' = (map o apsnd) (Envir.norm_type subst o varifyT) flds';
   972                       in flds'' @ field_lst more end
   973                       handle Type.TYPE_MATCH => [("", T)]
   974                         | Library.UnequalLengths => [("", T)])
   975                   | NONE => [("", T)])
   976               | NONE => [("", T)])
   977           | NONE => [("", T)])
   978       | _ => [("", T)]);
   979 
   980     val (flds, (_, moreT)) = split_last (field_lst T);
   981     val flds' = map (fn (n, T) => Syntax.const mark $ Syntax.const n $ term_of_type T) flds;
   982     val flds'' =
   983       foldr1 (fn (x, y) => Syntax.const sep $ x $ y) flds'
   984         handle Empty => raise Match;
   985   in
   986     if not (! print_record_type_as_fields) orelse null flds then raise Match
   987     else if moreT = HOLogic.unitT then Syntax.const record $ flds''
   988     else Syntax.const record_scheme $ flds'' $ term_of_type moreT
   989   end;
   990 
   991 
   992 fun gen_record_type_tr' name =
   993   let
   994     val name_sfx = suffix ext_typeN name;
   995     fun tr' ctxt ts =
   996       record_type_tr' @{syntax_const "_field_types"} @{syntax_const "_field_type"}
   997         @{syntax_const "_record_type"} @{syntax_const "_record_type_scheme"}
   998         ctxt (list_comb (Syntax.const name_sfx, ts));
   999   in (name_sfx, tr') end;
  1000 
  1001 
  1002 fun gen_record_type_abbr_tr' abbr alphas zeta lastExt schemeT name =
  1003   let
  1004     val name_sfx = suffix ext_typeN name;
  1005     val default_tr' =
  1006       record_type_tr' @{syntax_const "_field_types"} @{syntax_const "_field_type"}
  1007         @{syntax_const "_record_type"} @{syntax_const "_record_type_scheme"};
  1008     fun tr' ctxt ts =
  1009       record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt
  1010         (list_comb (Syntax.const name_sfx, ts));
  1011   in (name_sfx, tr') end;
  1012 
  1013 
  1014 
  1015 (** record simprocs **)
  1016 
  1017 fun future_forward_prf_standard thy prf prop () =
  1018   let val thm =
  1019     if ! quick_and_dirty then Skip_Proof.make_thm thy prop
  1020     else if Goal.future_enabled () then
  1021       Goal.future_result (ProofContext.init thy) (Future.fork_pri ~1 prf) prop
  1022     else prf ()
  1023   in Drule.export_without_context thm end;
  1024 
  1025 fun prove_common immediate stndrd thy asms prop tac =
  1026   let
  1027     val prv =
  1028       if ! quick_and_dirty then Skip_Proof.prove
  1029       else if immediate orelse not (Goal.future_enabled ()) then Goal.prove
  1030       else Goal.prove_future;
  1031     val prf = prv (ProofContext.init thy) [] asms prop tac;
  1032   in if stndrd then Drule.export_without_context prf else prf end;
  1033 
  1034 val prove_future_global = prove_common false;
  1035 val prove_global = prove_common true;
  1036 
  1037 fun is_sel_upd_pair thy (Const (s, _)) (Const (u, t')) =
  1038   (case get_updates thy u of
  1039     SOME u_name => u_name = s
  1040   | NONE => raise TERM ("is_sel_upd_pair: not update", [Const (u, t')]));
  1041 
  1042 fun mk_comp f g =
  1043   let
  1044     val X = fastype_of g;
  1045     val A = domain_type X;
  1046     val B = range_type X;
  1047     val C = range_type (fastype_of f);
  1048     val T = (B --> C) --> (A --> B) --> A --> C;
  1049   in Const (@{const_name Fun.comp}, T) $ f $ g end;
  1050 
  1051 fun mk_comp_id f =
  1052   let val T = range_type (fastype_of f)
  1053   in mk_comp (Const (@{const_name Fun.id}, T --> T)) f end;
  1054 
  1055 fun get_upd_funs (upd $ _ $ t) = upd :: get_upd_funs t
  1056   | get_upd_funs _ = [];
  1057 
  1058 fun get_accupd_simps thy term defset =
  1059   let
  1060     val (acc, [body]) = strip_comb term;
  1061     val upd_funs = sort_distinct TermOrd.fast_term_ord (get_upd_funs body);
  1062     fun get_simp upd =
  1063       let
  1064         (* FIXME fresh "f" (!?) *)
  1065         val T = domain_type (fastype_of upd);
  1066         val lhs = mk_comp acc (upd $ Free ("f", T));
  1067         val rhs =
  1068           if is_sel_upd_pair thy acc upd
  1069           then mk_comp (Free ("f", T)) acc
  1070           else mk_comp_id acc;
  1071         val prop = lhs === rhs;
  1072         val othm =
  1073           Goal.prove (ProofContext.init thy) [] [] prop
  1074             (fn _ =>
  1075               simp_tac defset 1 THEN
  1076               REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1077               TRY (simp_tac (HOL_ss addsimps id_o_apps) 1));
  1078         val dest =
  1079           if is_sel_upd_pair thy acc upd
  1080           then o_eq_dest
  1081           else o_eq_id_dest;
  1082       in Drule.export_without_context (othm RS dest) end;
  1083   in map get_simp upd_funs end;
  1084 
  1085 fun get_updupd_simp thy defset u u' comp =
  1086   let
  1087     (* FIXME fresh "f" (!?) *)
  1088     val f = Free ("f", domain_type (fastype_of u));
  1089     val f' = Free ("f'", domain_type (fastype_of u'));
  1090     val lhs = mk_comp (u $ f) (u' $ f');
  1091     val rhs =
  1092       if comp
  1093       then u $ mk_comp f f'
  1094       else mk_comp (u' $ f') (u $ f);
  1095     val prop = lhs === rhs;
  1096     val othm =
  1097       Goal.prove (ProofContext.init thy) [] [] prop
  1098         (fn _ =>
  1099           simp_tac defset 1 THEN
  1100           REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1101           TRY (simp_tac (HOL_ss addsimps [id_apply]) 1));
  1102     val dest = if comp then o_eq_dest_lhs else o_eq_dest;
  1103   in Drule.export_without_context (othm RS dest) end;
  1104 
  1105 fun get_updupd_simps thy term defset =
  1106   let
  1107     val upd_funs = get_upd_funs term;
  1108     val cname = fst o dest_Const;
  1109     fun getswap u u' = get_updupd_simp thy defset u u' (cname u = cname u');
  1110     fun build_swaps_to_eq _ [] swaps = swaps
  1111       | build_swaps_to_eq upd (u :: us) swaps =
  1112           let
  1113             val key = (cname u, cname upd);
  1114             val newswaps =
  1115               if Symreltab.defined swaps key then swaps
  1116               else Symreltab.insert (K true) (key, getswap u upd) swaps;
  1117           in
  1118             if cname u = cname upd then newswaps
  1119             else build_swaps_to_eq upd us newswaps
  1120           end;
  1121     fun swaps_needed [] _ _ swaps = map snd (Symreltab.dest swaps)
  1122       | swaps_needed (u :: us) prev seen swaps =
  1123           if Symtab.defined seen (cname u)
  1124           then swaps_needed us prev seen (build_swaps_to_eq u prev swaps)
  1125           else swaps_needed us (u :: prev) (Symtab.insert (K true) (cname u, ()) seen) swaps;
  1126   in swaps_needed upd_funs [] Symtab.empty Symreltab.empty end;
  1127 
  1128 val named_cterm_instantiate = Iso_Tuple_Support.named_cterm_instantiate;
  1129 
  1130 fun prove_unfold_defs thy ex_simps ex_simprs prop =
  1131   let
  1132     val defset = get_sel_upd_defs thy;
  1133     val prop' = Envir.beta_eta_contract prop;
  1134     val (lhs, _) = Logic.dest_equals (Logic.strip_assums_concl prop');
  1135     val (_, args) = strip_comb lhs;
  1136     val simps = (if length args = 1 then get_accupd_simps else get_updupd_simps) thy lhs defset;
  1137   in
  1138     Goal.prove (ProofContext.init thy) [] [] prop'
  1139       (fn _ =>
  1140         simp_tac (HOL_basic_ss addsimps (simps @ [K_record_comp])) 1 THEN
  1141         TRY (simp_tac (HOL_basic_ss addsimps ex_simps addsimprocs ex_simprs) 1))
  1142   end;
  1143 
  1144 
  1145 local
  1146 
  1147 fun eq (s1: string) (s2: string) = (s1 = s2);
  1148 
  1149 fun has_field extfields f T =
  1150   exists (fn (eN, _) => exists (eq f o fst) (Symtab.lookup_list extfields eN)) (dest_recTs T);
  1151 
  1152 fun K_skeleton n (T as Type (_, [_, kT])) (b as Bound i) (Abs (x, xT, t)) =
  1153       if null (loose_bnos t) then ((n, kT), (Abs (x, xT, Bound (i + 1)))) else ((n, T), b)
  1154   | K_skeleton n T b _ = ((n, T), b);
  1155 
  1156 in
  1157 
  1158 (* record_simproc *)
  1159 
  1160 (*
  1161   Simplify selections of an record update:
  1162     (1)  S (S_update k r) = k (S r)
  1163     (2)  S (X_update k r) = S r
  1164 
  1165   The simproc skips multiple updates at once, eg:
  1166    S (X_update x (Y_update y (S_update k r))) = k (S r)
  1167 
  1168   But be careful in (2) because of the extensibility of records.
  1169   - If S is a more-selector we have to make sure that the update on component
  1170     X does not affect the selected subrecord.
  1171   - If X is a more-selector we have to make sure that S is not in the updated
  1172     subrecord.
