1 (* Title: HOL/Library/Multiset.thy
2 Author: Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, Norbert Voelker
5 header {* (Finite) multisets *}
11 subsection {* The type of multisets *}
13 definition "multiset = {f :: 'a => nat. finite {x. f x > 0}}"
15 typedef (open) 'a multiset = "multiset :: ('a => nat) set"
16 morphisms count Abs_multiset
17 unfolding multiset_def
19 show "(\<lambda>x. 0::nat) \<in> {f. finite {x. f x > 0}}" by simp
22 setup_lifting type_definition_multiset
24 abbreviation Melem :: "'a => 'a multiset => bool" ("(_/ :# _)" [50, 51] 50) where
25 "a :# M == 0 < count M a"
28 Melem (infix "\<in>#" 50)
30 lemma multiset_eq_iff:
31 "M = N \<longleftrightarrow> (\<forall>a. count M a = count N a)"
32 by (simp only: count_inject [symmetric] fun_eq_iff)
35 "(\<And>x. count A x = count B x) \<Longrightarrow> A = B"
36 using multiset_eq_iff by auto
39 \medskip Preservation of the representing set @{term multiset}.
42 lemma const0_in_multiset:
43 "(\<lambda>a. 0) \<in> multiset"
44 by (simp add: multiset_def)
46 lemma only1_in_multiset:
47 "(\<lambda>b. if b = a then n else 0) \<in> multiset"
48 by (simp add: multiset_def)
50 lemma union_preserves_multiset:
51 "M \<in> multiset \<Longrightarrow> N \<in> multiset \<Longrightarrow> (\<lambda>a. M a + N a) \<in> multiset"
52 by (simp add: multiset_def)
54 lemma diff_preserves_multiset:
55 assumes "M \<in> multiset"
56 shows "(\<lambda>a. M a - N a) \<in> multiset"
58 have "{x. N x < M x} \<subseteq> {x. 0 < M x}"
60 with assms show ?thesis
61 by (auto simp add: multiset_def intro: finite_subset)
64 lemma filter_preserves_multiset:
65 assumes "M \<in> multiset"
66 shows "(\<lambda>x. if P x then M x else 0) \<in> multiset"
68 have "{x. (P x \<longrightarrow> 0 < M x) \<and> P x} \<subseteq> {x. 0 < M x}"
70 with assms show ?thesis
71 by (auto simp add: multiset_def intro: finite_subset)
74 lemmas in_multiset = const0_in_multiset only1_in_multiset
75 union_preserves_multiset diff_preserves_multiset filter_preserves_multiset
78 subsection {* Representing multisets *}
80 text {* Multiset enumeration *}
82 instantiation multiset :: (type) cancel_comm_monoid_add
85 lift_definition zero_multiset :: "'a multiset" is "\<lambda>a. 0"
86 by (rule const0_in_multiset)
88 abbreviation Mempty :: "'a multiset" ("{#}") where
91 lift_definition plus_multiset :: "'a multiset => 'a multiset => 'a multiset" is "\<lambda>M N. (\<lambda>a. M a + N a)"
92 by (rule union_preserves_multiset)
95 by default (transfer, simp add: fun_eq_iff)+
99 lift_definition single :: "'a => 'a multiset" is "\<lambda>a b. if b = a then 1 else 0"
100 by (rule only1_in_multiset)
103 "_multiset" :: "args => 'a multiset" ("{#(_)#}")
105 "{#x, xs#}" == "{#x#} + {#xs#}"
106 "{#x#}" == "CONST single x"
108 lemma count_empty [simp]: "count {#} a = 0"
109 by (simp add: zero_multiset.rep_eq)
111 lemma count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
112 by (simp add: single.rep_eq)
115 subsection {* Basic operations *}
117 subsubsection {* Union *}
119 lemma count_union [simp]: "count (M + N) a = count M a + count N a"
120 by (simp add: plus_multiset.rep_eq)
123 subsubsection {* Difference *}
125 instantiation multiset :: (type) comm_monoid_diff
128 lift_definition minus_multiset :: "'a multiset => 'a multiset => 'a multiset" is "\<lambda> M N. \<lambda>a. M a - N a"
129 by (rule diff_preserves_multiset)
132 by default (transfer, simp add: fun_eq_iff)+
136 lemma count_diff [simp]: "count (M - N) a = count M a - count N a"
137 by (simp add: minus_multiset.rep_eq)
139 lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
140 by(simp add: multiset_eq_iff)
142 lemma diff_cancel[simp]: "A - A = {#}"
143 by (rule multiset_eqI) simp
145 lemma diff_union_cancelR [simp]: "M + N - N = (M::'a multiset)"
146 by(simp add: multiset_eq_iff)
148 lemma diff_union_cancelL [simp]: "N + M - N = (M::'a multiset)"
149 by(simp add: multiset_eq_iff)
152 "x \<in># M \<Longrightarrow> {#x#} + (M - {#x#}) = M"
153 by (clarsimp simp: multiset_eq_iff)
155 lemma insert_DiffM2 [simp]:
156 "x \<in># M \<Longrightarrow> M - {#x#} + {#x#} = M"
157 by (clarsimp simp: multiset_eq_iff)
159 lemma diff_right_commute:
160 "(M::'a multiset) - N - Q = M - Q - N"
161 by (auto simp add: multiset_eq_iff)
164 "(M::'a multiset) - (N + Q) = M - N - Q"
165 by (simp add: multiset_eq_iff)
167 lemma diff_union_swap:
168 "a \<noteq> b \<Longrightarrow> M - {#a#} + {#b#} = M + {#b#} - {#a#}"
169 by (auto simp add: multiset_eq_iff)
171 lemma diff_union_single_conv:
172 "a \<in># J \<Longrightarrow> I + J - {#a#} = I + (J - {#a#})"
173 by (simp add: multiset_eq_iff)
176 subsubsection {* Equality of multisets *}
178 lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
179 by (simp add: multiset_eq_iff)
181 lemma single_eq_single [simp]: "{#a#} = {#b#} \<longleftrightarrow> a = b"
182 by (auto simp add: multiset_eq_iff)
184 lemma union_eq_empty [iff]: "M + N = {#} \<longleftrightarrow> M = {#} \<and> N = {#}"
185 by (auto simp add: multiset_eq_iff)
187 lemma empty_eq_union [iff]: "{#} = M + N \<longleftrightarrow> M = {#} \<and> N = {#}"
188 by (auto simp add: multiset_eq_iff)
190 lemma multi_self_add_other_not_self [simp]: "M = M + {#x#} \<longleftrightarrow> False"
191 by (auto simp add: multiset_eq_iff)
193 lemma diff_single_trivial:
194 "\<not> x \<in># M \<Longrightarrow> M - {#x#} = M"
195 by (auto simp add: multiset_eq_iff)
197 lemma diff_single_eq_union:
198 "x \<in># M \<Longrightarrow> M - {#x#} = N \<longleftrightarrow> M = N + {#x#}"
201 lemma union_single_eq_diff:
202 "M + {#x#} = N \<Longrightarrow> M = N - {#x#}"
205 lemma union_single_eq_member:
206 "M + {#x#} = N \<Longrightarrow> x \<in># N"
209 lemma union_is_single:
210 "M + N = {#a#} \<longleftrightarrow> M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#}" (is "?lhs = ?rhs")
212 assume ?rhs then show ?lhs by auto
214 assume ?lhs then show ?rhs
215 by (simp add: multiset_eq_iff split:if_splits) (metis add_is_1)