  1173 *)
  1174 val record_simproc =
  1175   Simplifier.simproc @{theory HOL} "record_simp" ["x"]
  1176     (fn thy => fn _ => fn t =>
  1177       (case t of
  1178         (sel as Const (s, Type (_, [_, rangeS]))) $
  1179             ((upd as Const (u, Type (_, [_, Type (_, [rT, _])]))) $ k $ r) =>
  1180           if is_selector thy s andalso is_some (get_updates thy u) then
  1181             let
  1182               val {sel_upd = {updates, ...}, extfields, ...} = RecordsData.get thy;
  1183 
  1184               fun mk_eq_terms ((upd as Const (u, Type(_, [kT, _]))) $ k $ r) =
  1185                     (case Symtab.lookup updates u of
  1186                       NONE => NONE
  1187                     | SOME u_name =>
  1188                         if u_name = s then
  1189                           (case mk_eq_terms r of
  1190                             NONE =>
  1191                               let
  1192                                 val rv = ("r", rT);
  1193                                 val rb = Bound 0;
  1194                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1195                               in SOME (upd $ kb $ rb, kb $ (sel $ rb), [kv, rv]) end
  1196                           | SOME (trm, trm', vars) =>
  1197                               let
  1198                                 val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k;
  1199                               in SOME (upd $ kb $ trm, kb $ trm', kv :: vars) end)
  1200                         else if has_field extfields u_name rangeS orelse
  1201                           has_field extfields s (domain_type kT) then NONE
  1202                         else
  1203                           (case mk_eq_terms r of
  1204                             SOME (trm, trm', vars) =>
  1205                               let val (kv, kb) = K_skeleton "k" kT (Bound (length vars)) k
  1206                               in SOME (upd $ kb $ trm, trm', kv :: vars) end
  1207                           | NONE =>
  1208                               let
  1209                                 val rv = ("r", rT);
  1210                                 val rb = Bound 0;
  1211                                 val (kv, kb) = K_skeleton "k" kT (Bound 1) k;
  1212                               in SOME (upd $ kb $ rb, sel $ rb, [kv, rv]) end))
  1213                 | mk_eq_terms _ = NONE;
  1214             in
  1215               (case mk_eq_terms (upd $ k $ r) of
  1216                 SOME (trm, trm', vars) =>
  1217                   SOME
  1218                     (prove_unfold_defs thy [] []
  1219                       (list_all (vars, Logic.mk_equals (sel $ trm, trm'))))
  1220               | NONE => NONE)
  1221             end
  1222           else NONE
  1223       | _ => NONE));
  1224 
  1225 fun get_upd_acc_cong_thm upd acc thy simpset =
  1226   let
  1227     val insts = [("upd", cterm_of thy upd), ("acc", cterm_of thy acc)];
  1228     val prop = Thm.concl_of (named_cterm_instantiate insts updacc_cong_triv);
  1229   in
  1230     Goal.prove (ProofContext.init thy) [] [] prop
  1231       (fn _ =>
  1232         simp_tac simpset 1 THEN
  1233         REPEAT_DETERM (Iso_Tuple_Support.iso_tuple_intros_tac 1) THEN
  1234         TRY (resolve_tac [updacc_cong_idI] 1))
  1235   end;
  1236 
  1237 
  1238 (* record_upd_simproc *)
  1239 
  1240 (*Simplify multiple updates:
  1241     (1) "N_update y (M_update g (N_update x (M_update f r))) =
  1242           (N_update (y o x) (M_update (g o f) r))"
  1243     (2)  "r(|M:= M r|) = r"
  1244 
  1245   In both cases "more" updates complicate matters: for this reason
  1246   we omit considering further updates if doing so would introduce
  1247   both a more update and an update to a field within it.*)
  1248 val record_upd_simproc =
  1249   Simplifier.simproc @{theory HOL} "record_upd_simp" ["x"]
  1250     (fn thy => fn _ => fn t =>
  1251       let
  1252         (*We can use more-updators with other updators as long
  1253           as none of the other updators go deeper than any more
  1254           updator. min here is the depth of the deepest other
  1255           updator, max the depth of the shallowest more updator.*)
  1256         fun include_depth (dep, true) (min, max) =
  1257               if min <= dep
  1258               then SOME (min, if dep <= max orelse max = ~1 then dep else max)
  1259               else NONE
  1260           | include_depth (dep, false) (min, max) =
  1261               if dep <= max orelse max = ~1
  1262               then SOME (if min <= dep then dep else min, max)
  1263               else NONE;
  1264 
  1265         fun getupdseq (term as (upd as Const (u, _)) $ f $ tm) min max =
  1266               (case get_update_details u thy of
  1267                 SOME (s, dep, ismore) =>
  1268                   (case include_depth (dep, ismore) (min, max) of
  1269                     SOME (min', max') =>
  1270                       let val (us, bs, _) = getupdseq tm min' max'
  1271                       in ((upd, s, f) :: us, bs, fastype_of term) end
  1272                   | NONE => ([], term, HOLogic.unitT))
  1273               | NONE => ([], term, HOLogic.unitT))
  1274           | getupdseq term _ _ = ([], term, HOLogic.unitT);
  1275 
  1276         val (upds, base, baseT) = getupdseq t 0 ~1;
  1277 
  1278         fun is_upd_noop s (Abs (n, T, Const (s', T') $ tm')) tm =
  1279               if s = s' andalso null (loose_bnos tm')
  1280                 andalso subst_bound (HOLogic.unit, tm') = tm
  1281               then (true, Abs (n, T, Const (s', T') $ Bound 1))
  1282               else (false, HOLogic.unit)
  1283           | is_upd_noop _ _ _ = (false, HOLogic.unit);
  1284 
  1285         fun get_noop_simps (upd as Const _) (Abs (_, _, (acc as Const _) $ _)) =
  1286           let
  1287             val ss = get_sel_upd_defs thy;
  1288             val uathm = get_upd_acc_cong_thm upd acc thy ss;
  1289           in
  1290            [Drule.export_without_context (uathm RS updacc_noopE),
  1291             Drule.export_without_context (uathm RS updacc_noop_compE)]
  1292           end;
  1293 
  1294         (*If f is constant then (f o g) = f.  We know that K_skeleton
  1295           only returns constant abstractions thus when we see an
  1296           abstraction we can discard inner updates.*)
  1297         fun add_upd (f as Abs _) fs = [f]
  1298           | add_upd f fs = (f :: fs);
  1299 
  1300         (*mk_updterm returns
  1301           (orig-term-skeleton, simplified-skeleton,
  1302             variables, duplicate-updates, simp-flag, noop-simps)
  1303 
  1304           where duplicate-updates is a table used to pass upward
  1305           the list of update functions which can be composed
  1306           into an update above them, simp-flag indicates whether
  1307           any simplification was achieved, and noop-simps are
  1308           used for eliminating case (2) defined above*)
  1309         fun mk_updterm ((upd as Const (u, T), s, f) :: upds) above term =
  1310               let
  1311                 val (lhs, rhs, vars, dups, simp, noops) =
  1312                   mk_updterm upds (Symtab.update (u, ()) above) term;
  1313                 val (fvar, skelf) =
  1314                   K_skeleton (Long_Name.base_name s) (domain_type T) (Bound (length vars)) f;
  1315                 val (isnoop, skelf') = is_upd_noop s f term;
  1316                 val funT = domain_type T;
  1317                 fun mk_comp_local (f, f') =
  1318                   Const (@{const_name Fun.comp}, funT --> funT --> funT) $ f $ f';
  1319               in
  1320                 if isnoop then
  1321                   (upd $ skelf' $ lhs, rhs, vars,
  1322                     Symtab.update (u, []) dups, true,
  1323                     if Symtab.defined noops u then noops
  1324                     else Symtab.update (u, get_noop_simps upd skelf') noops)
  1325                 else if Symtab.defined above u then
  1326                   (upd $ skelf $ lhs, rhs, fvar :: vars,
  1327                     Symtab.map_default (u, []) (add_upd skelf) dups,
  1328                     true, noops)
  1329                 else
  1330                   (case Symtab.lookup dups u of
  1331                     SOME fs =>
  1332                      (upd $ skelf $ lhs,
  1333                       upd $ foldr1 mk_comp_local (add_upd skelf fs) $ rhs,
  1334                       fvar :: vars, dups, true, noops)
  1335                   | NONE => (upd $ skelf $ lhs, upd $ skelf $ rhs, fvar :: vars, dups, simp, noops))
  1336               end
  1337           | mk_updterm [] _ _ =
  1338               (Bound 0, Bound 0, [("r", baseT)], Symtab.empty, false, Symtab.empty)
  1339           | mk_updterm us _ _ = raise TERM ("mk_updterm match", map (fn (x, _, _) => x) us);
  1340 
  1341         val (lhs, rhs, vars, _, simp, noops) = mk_updterm upds Symtab.empty base;
  1342         val noops' = maps snd (Symtab.dest noops);
  1343       in
  1344         if simp then
  1345           SOME
  1346             (prove_unfold_defs thy noops' [record_simproc]
  1347               (list_all (vars, Logic.mk_equals (lhs, rhs))))
  1348         else NONE
  1349       end);
  1350 
  1351 end;
  1352 
  1353 
  1354 (* record_eq_simproc *)
  1355 
  1356 (*Look up the most specific record-equality.
  1357 
  1358  Note on efficiency:
  1359  Testing equality of records boils down to the test of equality of all components.
  1360  Therefore the complexity is: #components * complexity for single component.
  1361  Especially if a record has a lot of components it may be better to split up
  1362  the record first and do simplification on that (record_split_simp_tac).
  1363  e.g. r(|lots of updates|) = x
  1364 
  1365              record_eq_simproc          record_split_simp_tac
  1366  Complexity: #components * #updates     #updates
  1367 *)
  1368 val record_eq_simproc =
  1369   Simplifier.simproc @{theory HOL} "record_eq_simp" ["r = s"]
  1370     (fn thy => fn _ => fn t =>
  1371       (case t of Const (@{const_name "op ="}, Type (_, [T, _])) $ _ $ _ =>
  1372         (case rec_id ~1 T of
  1373           "" => NONE
  1374         | name =>
  1375             (case get_equalities thy name of
  1376               NONE => NONE
  1377             | SOME thm => SOME (thm RS Eq_TrueI)))
  1378       | _ => NONE));
  1379 
  1380 
  1381 (* record_split_simproc *)
  1382 
  1383 (*Split quantified occurrences of records, for which P holds.  P can peek on the
  1384   subterm starting at the quantified occurrence of the record (including the quantifier):
  1385     P t = 0: do not split
  1386     P t = ~1: completely split
  1387     P t > 0: split up to given bound of record extensions.*)
  1388 fun record_split_simproc P =
  1389   Simplifier.simproc @{theory HOL} "record_split_simp" ["x"]
  1390     (fn thy => fn _ => fn t =>
  1391       (case t of
  1392         Const (quantifier, Type (_, [Type (_, [T, _]), _])) $ _ =>
  1393           if quantifier = @{const_name All} orelse
  1394             quantifier = @{const_name all} orelse
  1395             quantifier = @{const_name Ex}
  1396           then
  1397             (case rec_id ~1 T of
  1398               "" => NONE
  1399             | _ =>
  1400                 let val split = P t in
  1401                   if split <> 0 then
  1402                     (case get_splits thy (rec_id split T) of
  1403                       NONE => NONE
  1404                     | SOME (all_thm, All_thm, Ex_thm, _) =>
  1405                         SOME
  1406                           (case quantifier of
  1407                             @{const_name all} => all_thm
  1408                           | @{const_name All} => All_thm RS eq_reflection
  1409                           | @{const_name Ex} => Ex_thm RS eq_reflection
  1410                           | _ => error "record_split_simproc"))
  1411                   else NONE
  1412                 end)
  1413           else NONE
  1414       | _ => NONE));
  1415 
  1416 val record_ex_sel_eq_simproc =
  1417   Simplifier.simproc @{theory HOL} "record_ex_sel_eq_simproc" ["Ex t"]
  1418     (fn thy => fn ss => fn t =>
  1419       let
  1420         fun prove prop =
  1421           prove_global true thy [] prop
  1422             (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
  1423                 addsimps simp_thms addsimprocs [record_split_simproc (K ~1)]) 1);
  1424 
  1425         fun mkeq (lr, Teq, (sel, Tsel), x) i =
  1426           if is_selector thy sel then
  1427             let
  1428               val x' =
  1429                 if not (loose_bvar1 (x, 0))
  1430                 then Free ("x" ^ string_of_int i, range_type Tsel)
  1431                 else raise TERM ("", [x]);
  1432               val sel' = Const (sel, Tsel) $ Bound 0;
  1433               val (l, r) = if lr then (sel', x') else (x', sel');
  1434             in Const (@{const_name "op ="}, Teq) $ l $ r end
  1435           else raise TERM ("", [Const (sel, Tsel)]);
  1436 
  1437         fun dest_sel_eq (Const (@{const_name "op ="}, Teq) $ (Const (sel, Tsel) $ Bound 0) $ X) =
  1438               (true, Teq, (sel, Tsel), X)
  1439           | dest_sel_eq (Const (@{const_name "op ="}, Teq) $ X $ (Const (sel, Tsel) $ Bound 0)) =
  1440               (false, Teq, (sel, Tsel), X)
  1441           | dest_sel_eq _ = raise TERM ("", []);
  1442       in
  1443         (case t of
  1444           Const (@{const_name Ex}, Tex) $ Abs (s, T, t) =>
  1445            (let
  1446              val eq = mkeq (dest_sel_eq t) 0;
  1447              val prop =
  1448                list_all ([("r", T)],
  1449                  Logic.mk_equals
  1450                   (Const (@{const_name Ex}, Tex) $ Abs (s, T, eq), HOLogic.true_const));
  1451             in SOME (prove prop) end
  1452             handle TERM _ => NONE)
  1453         | _ => NONE)
  1454       end);
  1455 
  1456 
  1457 (* record_split_simp_tac *)
  1458 
  1459 (*Split (and simplify) all records in the goal for which P holds.
  1460   For quantified occurrences of a record
  1461   P can peek on the whole subterm (including the quantifier); for free variables P
  1462   can only peek on the variable itself.