218 lemma single_is_union:
219 "{#a#} = M + N \<longleftrightarrow> {#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N"
220 by (auto simp add: eq_commute [of "{#a#}" "M + N"] union_is_single)
222 lemma add_eq_conv_diff:
223 "M + {#a#} = N + {#b#} \<longleftrightarrow> M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#}" (is "?lhs = ?rhs")
224 (* shorter: by (simp add: multiset_eq_iff) fastforce *)
226 assume ?rhs then show ?lhs
227 by (auto simp add: add_assoc add_commute [of "{#b#}"])
228 (drule sym, simp add: add_assoc [symmetric])
232 proof (cases "a = b")
233 case True with `?lhs` show ?thesis by simp
236 from `?lhs` have "a \<in># N + {#b#}" by (rule union_single_eq_member)
237 with False have "a \<in># N" by auto
238 moreover from `?lhs` have "M = N + {#b#} - {#a#}" by (rule union_single_eq_diff)
240 ultimately show ?thesis by (auto simp add: diff_right_commute [of _ "{#a#}"] diff_union_swap)
244 lemma insert_noteq_member:
245 assumes BC: "B + {#b#} = C + {#c#}"
246 and bnotc: "b \<noteq> c"
249 have "c \<in># C + {#c#}" by simp
250 have nc: "\<not> c \<in># {#b#}" using bnotc by simp
251 then have "c \<in># B + {#b#}" using BC by simp
252 then show "c \<in># B" using nc by simp
255 lemma add_eq_conv_ex:
256 "(M + {#a#} = N + {#b#}) =
257 (M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
258 by (auto simp add: add_eq_conv_diff)
261 subsubsection {* Pointwise ordering induced by count *}
263 instantiation multiset :: (type) ordered_ab_semigroup_add_imp_le
266 lift_definition less_eq_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" is "\<lambda> A B. (\<forall>a. A a \<le> B a)"
268 lemmas mset_le_def = less_eq_multiset_def
270 definition less_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" where
271 mset_less_def: "(A::'a multiset) < B \<longleftrightarrow> A \<le> B \<and> A \<noteq> B"
274 by default (auto simp add: mset_le_def mset_less_def multiset_eq_iff intro: order_trans antisym)
279 "(\<And>x. count A x \<le> count B x) \<Longrightarrow> A \<le> B"
280 by (simp add: mset_le_def)
282 lemma mset_le_exists_conv:
283 "(A::'a multiset) \<le> B \<longleftrightarrow> (\<exists>C. B = A + C)"
284 apply (unfold mset_le_def, rule iffI, rule_tac x = "B - A" in exI)
285 apply (auto intro: multiset_eq_iff [THEN iffD2])
288 lemma mset_le_mono_add_right_cancel [simp]:
289 "(A::'a multiset) + C \<le> B + C \<longleftrightarrow> A \<le> B"
290 by (fact add_le_cancel_right)
292 lemma mset_le_mono_add_left_cancel [simp]:
293 "C + (A::'a multiset) \<le> C + B \<longleftrightarrow> A \<le> B"
294 by (fact add_le_cancel_left)
296 lemma mset_le_mono_add:
297 "(A::'a multiset) \<le> B \<Longrightarrow> C \<le> D \<Longrightarrow> A + C \<le> B + D"
300 lemma mset_le_add_left [simp]:
301 "(A::'a multiset) \<le> A + B"
302 unfolding mset_le_def by auto
304 lemma mset_le_add_right [simp]:
305 "B \<le> (A::'a multiset) + B"
306 unfolding mset_le_def by auto
308 lemma mset_le_single:
309 "a :# B \<Longrightarrow> {#a#} \<le> B"
310 by (simp add: mset_le_def)
312 lemma multiset_diff_union_assoc:
313 "C \<le> B \<Longrightarrow> (A::'a multiset) + B - C = A + (B - C)"
314 by (simp add: multiset_eq_iff mset_le_def)
316 lemma mset_le_multiset_union_diff_commute:
317 "B \<le> A \<Longrightarrow> (A::'a multiset) - B + C = A + C - B"
318 by (simp add: multiset_eq_iff mset_le_def)
320 lemma diff_le_self[simp]: "(M::'a multiset) - N \<le> M"
321 by(simp add: mset_le_def)
323 lemma mset_lessD: "A < B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B"
324 apply (clarsimp simp: mset_le_def mset_less_def)
325 apply (erule_tac x=x in allE)
329 lemma mset_leD: "A \<le> B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B"
330 apply (clarsimp simp: mset_le_def mset_less_def)
331 apply (erule_tac x = x in allE)
335 lemma mset_less_insertD: "(A + {#x#} < B) \<Longrightarrow> (x \<in># B \<and> A < B)"
337 apply (simp add: mset_lessD)
338 apply (clarsimp simp: mset_le_def mset_less_def)
340 apply (erule_tac x = a in allE)
341 apply (auto split: split_if_asm)
344 lemma mset_le_insertD: "(A + {#x#} \<le> B) \<Longrightarrow> (x \<in># B \<and> A \<le> B)"
346 apply (simp add: mset_leD)
347 apply (force simp: mset_le_def mset_less_def split: split_if_asm)
350 lemma mset_less_of_empty[simp]: "A < {#} \<longleftrightarrow> False"
351 by (auto simp add: mset_less_def mset_le_def multiset_eq_iff)
353 lemma multi_psub_of_add_self[simp]: "A < A + {#x#}"
354 by (auto simp: mset_le_def mset_less_def)
356 lemma multi_psub_self[simp]: "(A::'a multiset) < A = False"
359 lemma mset_less_add_bothsides:
360 "T + {#x#} < S + {#x#} \<Longrightarrow> T < S"
361 by (fact add_less_imp_less_right)
363 lemma mset_less_empty_nonempty:
364 "{#} < S \<longleftrightarrow> S \<noteq> {#}"
365 by (auto simp: mset_le_def mset_less_def)
367 lemma mset_less_diff_self:
368 "c \<in># B \<Longrightarrow> B - {#c#} < B"
369 by (auto simp: mset_le_def mset_less_def multiset_eq_iff)
372 subsubsection {* Intersection *}
374 instantiation multiset :: (type) semilattice_inf
377 definition inf_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" where
378 multiset_inter_def: "inf_multiset A B = A - (A - B)"
382 have aux: "\<And>m n q :: nat. m \<le> n \<Longrightarrow> m \<le> q \<Longrightarrow> m \<le> n - (n - q)" by arith
383 show "OFCLASS('a multiset, semilattice_inf_class)"
384 by default (auto simp add: multiset_inter_def mset_le_def aux)
389 abbreviation multiset_inter :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70) where
390 "multiset_inter \<equiv> inf"
392 lemma multiset_inter_count [simp]:
393 "count (A #\<inter> B) x = min (count A x) (count B x)"
394 by (simp add: multiset_inter_def)
396 lemma multiset_inter_single: "a \<noteq> b \<Longrightarrow> {#a#} #\<inter> {#b#} = {#}"
397 by (rule multiset_eqI) auto
399 lemma multiset_union_diff_commute:
400 assumes "B #\<inter> C = {#}"
401 shows "A + B - C = A - C + B"
402 proof (rule multiset_eqI)
404 from assms have "min (count B x) (count C x) = 0"