  1463   P t = 0: do not split
  1464   P t = ~1: completely split
  1465   P t > 0: split up to given bound of record extensions.*)
  1466 fun record_split_simp_tac thms P = CSUBGOAL (fn (cgoal, i) =>
  1467   let
  1468     val thy = Thm.theory_of_cterm cgoal;
  1469 
  1470     val goal = term_of cgoal;
  1471     val frees = filter (is_recT o #2) (Term.add_frees goal []);
  1472 
  1473     val has_rec = exists_Const
  1474       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1475           (s = @{const_name all} orelse s = @{const_name All} orelse s = @{const_name Ex}) andalso
  1476           is_recT T
  1477         | _ => false);
  1478 
  1479     fun mk_split_free_tac free induct_thm i =
  1480       let
  1481         val cfree = cterm_of thy free;
  1482         val _$ (_ $ r) = concl_of induct_thm;
  1483         val crec = cterm_of thy r;
  1484         val thm = cterm_instantiate [(crec, cfree)] induct_thm;
  1485       in
  1486         simp_tac (HOL_basic_ss addsimps @{thms induct_atomize}) i THEN
  1487         rtac thm i THEN
  1488         simp_tac (HOL_basic_ss addsimps @{thms induct_rulify}) i
  1489       end;
  1490 
  1491     val split_frees_tacs =
  1492       frees |> map_filter (fn (x, T) =>
  1493         (case rec_id ~1 T of
  1494           "" => NONE
  1495         | _ =>
  1496             let
  1497               val free = Free (x, T);
  1498               val split = P free;
  1499             in
  1500               if split <> 0 then
  1501                 (case get_splits thy (rec_id split T) of
  1502                   NONE => NONE
  1503                 | SOME (_, _, _, induct_thm) =>
  1504                     SOME (mk_split_free_tac free induct_thm i))
  1505               else NONE
  1506             end));
  1507 
  1508     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1509     val thms' = K_comp_convs @ thms;
  1510   in
  1511     EVERY split_frees_tacs THEN
  1512     Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i
  1513   end);
  1514 
  1515 
  1516 (* record_split_tac *)
  1517 
  1518 (*Split all records in the goal, which are quantified by ALL or !!.*)
  1519 val record_split_tac = CSUBGOAL (fn (cgoal, i) =>
  1520   let
  1521     val goal = term_of cgoal;
  1522 
  1523     val has_rec = exists_Const
  1524       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1525           (s = @{const_name All} orelse s = @{const_name all}) andalso is_recT T
  1526         | _ => false);
  1527 
  1528     fun is_all t =
  1529       (case t of
  1530         Const (quantifier, _) $ _ =>
  1531           if quantifier = @{const_name All} orelse quantifier = @{const_name all} then ~1 else 0
  1532       | _ => 0);
  1533   in
  1534     if has_rec goal then
  1535       Simplifier.full_simp_tac (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i
  1536     else no_tac
  1537   end);
  1538 
  1539 
  1540 (* wrapper *)
  1541 
  1542 val record_split_name = "record_split_tac";
  1543 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1544 
  1545 
  1546 
  1547 (** theory extender interface **)
  1548 
  1549 (* prepare arguments *)
  1550 
  1551 fun read_raw_parent ctxt raw_T =
  1552   (case ProofContext.read_typ_abbrev ctxt raw_T of
  1553     Type (name, Ts) => (Ts, name)
  1554   | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
  1555 
  1556 fun read_typ ctxt raw_T env =
  1557   let
  1558     val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
  1559     val T = Syntax.read_typ ctxt' raw_T;
  1560     val env' = OldTerm.add_typ_tfrees (T, env);
  1561   in (T, env') end;
  1562 
  1563 fun cert_typ ctxt raw_T env =
  1564   let
  1565     val thy = ProofContext.theory_of ctxt;
  1566     val T = Type.no_tvars (Sign.certify_typ thy raw_T)
  1567       handle TYPE (msg, _, _) => error msg;
  1568     val env' = OldTerm.add_typ_tfrees (T, env);
  1569   in (T, env') end;
  1570 
  1571 
  1572 (* attributes *)
  1573 
  1574 fun case_names_fields x = Rule_Cases.case_names ["fields"] x;
  1575 fun induct_type_global name = [case_names_fields, Induct.induct_type name];
  1576 fun cases_type_global name = [case_names_fields, Induct.cases_type name];
  1577 
  1578 
  1579 (* tactics *)
  1580 
  1581 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1582 
  1583 (*Do case analysis / induction according to rule on last parameter of ith subgoal
  1584   (or on s if there are no parameters).
  1585   Instatiation of record variable (and predicate) in rule is calculated to
  1586   avoid problems with higher order unification.*)
  1587 fun try_param_tac s rule = CSUBGOAL (fn (cgoal, i) =>
  1588   let
  1589     val cert = Thm.cterm_of (Thm.theory_of_cterm cgoal);
  1590 
  1591     val g = Thm.term_of cgoal;
  1592     val params = Logic.strip_params g;
  1593     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1594     val rule' = Thm.lift_rule cgoal rule;
  1595     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1596       (Logic.strip_assums_concl (prop_of rule')));
  1597     (*ca indicates if rule is a case analysis or induction rule*)
  1598     val (x, ca) =
  1599       (case rev (drop (length params) ys) of
  1600         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1601           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1602       | [x] => (head_of x, false));
  1603     val rule'' = cterm_instantiate (map (pairself cert)
  1604       (case rev params of
  1605         [] =>
  1606           (case AList.lookup (op =) (Term.add_frees g []) s of
  1607             NONE => sys_error "try_param_tac: no such variable"
  1608           | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl), (x, Free (s, T))])
  1609       | (_, T) :: _ =>
  1610           [(P, list_abs (params, if ca then concl else incr_boundvars 1 (Abs (s, T, concl)))),
  1611             (x, list_abs (params, Bound 0))])) rule';
  1612   in compose_tac (false, rule'', nprems_of rule) i end);
  1613 
  1614 
  1615 fun extension_definition name fields alphas zeta moreT more vars thy =
  1616   let
  1617     val base = Long_Name.base_name;
  1618     val fieldTs = map snd fields;
  1619     val alphas_zeta = alphas @ [zeta];
  1620     val alphas_zetaTs = map (fn a => TFree (a, HOLogic.typeS)) alphas_zeta;
  1621     val extT_name = suffix ext_typeN name
  1622     val extT = Type (extT_name, alphas_zetaTs);
  1623     val fields_moreTs = fieldTs @ [moreT];
  1624 
  1625 
  1626     (*before doing anything else, create the tree of new types
  1627       that will back the record extension*)
  1628 
  1629     val mktreeV = Balanced_Tree.make Iso_Tuple_Support.mk_cons_tuple;
  1630 
  1631     fun mk_iso_tuple (left, right) (thy, i) =
  1632       let
  1633         val suff = if i = 0 then ext_typeN else inner_typeN ^ string_of_int i;
  1634         val nm = suffix suff (Long_Name.base_name name);
  1635         val ((_, cons), thy') =
  1636           Iso_Tuple_Support.add_iso_tuple_type
  1637             (nm, alphas_zeta) (fastype_of left, fastype_of right) thy;
  1638       in
  1639         (cons $ left $ right, (thy', i + 1))
  1640       end;
  1641 
  1642     (*trying to create a 1-element iso_tuple will fail, and is pointless anyway*)
  1643     fun mk_even_iso_tuple [arg] = pair arg
  1644       | mk_even_iso_tuple args = mk_iso_tuple (Iso_Tuple_Support.dest_cons_tuple (mktreeV args));
  1645 
  1646     fun build_meta_tree_type i thy vars more =
  1647       let val len = length vars in
  1648         if len < 1 then raise TYPE ("meta_tree_type args too short", [], vars)
  1649         else if len > 16 then
  1650           let
  1651             fun group16 [] = []
  1652               | group16 xs = take 16 xs :: group16 (drop 16 xs);
  1653             val vars' = group16 vars;
  1654             val (composites, (thy', i')) = fold_map mk_even_iso_tuple vars' (thy, i);
  1655           in
  1656             build_meta_tree_type i' thy' composites more
  1657           end
  1658         else
  1659           let val (term, (thy', _)) = mk_iso_tuple (mktreeV vars, more) (thy, 0)
  1660           in (term, thy') end
  1661       end;
  1662 
  1663     val _ = timing_msg "record extension preparing definitions";
  1664 
  1665 
  1666     (* 1st stage part 1: introduce the tree of new types *)
  1667 
  1668     fun get_meta_tree () = build_meta_tree_type 1 thy vars more;
  1669     val (ext_body, typ_thy) =
  1670       timeit_msg "record extension nested type def:" get_meta_tree;
  1671 
  1672 
  1673     (* prepare declarations and definitions *)
  1674 
  1675     (*fields constructor*)
  1676     val ext_decl = mk_extC (name, extT) fields_moreTs;
  1677     val ext_spec = list_comb (Const ext_decl, vars @ [more]) :== ext_body;