405 by (auto simp add: multiset_eq_iff)
406 then have "count B x = 0 \<or> count C x = 0"
408 then show "count (A + B - C) x = count (A - C + B) x"
413 subsubsection {* Filter (with comprehension syntax) *}
415 text {* Multiset comprehension *}
417 lift_definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" is "\<lambda>P M. \<lambda>x. if P x then M x else 0"
418 by (rule filter_preserves_multiset)
420 hide_const (open) filter
422 lemma count_filter [simp]:
423 "count (Multiset.filter P M) a = (if P a then count M a else 0)"
424 by (simp add: filter.rep_eq)
426 lemma filter_empty [simp]:
427 "Multiset.filter P {#} = {#}"
428 by (rule multiset_eqI) simp
430 lemma filter_single [simp]:
431 "Multiset.filter P {#x#} = (if P x then {#x#} else {#})"
432 by (rule multiset_eqI) simp
434 lemma filter_union [simp]:
435 "Multiset.filter P (M + N) = Multiset.filter P M + Multiset.filter P N"
436 by (rule multiset_eqI) simp
438 lemma filter_diff [simp]:
439 "Multiset.filter P (M - N) = Multiset.filter P M - Multiset.filter P N"
440 by (rule multiset_eqI) simp
442 lemma filter_inter [simp]:
443 "Multiset.filter P (M #\<inter> N) = Multiset.filter P M #\<inter> Multiset.filter P N"
444 by (rule multiset_eqI) simp
447 "_MCollect" :: "pttrn \<Rightarrow> 'a multiset \<Rightarrow> bool \<Rightarrow> 'a multiset" ("(1{# _ :# _./ _#})")
449 "_MCollect" :: "pttrn \<Rightarrow> 'a multiset \<Rightarrow> bool \<Rightarrow> 'a multiset" ("(1{# _ \<in># _./ _#})")
451 "{#x \<in># M. P#}" == "CONST Multiset.filter (\<lambda>x. P) M"
454 subsubsection {* Set of elements *}
456 definition set_of :: "'a multiset => 'a set" where
457 "set_of M = {x. x :# M}"
459 lemma set_of_empty [simp]: "set_of {#} = {}"
460 by (simp add: set_of_def)
462 lemma set_of_single [simp]: "set_of {#b#} = {b}"
463 by (simp add: set_of_def)
465 lemma set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N"
466 by (auto simp add: set_of_def)
468 lemma set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
469 by (auto simp add: set_of_def multiset_eq_iff)
471 lemma mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)"
472 by (auto simp add: set_of_def)
474 lemma set_of_filter [simp]: "set_of {# x:#M. P x #} = set_of M \<inter> {x. P x}"
475 by (auto simp add: set_of_def)
477 lemma finite_set_of [iff]: "finite (set_of M)"
478 using count [of M] by (simp add: multiset_def set_of_def)
480 lemma finite_Collect_mem [iff]: "finite {x. x :# M}"
481 unfolding set_of_def[symmetric] by simp
483 subsubsection {* Size *}
485 instantiation multiset :: (type) size
489 "size M = setsum (count M) (set_of M)"
495 lemma size_empty [simp]: "size {#} = 0"
496 by (simp add: size_def)
498 lemma size_single [simp]: "size {#b#} = 1"
499 by (simp add: size_def)
501 lemma setsum_count_Int:
502 "finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A"
503 apply (induct rule: finite_induct)
505 apply (simp add: Int_insert_left set_of_def)
508 lemma size_union [simp]: "size (M + N::'a multiset) = size M + size N"
509 apply (unfold size_def)
510 apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)")
512 apply (rule ext, simp)
513 apply (simp (no_asm_simp) add: setsum_Un_nat setsum_addf setsum_count_Int)
514 apply (subst Int_commute)
515 apply (simp (no_asm_simp) add: setsum_count_Int)
518 lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
519 by (auto simp add: size_def multiset_eq_iff)
521 lemma nonempty_has_size: "(S \<noteq> {#}) = (0 < size S)"
522 by (metis gr0I gr_implies_not0 size_empty size_eq_0_iff_empty)
524 lemma size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M"
525 apply (unfold size_def)
526 apply (drule setsum_SucD)
530 lemma size_eq_Suc_imp_eq_union:
531 assumes "size M = Suc n"
532 shows "\<exists>a N. M = N + {#a#}"
534 from assms obtain a where "a \<in># M"
535 by (erule size_eq_Suc_imp_elem [THEN exE])
536 then have "M = M - {#a#} + {#a#}" by simp
537 then show ?thesis by blast
541 subsection {* Induction and case splits *}
543 theorem multiset_induct [case_names empty add, induct type: multiset]:
544 assumes empty: "P {#}"
545 assumes add: "\<And>M x. P M \<Longrightarrow> P (M + {#x#})"
547 proof (induct n \<equiv> "size M" arbitrary: M)
548 case 0 thus "P M" by (simp add: empty)
551 obtain N x where "M = N + {#x#}"
552 using `Suc k = size M` [symmetric]
553 using size_eq_Suc_imp_eq_union by fast
554 with Suc add show "P M" by simp
557 lemma multi_nonempty_split: "M \<noteq> {#} \<Longrightarrow> \<exists>A a. M = A + {#a#}"
560 lemma multiset_cases [cases type, case_names empty add]:
561 assumes em: "M = {#} \<Longrightarrow> P"
562 assumes add: "\<And>N x. M = N + {#x#} \<Longrightarrow> P"
564 using assms by (induct M) simp_all
566 lemma multi_member_split: "x \<in># M \<Longrightarrow> \<exists>A. M = A + {#x#}"
567 by (rule_tac x="M - {#x#}" in exI, simp)
569 lemma multi_drop_mem_not_eq: "c \<in># B \<Longrightarrow> B - {#c#} \<noteq> B"
570 by (cases "B = {#}") (auto dest: multi_member_split)
572 lemma multiset_partition: "M = {# x:#M. P x #} + {# x:#M. \<not> P x #}"
573 apply (subst multiset_eq_iff)
577 lemma mset_less_size: "(A::'a multiset) < B \<Longrightarrow> size A < size B"
578 proof (induct A arbitrary: B)
580 then have "M \<noteq> {#}" by (simp add: mset_less_empty_nonempty)
581 then obtain M' x where "M = M' + {#x#}"
582 by (blast dest: multi_nonempty_split)
583 then show ?case by simp
586 have IH: "\<And>B. S < B \<Longrightarrow> size S < size B" by fact
587 have SxsubT: "S + {#x#} < T" by fact
588 then have "x \<in># T" and "S < T" by (auto dest: mset_less_insertD)
589 then obtain T' where T: "T = T' + {#x#}"
590 by (blast dest: multi_member_split)
591 then have "S < T'" using SxsubT
592 by (blast intro: mset_less_add_bothsides)
593 then have "size S < size T'" using IH by simp
594 then show ?case using T by simp
598 subsubsection {* Strong induction and subset induction for multisets *}
600 text {* Well-foundedness of proper subset operator: *}