  1678 
  1679     fun mk_ext args = list_comb (Const ext_decl, args);
  1680 
  1681 
  1682     (* 1st stage part 2: define the ext constant *)
  1683 
  1684     fun mk_defs () =
  1685       typ_thy
  1686       |> Sign.add_consts_i [Syntax.no_syn (apfst (Binding.name o base) ext_decl)]
  1687       |> PureThy.add_defs false [Thm.no_attributes (apfst Binding.name ext_spec)]
  1688       ||> Theory.checkpoint
  1689     val ([ext_def], defs_thy) =
  1690       timeit_msg "record extension constructor def:" mk_defs;
  1691 
  1692 
  1693     (* prepare propositions *)
  1694 
  1695     val _ = timing_msg "record extension preparing propositions";
  1696     val vars_more = vars @ [more];
  1697     val variants = map (fn Free (x, _) => x) vars_more;
  1698     val ext = mk_ext vars_more;
  1699     val s = Free (rN, extT);
  1700     val P = Free (Name.variant variants "P", extT --> HOLogic.boolT);
  1701 
  1702     val inject_prop =
  1703       let val vars_more' = map (fn (Free (x, T)) => Free (x ^ "'", T)) vars_more in
  1704         HOLogic.mk_conj (HOLogic.eq_const extT $
  1705           mk_ext vars_more $ mk_ext vars_more', HOLogic.true_const)
  1706         ===
  1707         foldr1 HOLogic.mk_conj
  1708           (map HOLogic.mk_eq (vars_more ~~ vars_more') @ [HOLogic.true_const])
  1709       end;
  1710 
  1711     val induct_prop =
  1712       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1713 
  1714     val split_meta_prop =
  1715       let val P = Free (Name.variant variants "P", extT --> Term.propT) in
  1716         Logic.mk_equals
  1717          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1718       end;
  1719 
  1720     val prove_standard = prove_future_global true defs_thy;
  1721 
  1722     fun inject_prf () =
  1723       simplify HOL_ss
  1724         (prove_standard [] inject_prop
  1725           (fn _ =>
  1726             simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1727             REPEAT_DETERM
  1728               (rtac refl_conj_eq 1 ORELSE
  1729                 Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  1730                 rtac refl 1)));
  1731 
  1732     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1733 
  1734     (*We need a surjection property r = (| f = f r, g = g r ... |)
  1735       to prove other theorems. We haven't given names to the accessors
  1736       f, g etc yet however, so we generate an ext structure with
  1737       free variables as all arguments and allow the introduction tactic to
  1738       operate on it as far as it can. We then use Drule.export_without_context
  1739       to convert the free variables into unifiable variables and unify them with
  1740       (roughly) the definition of the accessor.*)
  1741     fun surject_prf () =
  1742       let
  1743         val cterm_ext = cterm_of defs_thy ext;
  1744         val start = named_cterm_instantiate [("y", cterm_ext)] surject_assist_idE;
  1745         val tactic1 =
  1746           simp_tac (HOL_basic_ss addsimps [ext_def]) 1 THEN
  1747           REPEAT_ALL_NEW Iso_Tuple_Support.iso_tuple_intros_tac 1;
  1748         val tactic2 = REPEAT (rtac surject_assistI 1 THEN rtac refl 1);
  1749         val [halfway] = Seq.list_of (tactic1 start);
  1750         val [surject] = Seq.list_of (tactic2 (Drule.export_without_context halfway));
  1751       in
  1752         surject
  1753       end;
  1754     val surject = timeit_msg "record extension surjective proof:" surject_prf;
  1755 
  1756     fun split_meta_prf () =
  1757       prove_standard [] split_meta_prop
  1758         (fn _ =>
  1759           EVERY1
  1760            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  1761             etac meta_allE, atac,
  1762             rtac (prop_subst OF [surject]),
  1763             REPEAT o etac meta_allE, atac]);
  1764     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1765 
  1766     fun induct_prf () =
  1767       let val (assm, concl) = induct_prop in
  1768         prove_standard [assm] concl
  1769           (fn {prems, ...} =>
  1770             cut_rules_tac [split_meta RS Drule.equal_elim_rule2] 1 THEN
  1771             resolve_tac prems 2 THEN
  1772             asm_simp_tac HOL_ss 1)
  1773       end;
  1774     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1775 
  1776     val ([inject', induct', surjective', split_meta'], thm_thy) =
  1777       defs_thy
  1778       |> PureThy.add_thms (map (Thm.no_attributes o apfst Binding.name)
  1779            [("ext_inject", inject),
  1780             ("ext_induct", induct),
  1781             ("ext_surjective", surject),
  1782             ("ext_split", split_meta)])
  1783       ||> Code.add_default_eqn ext_def;
  1784 
  1785   in (thm_thy, extT, induct', inject', split_meta', ext_def) end;
  1786 
  1787 fun chunks [] [] = []
  1788   | chunks [] xs = [xs]
  1789   | chunks (l :: ls) xs = take l xs :: chunks ls (drop l xs);
  1790 
  1791 fun chop_last [] = error "chop_last: list should not be empty"
  1792   | chop_last [x] = ([], x)
  1793   | chop_last (x :: xs) = let val (tl, l) = chop_last xs in (x :: tl, l) end;
  1794 
  1795 fun subst_last _ [] = error "subst_last: list should not be empty"
  1796   | subst_last s [_] = [s]
  1797   | subst_last s (x :: xs) = x :: subst_last s xs;
  1798 
  1799 
  1800 (* mk_recordT *)
  1801 
  1802 (*builds up the record type from the current extension tpye extT and a list
  1803   of parent extensions, starting with the root of the record hierarchy*)
  1804 fun mk_recordT extT =
  1805   fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
  1806 
  1807 
  1808 fun obj_to_meta_all thm =
  1809   let
  1810     fun E thm =  (* FIXME proper name *)
  1811       (case (SOME (spec OF [thm]) handle THM _ => NONE) of
  1812         SOME thm' => E thm'
  1813       | NONE => thm);
  1814     val th1 = E thm;
  1815     val th2 = Drule.forall_intr_vars th1;
  1816   in th2 end;
  1817 
  1818 fun meta_to_obj_all thm =
  1819   let
  1820     val thy = Thm.theory_of_thm thm;
  1821     val prop = Thm.prop_of thm;
  1822     val params = Logic.strip_params prop;
  1823     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1824     val ct = cterm_of thy (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1825     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1826   in Thm.implies_elim thm' thm end;
  1827 
  1828 
  1829 (* record_definition *)
  1830 
  1831 fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy =
  1832   let
  1833     val external_names = Name_Space.external_names (Sign.naming_of thy);
  1834 
  1835     val alphas = map fst args;
  1836     val name = Sign.full_bname thy bname;
  1837     val full = Sign.full_bname_path thy bname;
  1838     val base = Long_Name.base_name;
  1839 
  1840     val (bfields, field_syntax) =
  1841       split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
  1842 
  1843     val parent_fields = maps #fields parents;
  1844     val parent_chunks = map (length o #fields) parents;
  1845     val parent_names = map fst parent_fields;
  1846     val parent_types = map snd parent_fields;
  1847     val parent_fields_len = length parent_fields;
  1848     val parent_variants = Name.variant_list [moreN, rN, rN ^ "'", wN] (map base parent_names);
  1849     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1850     val parent_len = length parents;
  1851 
  1852     val fields = map (apfst full) bfields;
  1853     val names = map fst fields;
  1854     val extN = full bname;
  1855     val types = map snd fields;
  1856     val alphas_fields = fold Term.add_tfree_namesT types [];
  1857     val alphas_ext = inter (op =) alphas_fields alphas;
  1858     val len = length fields;
  1859     val variants =
  1860       Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants)
  1861         (map fst bfields);
  1862     val vars = ListPair.map Free (variants, types);
  1863     val named_vars = names ~~ vars;
  1864     val idxms = 0 upto len;
  1865 
  1866     val all_fields = parent_fields @ fields;
  1867     val all_types = parent_types @ types;
  1868     val all_variants = parent_variants @ variants;
  1869     val all_vars = parent_vars @ vars;
  1870     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1871 
  1872 
  1873     val zeta = Name.variant alphas "'z";
  1874     val moreT = TFree (zeta, HOLogic.typeS);
  1875     val more = Free (moreN, moreT);
  1876     val full_moreN = full moreN;
  1877     val bfields_more = bfields @ [(moreN, moreT)];
  1878     val fields_more = fields @ [(full_moreN, moreT)];
  1879     val named_vars_more = named_vars @ [(full_moreN, more)];
  1880     val all_vars_more = all_vars @ [more];
  1881     val all_named_vars_more = all_named_vars @ [(full_moreN, more)];
  1882 
  1883 
  1884     (* 1st stage: extension_thy *)
  1885 
  1886     val (extension_thy, extT, ext_induct, ext_inject, ext_split, ext_def) =
  1887       thy
  1888       |> Sign.add_path bname
  1889       |> extension_definition extN fields alphas_ext zeta moreT more vars;
  1890 
  1891     val _ = timing_msg "record preparing definitions";
  1892     val Type extension_scheme = extT;
  1893     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1894     val extension = let val (n, Ts) = extension_scheme in (n, subst_last HOLogic.unitT Ts) end;
  1895     val extension_names = map (unsuffix ext_typeN o fst o #extension) parents @ [extN];
  1896     val extension_id = implode extension_names;
  1897 
  1898     fun rec_schemeT n = mk_recordT (map #extension (drop n parents)) extT;
  1899     val rec_schemeT0 = rec_schemeT 0;
  1900 
  1901     fun recT n =
  1902       let val (c, Ts) = extension in
  1903         mk_recordT (map #extension (drop n parents))
  1904           (Type (c, subst_last HOLogic.unitT Ts))
  1905       end;
  1906     val recT0 = recT 0;
  1907 
  1908     fun mk_rec args n =
  1909       let
  1910         val (args', more) = chop_last args;
  1911         fun mk_ext' ((name, T), args) more = mk_ext (name, T) (args @ [more]);
  1912         fun build Ts =
  1913           fold_rev mk_ext' (drop n ((extension_names ~~ Ts) ~~ chunks parent_chunks args'))
  1914             more;
  1915       in
  1916         if more = HOLogic.unit
  1917         then build (map_range recT (parent_len + 1))
  1918         else build (map_range rec_schemeT (parent_len + 1))
  1919       end;
  1920 
  1921     val r_rec0 = mk_rec all_vars_more 0;
  1922     val r_rec_unit0 = mk_rec (all_vars @ [HOLogic.unit]) 0;
  1923 
  1924     fun r n = Free (rN, rec_schemeT n)
  1925     val r0 = r 0;
  1926     fun r_unit n = Free (rN, recT n)
  1927     val r_unit0 = r_unit 0;
  1928     val w = Free (wN, rec_schemeT 0)
  1929 
  1930 
  1931     (* prepare print translation functions *)
  1932 
  1933     val field_tr's =
  1934       print_translation (distinct (op =) (maps external_names (full_moreN :: names)));
  1935 
  1936     val adv_ext_tr's =
  1937       let val trnames = external_names extN
  1938       in map (gen_record_tr') trnames end;
  1939 
  1940     val adv_record_type_abbr_tr's =
  1941       let
  1942         val trnames = external_names (hd extension_names);
  1943         val lastExt = unsuffix ext_typeN (fst extension);
  1944       in map (gen_record_type_abbr_tr' name alphas zeta lastExt rec_schemeT0) trnames end;
  1945 
  1946     val adv_record_type_tr's =
  1947       let
  1948         val trnames = if parent_len > 0 then external_names extN else [];
  1949         (*avoid conflict with adv_record_type_abbr_tr's*)
  1950       in map (gen_record_type_tr') trnames end;
  1951 
  1952 
  1953     (* prepare declarations *)
  1954 
  1955     val sel_decls = map (mk_selC rec_schemeT0) bfields_more;
  1956     val upd_decls = map (mk_updC updateN rec_schemeT0) bfields_more;
  1957     val make_decl = (makeN, all_types ---> recT0);
  1958     val fields_decl = (fields_selN, types ---> Type extension);
  1959     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1960     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  1961 
  1962 
  1963     (* prepare definitions *)
  1964 
  1965     (*record (scheme) type abbreviation*)
  1966     val recordT_specs =
  1967       [(Binding.name (suffix schemeN bname), alphas @ [zeta], rec_schemeT0, Syntax.NoSyn),
  1968         (Binding.name bname, alphas, recT0, Syntax.NoSyn)];
  1969 
  1970     val ext_defs = ext_def :: map #extdef parents;
  1971 
  1972     (*Theorems from the iso_tuple intros.
  1973       By unfolding ext_defs from r_rec0 we create a tree of constructor
  1974       calls (many of them Pair, but others as well). The introduction
  1975       rules for update_accessor_eq_assist can unify two different ways
  1976       on these constructors. If we take the complete result sequence of
  1977       running a the introduction tactic, we get one theorem for each upd/acc
  1978       pair, from which we can derive the bodies of our selector and
  1979       updator and their convs.*)
  1980     fun get_access_update_thms () =
  1981       let
  1982         val r_rec0_Vars =
  1983           let
  1984             (*pick variable indices of 1 to avoid possible variable
  1985               collisions with existing variables in updacc_eq_triv*)
  1986             fun to_Var (Free (c, T)) = Var ((c, 1), T);
  1987           in mk_rec (map to_Var all_vars_more) 0 end;
  1988 
  1989         val cterm_rec = cterm_of extension_thy r_rec0;
  1990         val cterm_vrs = cterm_of extension_thy r_rec0_Vars;
  1991         val insts = [("v", cterm_rec), ("v'", cterm_vrs)];
  1992         val init_thm = named_cterm_instantiate insts updacc_eq_triv;
  1993         val terminal = rtac updacc_eq_idI 1 THEN rtac refl 1;
  1994         val tactic =
  1995           simp_tac (HOL_basic_ss addsimps ext_defs) 1 THEN
  1996           REPEAT (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE terminal);
  1997         val updaccs = Seq.list_of (tactic init_thm);
  1998       in
  1999         (updaccs RL [updacc_accessor_eqE],
  2000          updaccs RL [updacc_updator_eqE],
  2001          updaccs RL [updacc_cong_from_eq])
  2002       end;
  2003     val (accessor_thms, updator_thms, upd_acc_cong_assists) =
  2004       timeit_msg "record getting tree access/updates:" get_access_update_thms;
  2005 
  2006     fun lastN xs = drop parent_fields_len xs;
  2007 
  2008     (*selectors*)
  2009     fun mk_sel_spec ((c, T), thm) =
  2010       let
  2011         val acc $ arg =
  2012           (fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Envir.beta_eta_contract o concl_of) thm;
  2013         val _ =
  2014           if (arg aconv r_rec0) then ()
  2015           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2016       in
  2017         Const (mk_selC rec_schemeT0 (c, T)) :== acc
  2018       end;
  2019     val sel_specs = map mk_sel_spec (fields_more ~~ lastN accessor_thms);
  2020 
  2021     (*updates*)
  2022     fun mk_upd_spec ((c, T), thm) =
  2023       let
  2024         val upd $ _ $ arg =
  2025           fst (HOLogic.dest_eq (HOLogic.dest_Trueprop (Envir.beta_eta_contract (concl_of thm))));
  2026         val _ =
  2027           if arg aconv r_rec0 then ()
  2028           else raise TERM ("mk_sel_spec: different arg", [arg]);
  2029       in Const (mk_updC updateN rec_schemeT0 (c, T)) :== upd end;
  2030     val upd_specs = map mk_upd_spec (fields_more ~~ lastN updator_thms);
  2031 
  2032     (*derived operations*)
  2033     val make_spec = Const (full makeN, all_types ---> recT0) $$ all_vars :==
  2034       mk_rec (all_vars @ [HOLogic.unit]) 0;
  2035     val fields_spec = Const (full fields_selN, types ---> Type extension) $$ vars :==
  2036       mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  2037     val extend_spec =
  2038       Const (full extendN, recT0-->moreT-->rec_schemeT0) $ r_unit0 $ more :==
  2039       mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  2040     val truncate_spec = Const (full truncateN, rec_schemeT0 --> recT0) $ r0 :==
  2041       mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  2042 
  2043 
  2044     (* 2st stage: defs_thy *)
  2045 
  2046     fun mk_defs () =
  2047       extension_thy
  2048       |> Sign.add_trfuns ([], [], field_tr's, [])
  2049       |> Sign.add_advanced_trfuns
  2050           ([], [], adv_ext_tr's @ adv_record_type_tr's @ adv_record_type_abbr_tr's, [])
  2051       |> Sign.parent_path
  2052       |> Sign.add_tyabbrs_i recordT_specs
  2053       |> Sign.add_path bname
  2054       |> Sign.add_consts_i
  2055           (map2 (fn (x, T) => fn mx => (Binding.name x, T, mx))
  2056             sel_decls (field_syntax @ [Syntax.NoSyn]))
  2057       |> (Sign.add_consts_i o map (fn (x, T) => (Binding.name x, T, Syntax.NoSyn)))
  2058           (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  2059       |> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) sel_specs)
  2060       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) upd_specs)
  2061       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name))
  2062              [make_spec, fields_spec, extend_spec, truncate_spec])
  2063       |->
  2064         (fn defs as ((sel_defs, upd_defs), derived_defs) =>
  2065           fold Code.add_default_eqn sel_defs
  2066           #> fold Code.add_default_eqn upd_defs