602 text {* proper multiset subset *}
605 mset_less_rel :: "('a multiset * 'a multiset) set" where
606 "mset_less_rel = {(A,B). A < B}"
608 lemma multiset_add_sub_el_shuffle:
609 assumes "c \<in># B" and "b \<noteq> c"
610 shows "B - {#c#} + {#b#} = B + {#b#} - {#c#}"
612 from `c \<in># B` obtain A where B: "B = A + {#c#}"
613 by (blast dest: multi_member_split)
614 have "A + {#b#} = A + {#b#} + {#c#} - {#c#}" by simp
615 then have "A + {#b#} = A + {#c#} + {#b#} - {#c#}"
616 by (simp add: add_ac)
617 then show ?thesis using B by simp
620 lemma wf_mset_less_rel: "wf mset_less_rel"
621 apply (unfold mset_less_rel_def)
622 apply (rule wf_measure [THEN wf_subset, where f1=size])
623 apply (clarsimp simp: measure_def inv_image_def mset_less_size)
626 text {* The induction rules: *}
628 lemma full_multiset_induct [case_names less]:
629 assumes ih: "\<And>B. \<forall>(A::'a multiset). A < B \<longrightarrow> P A \<Longrightarrow> P B"
631 apply (rule wf_mset_less_rel [THEN wf_induct])
632 apply (rule ih, auto simp: mset_less_rel_def)
635 lemma multi_subset_induct [consumes 2, case_names empty add]:
638 and insert: "\<And>a F. a \<in># A \<Longrightarrow> P F \<Longrightarrow> P (F + {#a#})"
647 assume P: "F \<le> A \<Longrightarrow> P F" and i: "F + {#x#} \<le> A"
650 from i show "x \<in># A" by (auto dest: mset_le_insertD)
651 from i have "F \<le> A" by (auto dest: mset_le_insertD)
658 subsection {* The fold combinator *}
660 definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a multiset \<Rightarrow> 'b"
662 "fold f s M = Finite_Set.fold (\<lambda>x. f x ^^ count M x) s (set_of M)"
664 lemma fold_mset_empty [simp]:
666 by (simp add: fold_def)
668 context comp_fun_commute
671 lemma fold_mset_insert:
672 "fold f s (M + {#x#}) = f x (fold f s M)"
674 interpret mset: comp_fun_commute "\<lambda>y. f y ^^ count M y"
675 by (fact comp_fun_commute_funpow)
676 interpret mset_union: comp_fun_commute "\<lambda>y. f y ^^ count (M + {#x#}) y"
677 by (fact comp_fun_commute_funpow)
679 proof (cases "x \<in> set_of M")
681 then have *: "count (M + {#x#}) x = 1" by simp
682 from False have "Finite_Set.fold (\<lambda>y. f y ^^ count (M + {#x#}) y) s (set_of M) =
683 Finite_Set.fold (\<lambda>y. f y ^^ count M y) s (set_of M)"
684 by (auto intro!: Finite_Set.fold_cong comp_fun_commute_funpow)
685 with False * show ?thesis
686 by (simp add: fold_def del: count_union)
689 def N \<equiv> "set_of M - {x}"
690 from N_def True have *: "set_of M = insert x N" "x \<notin> N" "finite N" by auto
691 then have "Finite_Set.fold (\<lambda>y. f y ^^ count (M + {#x#}) y) s N =
692 Finite_Set.fold (\<lambda>y. f y ^^ count M y) s N"
693 by (auto intro!: Finite_Set.fold_cong comp_fun_commute_funpow)
694 with * show ?thesis by (simp add: fold_def del: count_union) simp
698 corollary fold_mset_single [simp]:
699 "fold f s {#x#} = f x s"
701 have "fold f s ({#} + {#x#}) = f x s" by (simp only: fold_mset_insert) simp
702 then show ?thesis by simp
705 lemma fold_mset_fun_comm:
706 "f x (fold f s M) = fold f (f x s) M"
707 by (induct M) (simp_all add: fold_mset_insert fun_left_comm)
709 lemma fold_mset_union [simp]:
710 "fold f s (M + N) = fold f (fold f s M) N"
712 case empty then show ?case by simp
715 have "M + {#x#} + N = (M + N) + {#x#}"
716 by (simp add: add_ac)
717 with add show ?case by (simp add: fold_mset_insert fold_mset_fun_comm)
720 lemma fold_mset_fusion:
721 assumes "comp_fun_commute g"
722 shows "(\<And>x y. h (g x y) = f x (h y)) \<Longrightarrow> h (fold g w A) = fold f (h w) A" (is "PROP ?P")
724 interpret comp_fun_commute g by (fact assms)
725 show "PROP ?P" by (induct A) auto
731 A note on code generation: When defining some function containing a
732 subterm @{term "fold F"}, code generation is not automatic. When
733 interpreting locale @{text left_commutative} with @{text F}, the
734 would be code thms for @{const fold} become thms like
735 @{term "fold F z {#} = z"} where @{text F} is not a pattern but
736 contains defined symbols, i.e.\ is not a code thm. Hence a separate
737 constant with its own code thms needs to be introduced for @{text
738 F}. See the image operator below.
742 subsection {* Image *}
744 definition image_mset :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" where
745 "image_mset f = fold (plus o single o f) {#}"
747 lemma comp_fun_commute_mset_image:
748 "comp_fun_commute (plus o single o f)"
750 qed (simp add: add_ac fun_eq_iff)
752 lemma image_mset_empty [simp]: "image_mset f {#} = {#}"
753 by (simp add: image_mset_def)
755 lemma image_mset_single [simp]: "image_mset f {#x#} = {#f x#}"
757 interpret comp_fun_commute "plus o single o f"
758 by (fact comp_fun_commute_mset_image)
759 show ?thesis by (simp add: image_mset_def)
762 lemma image_mset_union [simp]:
763 "image_mset f (M + N) = image_mset f M + image_mset f N"
765 interpret comp_fun_commute "plus o single o f"
766 by (fact comp_fun_commute_mset_image)
767 show ?thesis by (induct N) (simp_all add: image_mset_def add_ac)
770 corollary image_mset_insert:
771 "image_mset f (M + {#a#}) = image_mset f M + {#f a#}"
774 lemma set_of_image_mset [simp]:
775 "set_of (image_mset f M) = image f (set_of M)"
776 by (induct M) simp_all
778 lemma size_image_mset [simp]:
779 "size (image_mset f M) = size M"
780 by (induct M) simp_all
782 lemma image_mset_is_empty_iff [simp]:
783 "image_mset f M = {#} \<longleftrightarrow> M = {#}"
787 "_comprehension1_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> 'a multiset"
790 "{#e. x:#M#}" == "CONST image_mset (%x. e) M"
793 "_comprehension2_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> bool \<Rightarrow> 'a multiset"
794 ("({#_/ | _ :# _./ _#})")
796 "{#e | x:#M. P#}" => "{#e. x :# {# x:#M. P#}#}"
799 This allows to write not just filters like @{term "{#x:#M. x<c#}"}
800 but also images like @{term "{#x+x. x:#M #}"} and @{term [source]
801 "{#x+x|x:#M. x<c#}"}, where the latter is currently displayed as
802 @{term "{#x+x|x:#M. x<c#}"}.