  2067           #> fold Code.add_default_eqn derived_defs
  2068           #> pair defs)
  2069       ||> Theory.checkpoint
  2070     val (((sel_defs, upd_defs), derived_defs), defs_thy) =
  2071       timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
  2072         mk_defs;
  2073 
  2074     (* prepare propositions *)
  2075     val _ = timing_msg "record preparing propositions";
  2076     val P = Free (Name.variant all_variants "P", rec_schemeT0 --> HOLogic.boolT);
  2077     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
  2078     val P_unit = Free (Name.variant all_variants "P", recT0 --> HOLogic.boolT);
  2079 
  2080     (*selectors*)
  2081     val sel_conv_props =
  2082        map (fn (c, x as Free (_, T)) => mk_sel r_rec0 (c, T) === x) named_vars_more;
  2083 
  2084     (*updates*)
  2085     fun mk_upd_prop (i, (c, T)) =
  2086       let
  2087         val x' = Free (Name.variant all_variants (base c ^ "'"), T --> T);
  2088         val n = parent_fields_len + i;
  2089         val args' = nth_map n (K (x' $ nth all_vars_more n)) all_vars_more
  2090       in mk_upd updateN c x' r_rec0 === mk_rec args' 0 end;
  2091     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  2092 
  2093     (*induct*)
  2094     val induct_scheme_prop =
  2095       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  2096     val induct_prop =
  2097       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  2098         Trueprop (P_unit $ r_unit0));
  2099 
  2100     (*surjective*)
  2101     val surjective_prop =
  2102       let val args = map (fn (c, Free (_, T)) => mk_sel r0 (c, T)) all_named_vars_more
  2103       in r0 === mk_rec args 0 end;
  2104 
  2105     (*cases*)
  2106     val cases_scheme_prop =
  2107       (All (map dest_Free all_vars_more) ((r0 === r_rec0) ==> Trueprop C))
  2108         ==> Trueprop C;
  2109 
  2110     val cases_prop =
  2111       (All (map dest_Free all_vars) ((r_unit0 === r_rec_unit0) ==> Trueprop C))
  2112          ==> Trueprop C;
  2113 
  2114     (*split*)
  2115     val split_meta_prop =
  2116       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
  2117         Logic.mk_equals
  2118          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  2119       end;
  2120 
  2121     val split_object_prop =
  2122       let val ALL = fold_rev (fn (v, T) => fn t => HOLogic.mk_all (v, T, t))
  2123       in ALL [dest_Free r0] (P $ r0) === ALL (map dest_Free all_vars_more) (P $ r_rec0) end;
  2124 
  2125     val split_ex_prop =
  2126       let val EX = fold_rev (fn (v, T) => fn t => HOLogic.mk_exists (v, T, t))
  2127       in EX [dest_Free r0] (P $ r0) === EX (map dest_Free all_vars_more) (P $ r_rec0) end;
  2128 
  2129     (*equality*)
  2130     val equality_prop =
  2131       let
  2132         val s' = Free (rN ^ "'", rec_schemeT0);
  2133         fun mk_sel_eq (c, Free (_, T)) = mk_sel r0 (c, T) === mk_sel s' (c, T);
  2134         val seleqs = map mk_sel_eq all_named_vars_more;
  2135       in All (map dest_Free [r0, s']) (Logic.list_implies (seleqs, r0 === s')) end;
  2136 
  2137 
  2138     (* 3rd stage: thms_thy *)
  2139 
  2140     fun prove stndrd = prove_future_global stndrd defs_thy;
  2141     val prove_standard = prove_future_global true defs_thy;
  2142     val future_forward_prf = future_forward_prf_standard defs_thy;
  2143 
  2144     fun prove_simp stndrd ss simps =
  2145       let val tac = simp_all_tac ss simps
  2146       in fn prop => prove stndrd [] prop (K tac) end;
  2147 
  2148     val ss = get_simpset defs_thy;
  2149 
  2150     fun sel_convs_prf () =
  2151       map (prove_simp false ss (sel_defs @ accessor_thms)) sel_conv_props;
  2152     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  2153     fun sel_convs_standard_prf () = map Drule.export_without_context sel_convs;
  2154     val sel_convs_standard =
  2155       timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  2156 
  2157     fun upd_convs_prf () =
  2158       map (prove_simp false ss (upd_defs @ updator_thms)) upd_conv_props;
  2159     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  2160     fun upd_convs_standard_prf () = map Drule.export_without_context upd_convs;
  2161     val upd_convs_standard =
  2162       timeit_msg "record upd_convs_standard proof:" upd_convs_standard_prf;
  2163 
  2164     fun get_upd_acc_congs () =
  2165       let
  2166         val symdefs = map symmetric (sel_defs @ upd_defs);
  2167         val fold_ss = HOL_basic_ss addsimps symdefs;
  2168         val ua_congs = map (Drule.export_without_context o simplify fold_ss) upd_acc_cong_assists;
  2169       in (ua_congs RL [updacc_foldE], ua_congs RL [updacc_unfoldE]) end;
  2170     val (fold_congs, unfold_congs) =
  2171       timeit_msg "record upd fold/unfold congs:" get_upd_acc_congs;
  2172 
  2173     val parent_induct = if null parents then [] else [#induct (hd (rev parents))];
  2174 
  2175     fun induct_scheme_prf () =
  2176       prove_standard [] induct_scheme_prop
  2177         (fn _ =>
  2178           EVERY
  2179            [if null parent_induct then all_tac else try_param_tac rN (hd parent_induct) 1,
  2180             try_param_tac rN ext_induct 1,
  2181             asm_simp_tac HOL_basic_ss 1]);
  2182     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  2183 
  2184     fun induct_prf () =
  2185       let val (assm, concl) = induct_prop in
  2186         prove_standard [assm] concl (fn {prems, ...} =>
  2187           try_param_tac rN induct_scheme 1
  2188           THEN try_param_tac "more" @{thm unit.induct} 1
  2189           THEN resolve_tac prems 1)
  2190       end;
  2191     val induct = timeit_msg "record induct proof:" induct_prf;
  2192 
  2193     fun cases_scheme_prf () =
  2194       let
  2195         val _ $ (Pvar $ _) = concl_of induct_scheme;
  2196         val ind =
  2197           cterm_instantiate
  2198             [(cterm_of defs_thy Pvar, cterm_of defs_thy
  2199               (lambda w (HOLogic.imp $ HOLogic.mk_eq (r0, w) $ C)))]
  2200             induct_scheme;
  2201         in ObjectLogic.rulify (mp OF [ind, refl]) end;
  2202 
  2203     val cases_scheme_prf = future_forward_prf cases_scheme_prf cases_scheme_prop;
  2204     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  2205 
  2206     fun cases_prf () =
  2207       prove_standard [] cases_prop
  2208         (fn _ =>
  2209           try_param_tac rN cases_scheme 1 THEN
  2210           simp_all_tac HOL_basic_ss [unit_all_eq1]);
  2211     val cases = timeit_msg "record cases proof:" cases_prf;
  2212 
  2213     fun surjective_prf () =
  2214       let
  2215         val leaf_ss = get_sel_upd_defs defs_thy addsimps (sel_defs @ (o_assoc :: id_o_apps));
  2216         val init_ss = HOL_basic_ss addsimps ext_defs;
  2217       in
  2218         prove_standard [] surjective_prop
  2219           (fn _ =>
  2220             EVERY
  2221              [rtac surject_assist_idE 1,
  2222               simp_tac init_ss 1,
  2223               REPEAT
  2224                 (Iso_Tuple_Support.iso_tuple_intros_tac 1 ORELSE
  2225                   (rtac surject_assistI 1 THEN simp_tac leaf_ss 1))])
  2226       end;
  2227     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  2228 
  2229     fun split_meta_prf () =
  2230       prove false [] split_meta_prop
  2231         (fn _ =>
  2232           EVERY1
  2233            [rtac equal_intr_rule, Goal.norm_hhf_tac,
  2234             etac meta_allE, atac,
  2235             rtac (prop_subst OF [surjective]),
  2236             REPEAT o etac meta_allE, atac]);
  2237     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  2238     fun split_meta_standardise () = Drule.export_without_context split_meta;
  2239     val split_meta_standard =
  2240       timeit_msg "record split_meta standard:" split_meta_standardise;
  2241 
  2242     fun split_object_prf () =
  2243       let
  2244         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P $ r0)));
  2245         val _ $ Abs (_, _, P $ _) = fst (Logic.dest_equals (concl_of split_meta_standard));
  2246         val cP = cterm_of defs_thy P;
  2247         val split_meta' = cterm_instantiate [(cP, cPI)] split_meta_standard;
  2248         val (l, r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  2249         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
  2250         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
  2251         val thl =
  2252           assume cl                   (*All r. P r*) (* 1 *)
  2253           |> obj_to_meta_all          (*!!r. P r*)
  2254           |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
  2255           |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
  2256           |> implies_intr cl          (* 1 ==> 2 *)
  2257         val thr =
  2258           assume cr                             (*All n m more. P (ext n m more)*)
  2259           |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  2260           |> equal_elim (symmetric split_meta') (*!!r. P r*)
  2261           |> meta_to_obj_all                    (*All r. P r*)
  2262           |> implies_intr cr                    (* 2 ==> 1 *)
  2263      in thr COMP (thl COMP iffI) end;
  2264 
  2265 
  2266     val split_object_prf = future_forward_prf split_object_prf split_object_prop;
  2267     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  2268 
  2269 
  2270     fun split_ex_prf () =
  2271       let
  2272         val ss = HOL_basic_ss addsimps [not_ex RS sym, Not_eq_iff];
  2273         val P_nm = fst (dest_Free P);
  2274         val not_P = cterm_of defs_thy (lambda r0 (HOLogic.mk_not (P $ r0)));
  2275         val so' = named_cterm_instantiate ([(P_nm, not_P)]) split_object;
  2276         val so'' = simplify ss so';
  2277       in
  2278         prove_standard [] split_ex_prop (fn _ => resolve_tac [so''] 1)
  2279       end;
  2280     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  2281 
  2282     fun equality_tac thms =
  2283       let
  2284         val s' :: s :: eqs = rev thms;
  2285         val ss' = ss addsimps (s' :: s :: sel_convs_standard);
  2286         val eqs' = map (simplify ss') eqs;
  2287       in simp_tac (HOL_basic_ss addsimps (s' :: s :: eqs')) 1 end;
  2288 
  2289     fun equality_prf () =
  2290       prove_standard [] equality_prop (fn {context, ...} =>
  2291         fn st =>
  2292           let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  2293             st |> (res_inst_tac context [((rN, 0), s)] cases_scheme 1 THEN
  2294               res_inst_tac context [((rN, 0), s')] cases_scheme 1 THEN
  2295               Subgoal.FOCUS (fn {prems, ...} => equality_tac prems) context 1)
  2296              (*simp_all_tac ss (sel_convs) would also work but is less efficient*)
  2297           end);
  2298     val equality = timeit_msg "record equality proof:" equality_prf;
  2299 
  2300     val ((([sel_convs', upd_convs', sel_defs', upd_defs',
  2301             fold_congs', unfold_congs',
  2302           [split_meta', split_object', split_ex'], derived_defs'],
  2303           [surjective', equality']),
  2304           [induct_scheme', induct', cases_scheme', cases']), thms_thy) =
  2305       defs_thy
  2306       |> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
  2307          [("select_convs", sel_convs_standard),
  2308           ("update_convs", upd_convs_standard),
  2309           ("select_defs", sel_defs),
  2310           ("update_defs", upd_defs),
  2311           ("fold_congs", fold_congs),
  2312           ("unfold_congs", unfold_congs),
  2313           ("splits", [split_meta_standard, split_object, split_ex]),
  2314           ("defs", derived_defs)]
  2315       ||>> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
  2316           [("surjective", surjective),
  2317            ("equality", equality)]
  2318       ||>> (PureThy.add_thms o (map o apfst o apfst) Binding.name)
  2319         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2320          (("induct", induct), induct_type_global name),
  2321          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2322          (("cases", cases), cases_type_global name)];
  2323 
  2324     val sel_upd_simps = sel_convs' @ upd_convs';
  2325     val sel_upd_defs = sel_defs' @ upd_defs';
  2326     val iffs = [ext_inject]
  2327     val depth = parent_len + 1;
  2328     val final_thy =
  2329       thms_thy
  2330       |> (snd oo PureThy.add_thmss)
  2331           [((Binding.name "simps", sel_upd_simps), [Simplifier.simp_add]),
  2332            ((Binding.name "iffs", iffs), [iff_add])]
  2333       |> put_record name (make_record_info args parent fields extension induct_scheme' ext_def)
  2334       |> put_sel_upd names full_moreN depth sel_upd_simps sel_upd_defs (fold_congs', unfold_congs')
  2335       |> add_record_equalities extension_id equality'
  2336       |> add_extinjects ext_inject
  2337       |> add_extsplit extension_name ext_split
  2338       |> add_record_splits extension_id (split_meta', split_object', split_ex', induct_scheme')
  2339       |> add_extfields extension_name (fields @ [(full_moreN, moreT)])
  2340       |> add_fieldext (extension_name, snd extension) (names @ [full_moreN])
  2341       |> Sign.parent_path;
  2342 
  2343   in final_thy end;
  2344 
  2345 
  2346 (* add_record *)
  2347 
  2348 (*We do all preparations and error checks here, deferring the real
  2349   work to record_definition.*)
  2350 fun gen_add_record prep_typ prep_raw_parent quiet_mode (params, bname) raw_parent raw_fields thy =
  2351   let
  2352     val _ = Theory.requires thy "Record" "record definitions";
  2353     val _ = if quiet_mode then () else writeln ("Defining record " ^ quote bname ^ " ...");
  2354 
  2355     val ctxt = ProofContext.init thy;
  2356 
  2357 
  2358     (* parents *)
  2359 
  2360     fun prep_inst T = fst (cert_typ ctxt T []);
  2361 
  2362     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
  2363       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
  2364     val parents = add_parents thy parent [];
  2365 
  2366     val init_env =
  2367       (case parent of
  2368         NONE => []
  2369       | SOME (types, _) => fold Term.add_tfreesT types []);
  2370 
  2371 
  2372     (* fields *)
  2373 
  2374     fun prep_field (c, raw_T, mx) env =
  2375       let val (T, env') = prep_typ ctxt raw_T env handle ERROR msg =>
  2376         cat_error msg ("The error(s) above occured in record field " ^ quote c)
  2377       in ((c, T, mx), env') end;
  2378 
  2379     val (bfields, envir) = fold_map prep_field raw_fields init_env;
  2380     val envir_names = map fst envir;
  2381 
  2382 
  2383     (* args *)
  2384 
  2385     val defaultS = Sign.defaultS thy;
  2386     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
  2387 
  2388 
  2389     (* errors *)
  2390 
  2391     val name = Sign.full_bname thy bname;
  2392     val err_dup_record =
  2393       if is_none (get_record thy name) then []
  2394       else ["Duplicate definition of record " ^ quote name];
  2395 
  2396     val err_dup_parms =
  2397       (case duplicates (op =) params of
  2398         [] => []
  2399       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2400 
  2401     val err_extra_frees =
  2402       (case subtract (op =) params envir_names of
  2403         [] => []
  2404       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2405 
  2406     val err_no_fields = if null bfields then ["No fields present"] else [];
  2407 
  2408     val err_dup_fields =
  2409       (case duplicates (op =) (map #1 bfields) of
  2410         [] => []
  2411       | dups => ["Duplicate field(s) " ^ commas_quote dups]);
  2412 
  2413     val err_bad_fields =
  2414       if forall (not_equal moreN o #1) bfields then []
  2415       else ["Illegal field name " ^ quote moreN];
  2416 
  2417     val err_dup_sorts =
  2418       (case duplicates (op =) envir_names of
  2419         [] => []
  2420       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2421 
  2422     val errs =
  2423       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2424       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2425 
  2426     val _ = if null errs then () else error (cat_lines errs);
  2427   in
  2428     thy |> record_definition (args, bname) parent parents bfields
  2429   end
  2430   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote bname);
  2431 
  2432 val add_record = gen_add_record read_typ read_raw_parent;
  2433 val add_record_i = gen_add_record cert_typ (K I);
  2434 
  2435 
  2436 (* setup theory *)
  2437 
  2438 val setup =
  2439   Sign.add_trfuns ([], parse_translation, [], []) #>
  2440   Sign.add_advanced_trfuns ([], adv_parse_translation, [], []) #>
  2441   Simplifier.map_simpset (fn ss =>
  2442     ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]);
  2443 
  2444 
  2445 (* outer syntax *)
  2446 
  2447 local structure P = OuterParse and K = OuterKeyword in
  2448 
  2449 val record_decl =
  2450   P.type_args -- P.name --
  2451     (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);
  2452 
  2453 val _ =
  2454   OuterSyntax.command "record" "define extensible record" K.thy_decl
  2455     (record_decl >> (fn (x, (y, z)) => Toplevel.theory (add_record false x y z)));
  2456 
  2457 end;
  2458 
  2459 end;
  2460 
  2461 structure Basic_Record: BASIC_RECORD = Record;
  2462 open Basic_Record;