805 enriched_type image_mset: image_mset
807 fix f g show "image_mset f \<circ> image_mset g = image_mset (f \<circ> g)"
810 show "(image_mset f \<circ> image_mset g) A = image_mset (f \<circ> g) A"
811 by (induct A) simp_all
813 show "image_mset id = id"
816 show "image_mset id A = id A"
817 by (induct A) simp_all
821 declare image_mset.identity [simp]
824 subsection {* Alternative representations *}
826 subsubsection {* Lists *}
828 primrec multiset_of :: "'a list \<Rightarrow> 'a multiset" where
829 "multiset_of [] = {#}" |
830 "multiset_of (a # x) = multiset_of x + {# a #}"
832 lemma in_multiset_in_set:
833 "x \<in># multiset_of xs \<longleftrightarrow> x \<in> set xs"
834 by (induct xs) simp_all
836 lemma count_multiset_of:
837 "count (multiset_of xs) x = length (filter (\<lambda>y. x = y) xs)"
838 by (induct xs) simp_all
840 lemma multiset_of_zero_iff[simp]: "(multiset_of x = {#}) = (x = [])"
843 lemma multiset_of_zero_iff_right[simp]: "({#} = multiset_of x) = (x = [])"
846 lemma set_of_multiset_of[simp]: "set_of (multiset_of x) = set x"
849 lemma mem_set_multiset_eq: "x \<in> set xs = (x :# multiset_of xs)"
852 lemma size_multiset_of [simp]: "size (multiset_of xs) = length xs"
853 by (induct xs) simp_all
855 lemma multiset_of_append [simp]:
856 "multiset_of (xs @ ys) = multiset_of xs + multiset_of ys"
857 by (induct xs arbitrary: ys) (auto simp: add_ac)
859 lemma multiset_of_filter:
860 "multiset_of (filter P xs) = {#x :# multiset_of xs. P x #}"
861 by (induct xs) simp_all
863 lemma multiset_of_rev [simp]:
864 "multiset_of (rev xs) = multiset_of xs"
865 by (induct xs) simp_all
867 lemma surj_multiset_of: "surj multiset_of"
868 apply (unfold surj_def)
870 apply (rule_tac M = y in multiset_induct)
872 apply (rule_tac x = "x # xa" in exI)
876 lemma set_count_greater_0: "set x = {a. count (multiset_of x) a > 0}"
879 lemma distinct_count_atmost_1:
880 "distinct x = (! a. count (multiset_of x) a = (if a \<in> set x then 1 else 0))"
881 apply (induct x, simp, rule iffI, simp_all)
883 apply (simp_all add: set_of_multiset_of [THEN sym] del: set_of_multiset_of)
884 apply (erule_tac x = a in allE, simp, clarify)
885 apply (erule_tac x = aa in allE, simp)
888 lemma multiset_of_eq_setD:
889 "multiset_of xs = multiset_of ys \<Longrightarrow> set xs = set ys"
890 by (rule) (auto simp add:multiset_eq_iff set_count_greater_0)
892 lemma set_eq_iff_multiset_of_eq_distinct:
893 "distinct x \<Longrightarrow> distinct y \<Longrightarrow>
894 (set x = set y) = (multiset_of x = multiset_of y)"
895 by (auto simp: multiset_eq_iff distinct_count_atmost_1)
897 lemma set_eq_iff_multiset_of_remdups_eq:
898 "(set x = set y) = (multiset_of (remdups x) = multiset_of (remdups y))"
900 apply (simp add: set_eq_iff_multiset_of_eq_distinct[THEN iffD1])
901 apply (drule distinct_remdups [THEN distinct_remdups
902 [THEN set_eq_iff_multiset_of_eq_distinct [THEN iffD2]]])
906 lemma multiset_of_compl_union [simp]:
907 "multiset_of [x\<leftarrow>xs. P x] + multiset_of [x\<leftarrow>xs. \<not>P x] = multiset_of xs"
908 by (induct xs) (auto simp: add_ac)
910 lemma count_multiset_of_length_filter:
911 "count (multiset_of xs) x = length (filter (\<lambda>y. x = y) xs)"
914 lemma nth_mem_multiset_of: "i < length ls \<Longrightarrow> (ls ! i) :# multiset_of ls"
915 apply (induct ls arbitrary: i)
921 lemma multiset_of_remove1[simp]:
922 "multiset_of (remove1 a xs) = multiset_of xs - {#a#}"
923 by (induct xs) (auto simp add: multiset_eq_iff)
925 lemma multiset_of_eq_length:
926 assumes "multiset_of xs = multiset_of ys"
927 shows "length xs = length ys"
928 using assms by (metis size_multiset_of)
930 lemma multiset_of_eq_length_filter:
931 assumes "multiset_of xs = multiset_of ys"
932 shows "length (filter (\<lambda>x. z = x) xs) = length (filter (\<lambda>y. z = y) ys)"
933 using assms by (metis count_multiset_of)
935 lemma fold_multiset_equiv:
936 assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
937 and equiv: "multiset_of xs = multiset_of ys"
938 shows "List.fold f xs = List.fold f ys"
939 using f equiv [symmetric]
940 proof (induct xs arbitrary: ys)
941 case Nil then show ?case by simp
944 then have *: "set ys = set (x # xs)" by (blast dest: multiset_of_eq_setD)
945 have "\<And>x y. x \<in> set ys \<Longrightarrow> y \<in> set ys \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
946 by (rule Cons.prems(1)) (simp_all add: *)
947 moreover from * have "x \<in> set ys" by simp
948 ultimately have "List.fold f ys = List.fold f (remove1 x ys) \<circ> f x" by (fact fold_remove1_split)
949 moreover from Cons.prems have "List.fold f xs = List.fold f (remove1 x ys)" by (auto intro: Cons.hyps)
950 ultimately show ?case by simp
956 lemma multiset_of_insort [simp]:
957 "multiset_of (insort_key k x xs) = {#x#} + multiset_of xs"
958 by (induct xs) (simp_all add: ac_simps)
960 lemma multiset_of_sort [simp]:
961 "multiset_of (sort_key k xs) = multiset_of xs"
962 by (induct xs) (simp_all add: ac_simps)
965 This lemma shows which properties suffice to show that a function
966 @{text "f"} with @{text "f xs = ys"} behaves like sort.
969 lemma properties_for_sort_key:
970 assumes "multiset_of ys = multiset_of xs"
971 and "\<And>k. k \<in> set ys \<Longrightarrow> filter (\<lambda>x. f k = f x) ys = filter (\<lambda>x. f k = f x) xs"
972 and "sorted (map f ys)"
973 shows "sort_key f xs = ys"
975 proof (induct xs arbitrary: ys)
976 case Nil then show ?case by simp
979 from Cons.prems(2) have
980 "\<forall>k \<in> set ys. filter (\<lambda>x. f k = f x) (remove1 x ys) = filter (\<lambda>x. f k = f x) xs"
981 by (simp add: filter_remove1)
982 with Cons.prems have "sort_key f xs = remove1 x ys"
983 by (auto intro!: Cons.hyps simp add: sorted_map_remove1)
984 moreover from Cons.prems have "x \<in> set ys"
985 by (auto simp add: mem_set_multiset_eq intro!: ccontr)
986 ultimately show ?case using Cons.prems by (simp add: insort_key_remove1)
989 lemma properties_for_sort:
990 assumes multiset: "multiset_of ys = multiset_of xs"
993 proof (rule properties_for_sort_key)
994 from multiset show "multiset_of ys = multiset_of xs" .
995 from `sorted ys` show "sorted (map (\<lambda>x. x) ys)" by simp
996 from multiset have "\<And>k. length (filter (\<lambda>y. k = y) ys) = length (filter (\<lambda>x. k = x) xs)"
997 by (rule multiset_of_eq_length_filter)
998 then have "\<And>k. replicate (length (filter (\<lambda>y. k = y) ys)) k = replicate (length (filter (\<lambda>x. k = x) xs)) k"
1000 then show "\<And>k. k \<in> set ys \<Longrightarrow> filter (\<lambda>y. k = y) ys = filter (\<lambda>x. k = x) xs"
1001 by (simp add: replicate_length_filter)
1004 lemma sort_key_by_quicksort:
1005 "sort_key f xs = sort_key f [x\<leftarrow>xs. f x < f (xs ! (length xs div 2))]
1006 @ [x\<leftarrow>xs. f x = f (xs ! (length xs div 2))]
1007 @ sort_key f [x\<leftarrow>xs. f x > f (xs ! (length xs div 2))]" (is "sort_key f ?lhs = ?rhs")
1008 proof (rule properties_for_sort_key)
1009 show "multiset_of ?rhs = multiset_of ?lhs"
1010 by (rule multiset_eqI) (auto simp add: multiset_of_filter)
1012 show "sorted (map f ?rhs)"
1013 by (auto simp add: sorted_append intro: sorted_map_same)
1016 assume "l \<in> set ?rhs"
1017 let ?pivot = "f (xs ! (length xs div 2))"
1018 have *: "\<And>x. f l = f x \<longleftrightarrow> f x = f l" by auto
1019 have "[x \<leftarrow> sort_key f xs . f x = f l] = [x \<leftarrow> xs. f x = f l]"
1020 unfolding filter_sort by (rule properties_for_sort_key) (auto intro: sorted_map_same)
1021 with * have **: "[x \<leftarrow> sort_key f xs . f l = f x] = [x \<leftarrow> xs. f l = f x]" by simp
1022 have "\<And>x P. P (f x) ?pivot \<and> f l = f x \<longleftrightarrow> P (f l) ?pivot \<and> f l = f x" by auto
1023 then have "\<And>P. [x \<leftarrow> sort_key f xs . P (f x) ?pivot \<and> f l = f x] =
1024 [x \<leftarrow> sort_key f xs. P (f l) ?pivot \<and> f l = f x]" by simp
1025 note *** = this [of "op <"] this [of "op >"] this [of "op ="]
1026 show "[x \<leftarrow> ?rhs. f l = f x] = [x \<leftarrow> ?lhs. f l = f x]"
1027 proof (cases "f l" ?pivot rule: linorder_cases)
1029 then have "f l \<noteq> ?pivot" and "\<not> f l > ?pivot" by auto
1030 with less show ?thesis
1031 by (simp add: filter_sort [symmetric] ** ***)
1033 case equal then show ?thesis
1034 by (simp add: * less_le)
1037 then have "f l \<noteq> ?pivot" and "\<not> f l < ?pivot" by auto
1038 with greater show ?thesis
1039 by (simp add: filter_sort [symmetric] ** ***)
1043 lemma sort_by_quicksort:
1044 "sort xs = sort [x\<leftarrow>xs. x < xs ! (length xs div 2)]
1045 @ [x\<leftarrow>xs. x = xs ! (length xs div 2)]
1046 @ sort [x\<leftarrow>xs. x > xs ! (length xs div 2)]" (is "sort ?lhs = ?rhs")
1047 using sort_key_by_quicksort [of "\<lambda>x. x", symmetric] by simp
1049 text {* A stable parametrized quicksort *}
1051 definition part :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b list \<Rightarrow> 'b list \<times> 'b list \<times> 'b list" where
1052 "part f pivot xs = ([x \<leftarrow> xs. f x < pivot], [x \<leftarrow> xs. f x = pivot], [x \<leftarrow> xs. pivot < f x])"
1054 lemma part_code [code]:
1055 "part f pivot [] = ([], [], [])"
1056 "part f pivot (x # xs) = (let (lts, eqs, gts) = part f pivot xs; x' = f x in
1057 if x' < pivot then (x # lts, eqs, gts)
1058 else if x' > pivot then (lts, eqs, x # gts)
1059 else (lts, x # eqs, gts))"
1060 by (auto simp add: part_def Let_def split_def)
1062 lemma sort_key_by_quicksort_code [code]:
1063 "sort_key f xs = (case xs of [] \<Rightarrow> []
1064 | [x] \<Rightarrow> xs
1065 | [x, y] \<Rightarrow> (if f x \<le> f y then xs else [y, x])
1066 | _ \<Rightarrow> (let (lts, eqs, gts) = part f (f (xs ! (length xs div 2))) xs
1067 in sort_key f lts @ eqs @ sort_key f gts))"
1069 case Nil then show ?thesis by simp
1071 case (Cons _ ys) note hyps = Cons show ?thesis
1073 case Nil with hyps show ?thesis by simp
1075 case (Cons _ zs) note hyps = hyps Cons show ?thesis
1077 case Nil with hyps show ?thesis by auto
1080 from sort_key_by_quicksort [of f xs]
1081 have "sort_key f xs = (let (lts, eqs, gts) = part f (f (xs ! (length xs div 2))) xs
1082 in sort_key f lts @ eqs @ sort_key f gts)"
1083 by (simp only: split_def Let_def part_def fst_conv snd_conv)
1084 with hyps Cons show ?thesis by (simp only: list.cases)
1091 hide_const (open) part
1093 lemma multiset_of_remdups_le: "multiset_of (remdups xs) \<le> multiset_of xs"
1094 by (induct xs) (auto intro: order_trans)
1096 lemma multiset_of_update:
1097 "i < length ls \<Longrightarrow> multiset_of (ls[i := v]) = multiset_of ls - {#ls ! i#} + {#v#}"
1098 proof (induct ls arbitrary: i)
1099 case Nil then show ?case by simp
1104 case 0 then show ?thesis by simp
1107 with Cons show ?thesis
1109 apply (subst add_assoc)
1110 apply (subst add_commute [of "{#v#}" "{#x#}"])
1111 apply (subst add_assoc [symmetric])
1113 apply (rule mset_le_multiset_union_diff_commute)
1114 apply (simp add: mset_le_single nth_mem_multiset_of)
1119 lemma multiset_of_swap:
1120 "i < length ls \<Longrightarrow> j < length ls \<Longrightarrow>
1121 multiset_of (ls[j := ls ! i, i := ls ! j]) = multiset_of ls"
1122 by (cases "i = j") (simp_all add: multiset_of_update nth_mem_multiset_of)
1125 subsubsection {* Association lists -- including code generation *}
1127 text {* Preliminaries *}
1129 text {* Raw operations on lists *}
1131 definition join_raw :: "('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
1133 "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (%v'. f k (v', v))) ys xs"
1135 lemma join_raw_Nil [simp]:
1136 "join_raw f xs [] = xs"
1137 by (simp add: join_raw_def)
1139 lemma join_raw_Cons [simp]:
1140 "join_raw f xs ((k, v) # ys) = map_default k v (%v'. f k (v', v)) (join_raw f xs ys)"
1141 by (simp add: join_raw_def)
1143 lemma map_of_join_raw:
1144 assumes "distinct (map fst ys)"
1145 shows "map_of (join_raw f xs ys) x = (case map_of xs x of None => map_of ys x | Some v =>
1146 (case map_of ys x of None => Some v | Some v' => Some (f x (v, v'))))"
1149 apply (auto simp add: map_of_map_default split: option.split)
1150 apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI)
1151 by (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2))
1153 lemma distinct_join_raw:
1154 assumes "distinct (map fst xs)"
1155 shows "distinct (map fst (join_raw f xs ys))"
1159 thus ?case by (cases y) (simp add: distinct_map_default)
1163 "subtract_entries_raw xs ys = foldr (%(k, v). AList.map_entry k (%v'. v' - v)) ys xs"
1165 lemma map_of_subtract_entries_raw:
1166 assumes "distinct (map fst ys)"
1167 shows "map_of (subtract_entries_raw xs ys) x = (case map_of xs x of None => None | Some v =>
1168 (case map_of ys x of None => Some v | Some v' => Some (v - v')))"
1169 using assms unfolding subtract_entries_raw_def
1172 apply (simp split: option.split)
1173 apply (simp add: map_of_map_entry)
1174 apply (auto split: option.split)
1175 apply (metis map_of_eq_None_iff option.simps(3) option.simps(4))
1176 by (metis map_of_eq_None_iff option.simps(4) option.simps(5))
1178 lemma distinct_subtract_entries_raw:
1179 assumes "distinct (map fst xs)"
1180 shows "distinct (map fst (subtract_entries_raw xs ys))"
1182 unfolding subtract_entries_raw_def by (induct ys) (auto simp add: distinct_map_entry)
1184 text {* Operations on alists with distinct keys *}
1186 lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
1188 by (simp add: distinct_join_raw)
1190 lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
1191 is subtract_entries_raw
1192 by (simp add: distinct_subtract_entries_raw)
1194 text {* Implementing multisets by means of association lists *}
1196 definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat" where
1197 "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)"
1199 lemma count_of_multiset:
1200 "count_of xs \<in> multiset"
1202 let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)}"
1203 have "?A \<subseteq> dom (map_of xs)"
1207 then have "0 < (case map_of xs x of None \<Rightarrow> 0\<Colon>nat | Some (n\<Colon>nat) \<Rightarrow> n)" by simp
1208 then have "map_of xs x \<noteq> None" by (cases "map_of xs x") auto
1209 then show "x \<in> dom (map_of xs)" by auto
1211 with finite_dom_map_of [of xs] have "finite ?A"
1212 by (auto intro: finite_subset)
1214 by (simp add: count_of_def fun_eq_iff multiset_def)
1217 lemma count_simps [simp]:
1218 "count_of [] = (\<lambda>_. 0)"
1219 "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)"
1220 by (simp_all add: count_of_def fun_eq_iff)
1222 lemma count_of_empty:
1223 "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0"
1224 by (induct xs) (simp_all add: count_of_def)
1226 lemma count_of_filter:
1227 "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)"
1230 lemma count_of_map_default [simp]:
1231 "count_of (map_default x b (%x. x + b) xs) y = (if x = y then count_of xs x + b else count_of xs y)"
1232 unfolding count_of_def by (simp add: map_of_map_default split: option.split)
1234 lemma count_of_join_raw:
1235 "distinct (map fst ys) ==> count_of xs x + count_of ys x = count_of (join_raw (%x (x, y). x + y) xs ys) x"
1236 unfolding count_of_def by (simp add: map_of_join_raw split: option.split)
1238 lemma count_of_subtract_entries_raw:
1239 "distinct (map fst ys) ==> count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x"
1240 unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split)
1242 text {* Code equations for multiset operations *}
1244 definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset" where
1245 "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))"
1249 lemma count_Bag [simp, code]:
1250 "count (Bag xs) = count_of (DAList.impl_of xs)"
1251 by (simp add: Bag_def count_of_multiset Abs_multiset_inverse)
1253 lemma Mempty_Bag [code]:
1254 "{#} = Bag (DAList.empty)"
1255 by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def)
1257 lemma single_Bag [code]:
1258 "{#x#} = Bag (DAList.update x 1 DAList.empty)"
1259 by (simp add: multiset_eq_iff alist.Alist_inverse update.rep_eq empty.rep_eq)
1261 lemma union_Bag [code]:
1262 "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)"
1263 by (rule multiset_eqI) (simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def)
1265 lemma minus_Bag [code]:
1266 "Bag xs - Bag ys = Bag (subtract_entries xs ys)"
1267 by (rule multiset_eqI)
1268 (simp add: count_of_subtract_entries_raw alist.Alist_inverse distinct_subtract_entries_raw subtract_entries_def)
1270 lemma filter_Bag [code]:
1271 "Multiset.filter P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)"
1272 by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq)
1274 lemma mset_less_eq_Bag [code]:
1275 "Bag xs \<le> A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)"
1276 (is "?lhs \<longleftrightarrow> ?rhs")
1278 assume ?lhs then show ?rhs
1279 by (auto simp add: mset_le_def)
1283 proof (rule mset_less_eqI)
1285 from `?rhs` have "count_of (DAList.impl_of xs) x \<le> count A x"
1286 by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty)
1287 then show "count (Bag xs) x \<le> count A x"
1288 by (simp add: mset_le_def)
1292 instantiation multiset :: (equal) equal
1296 [code]: "HOL.equal A B \<longleftrightarrow> (A::'a multiset) \<le> B \<and> B \<le> A"
1299 by default (simp add: equal_multiset_def eq_iff)
1303 text {* Quickcheck generators *}
1305 definition (in term_syntax)
1306 bagify :: "('a\<Colon>typerep, nat) alist \<times> (unit \<Rightarrow> Code_Evaluation.term)
1307 \<Rightarrow> 'a multiset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
1308 [code_unfold]: "bagify xs = Code_Evaluation.valtermify Bag {\<cdot>} xs"
1310 notation fcomp (infixl "\<circ>>" 60)
1311 notation scomp (infixl "\<circ>\<rightarrow>" 60)
1313 instantiation multiset :: (random) random
1317 "Quickcheck.random i = Quickcheck.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (bagify xs))"
1323 no_notation fcomp (infixl "\<circ>>" 60)
1324 no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
1326 instantiation multiset :: (exhaustive) exhaustive
1329 definition exhaustive_multiset :: "('a multiset => (bool * term list) option) => code_numeral => (bool * term list) option"
1331 "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (%xs. f (Bag xs)) i"
1337 instantiation multiset :: (full_exhaustive) full_exhaustive
1340 definition full_exhaustive_multiset :: "('a multiset * (unit => term) => (bool * term list) option) => code_numeral => (bool * term list) option"
1342 "full_exhaustive_multiset f i = Quickcheck_Exhaustive.full_exhaustive (%xs. f (bagify xs)) i"
1348 hide_const (open) bagify
1351 subsection {* The multiset order *}
1353 subsubsection {* Well-foundedness *}
1355 definition mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
1356 "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
1357 (\<forall>b. b :# K --> (b, a) \<in> r)}"
1359 definition mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" where
1360 "mult r = (mult1 r)\<^sup>+"
1362 lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
1363 by (simp add: mult1_def)
1365 lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==>
1366 (\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
1367 (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)"
1368 (is "_ \<Longrightarrow> ?case1 (mult1 r) \<or> ?case2")
1369 proof (unfold mult1_def)
1370 let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r"
1371 let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
1372 let ?case1 = "?case1 {(N, M). ?R N M}"
1374 assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}"
1375 then have "\<exists>a' M0' K.
1376 M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp
1377 then show "?case1 \<or> ?case2"
1378 proof (elim exE conjE)
1380 assume N: "N = M0' + K" and r: "?r K a'"
1381 assume "M0 + {#a#} = M0' + {#a'#}"
1382 then have "M0 = M0' \<and> a = a' \<or>
1383 (\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})"
1384 by (simp only: add_eq_conv_ex)
1386 proof (elim disjE conjE exE)
1387 assume "M0 = M0'" "a = a'"
1388 with N r have "?r K a \<and> N = M0 + K" by simp
1389 then have ?case2 .. then show ?thesis ..
1392 assume "M0' = K' + {#a#}"
1393 with N have n: "N = K' + K + {#a#}" by (simp add: add_ac)
1395 assume "M0 = K' + {#a'#}"
1396 with r have "?R (K' + K) M0" by blast
1397 with n have ?case1 by simp then show ?thesis ..
1402 lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)"
1408 assume M0: "M0 \<in> ?W"
1409 and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
1410 and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W"
1411 have "M0 + {#a#} \<in> ?W"
1412 proof (rule accI [of "M0 + {#a#}"])
1414 assume "(N, M0 + {#a#}) \<in> ?R"
1415 then have "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or>
1416 (\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))"
1418 then show "N \<in> ?W"
1419 proof (elim exE disjE conjE)
1420 fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}"
1421 from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" ..
1422 from this and `(M, M0) \<in> ?R` have "M + {#a#} \<in> ?W" ..
1423 then show "N \<in> ?W" by (simp only: N)
1426 assume N: "N = M0 + K"
1427 assume "\<forall>b. b :# K --> (b, a) \<in> r"
1428 then have "M0 + K \<in> ?W"
1431 from M0 show "M0 + {#} \<in> ?W" by simp
1434 from add.prems have "(x, a) \<in> r" by simp
1435 with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
1436 moreover from add have "M0 + K \<in> ?W" by simp
1437 ultimately have "(M0 + K) + {#x#} \<in> ?W" ..
1438 then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add_assoc)
1440 then show "N \<in> ?W" by (simp only: N)
1443 } note tedious_reasoning = this
1451 fix b assume "(b, {#}) \<in> ?R"
1452 with not_less_empty show "b \<in> ?W" by contradiction
1455 fix M a assume "M \<in> ?W"
1456 from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
1459 assume r: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
1460 show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
1462 fix M assume "M \<in> ?W"
1463 then show "M + {#a#} \<in> ?W"
1464 by (rule acc_induct) (rule tedious_reasoning [OF _ r])
1467 from this and `M \<in> ?W` show "M + {#a#} \<in> ?W" ..
1471 theorem wf_mult1: "wf r ==> wf (mult1 r)"
1472 by (rule acc_wfI) (rule all_accessible)
1474 theorem wf_mult: "wf r ==> wf (mult r)"
1475 unfolding mult_def by (rule wf_trancl) (rule wf_mult1)
1478 subsubsection {* Closure-free presentation *}
1480 text {* One direction. *}
1482 lemma mult_implies_one_step:
1483 "trans r ==> (M, N) \<in> mult r ==>
1484 \<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
1485 (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)"
1486 apply (unfold mult_def mult1_def set_of_def)
1487 apply (erule converse_trancl_induct, clarify)
1488 apply (rule_tac x = M0 in exI, simp, clarify)
1489 apply (case_tac "a :# K")
1490 apply (rule_tac x = I in exI)
1491 apply (simp (no_asm))
1492 apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
1493 apply (simp (no_asm_simp) add: add_assoc [symmetric])
1494 apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
1495 apply (simp add: diff_union_single_conv)
1496 apply (simp (no_asm_use) add: trans_def)
1498 apply (subgoal_tac "a :# I")
1499 apply (rule_tac x = "I - {#a#}" in exI)
1500 apply (rule_tac x = "J + {#a#}" in exI)
1501 apply (rule_tac x = "K + Ka" in exI)
1503 apply (simp add: multiset_eq_iff split: nat_diff_split)
1505 apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong, simp)
1506 apply (simp add: multiset_eq_iff split: nat_diff_split)
1507 apply (simp (no_asm_use) add: trans_def)
1509 apply (subgoal_tac "a :# (M0 + {#a#})")
1511 apply (simp (no_asm))
1514 lemma one_step_implies_mult_aux:
1516 \<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r))
1517 --> (I + K, I + J) \<in> mult r"
1518 apply (induct_tac n, auto)
1519 apply (frule size_eq_Suc_imp_eq_union, clarify)
1520 apply (rename_tac "J'", simp)
1521 apply (erule notE, auto)
1522 apply (case_tac "J' = {#}")
1523 apply (simp add: mult_def)
1524 apply (rule r_into_trancl)
1525 apply (simp add: mult1_def set_of_def, blast)
1526 txt {* Now we know @{term "J' \<noteq> {#}"}. *}
1527 apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition)
1528 apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp)
1529 apply (erule ssubst)
1530 apply (simp add: Ball_def, auto)
1532 "((I + {# x :# K. (x, a) \<in> r #}) + {# x :# K. (x, a) \<notin> r #},
1533 (I + {# x :# K. (x, a) \<in> r #}) + J') \<in> mult r")
1536 apply (simp (no_asm_use) add: add_assoc [symmetric] mult_def)
1537 apply (erule trancl_trans)
1538 apply (rule r_into_trancl)
1539 apply (simp add: mult1_def set_of_def)
1540 apply (rule_tac x = a in exI)
1541 apply (rule_tac x = "I + J'" in exI)
1542 apply (simp add: add_ac)
1545 lemma one_step_implies_mult:
1546 "trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r
1547 ==> (I + K, I + J) \<in> mult r"
1548 using one_step_implies_mult_aux by blast
1551 subsubsection {* Partial-order properties *}
1553 definition less_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where
1554 "M' <# M \<longleftrightarrow> (M', M) \<in> mult {(x', x). x' < x}"
1556 definition le_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<=#" 50) where
1557 "M' <=# M \<longleftrightarrow> M' <# M \<or> M' = M"
1559 notation (xsymbols) less_multiset (infix "\<subset>#" 50)
1560 notation (xsymbols) le_multiset (infix "\<subseteq>#" 50)
1562 interpretation multiset_order: order le_multiset less_multiset
1564 have irrefl: "\<And>M :: 'a multiset. \<not> M \<subset># M"
1566 fix M :: "'a multiset"
1567 assume "M \<subset># M"
1568 then have MM: "(M, M) \<in> mult {(x, y). x < y}" by (simp add: less_multiset_def)
1569 have "trans {(x'::'a, x). x' < x}"
1570 by (rule transI) simp
1572 ultimately have "\<exists>I J K. M = I + J \<and> M = I + K
1573 \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> {(x, y). x < y})"
1574 by (rule mult_implies_one_step)
1575 then obtain I J K where "M = I + J" and "M = I + K"
1576 and "J \<noteq> {#}" and "(\<forall>k\<in>set_of K. \<exists>j\<in>set_of J. (k, j) \<in> {(x, y). x < y})" by blast
1577 then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_of K. \<exists>j\<in>set_of K. k < j" by auto
1578 have "finite (set_of K)" by simp
1580 ultimately have "set_of K = {}"
1581 by (induct rule: finite_induct) (auto intro: order_less_trans)
1582 with aux1 show False by simp
1584 have trans: "\<And>K M N :: 'a multiset. K \<subset># M \<Longrightarrow> M \<subset># N \<Longrightarrow> K \<subset># N"
1585 unfolding less_multiset_def mult_def by (blast intro: trancl_trans)
1586 show "class.order (le_multiset :: 'a multiset \<Rightarrow> _) less_multiset"
1587 by default (auto simp add: le_multiset_def irrefl dest: trans)
1590 lemma mult_less_irrefl [elim!]: "M \<subset># (M::'a::order multiset) ==> R"
1594 subsubsection {* Monotonicity of multiset union *}
1596 lemma mult1_union: "(B, D) \<in> mult1 r ==> (C + B, C + D) \<in> mult1 r"
1597 apply (unfold mult1_def)
1599 apply (rule_tac x = a in exI)
1600 apply (rule_tac x = "C + M0" in exI)
1601 apply (simp add: add_assoc)
1604 lemma union_less_mono2: "B \<subset># D ==> C + B \<subset># C + (D::'a::order multiset)"
1605 apply (unfold less_multiset_def mult_def)
1606 apply (erule trancl_induct)
1607 apply (blast intro: mult1_union)
1608 apply (blast intro: mult1_union trancl_trans)
1611 lemma union_less_mono1: "B \<subset># D ==> B + C \<subset># D + (C::'a::order multiset)"
1612 apply (subst add_commute [of B C])
1613 apply (subst add_commute [of D C])
1614 apply (erule union_less_mono2)
1617 lemma union_less_mono:
1618 "A \<subset># C ==> B \<subset># D ==> A + B \<subset># C + (D::'a::order multiset)"
1619 by (blast intro!: union_less_mono1 union_less_mono2 multiset_order.less_trans)
1621 interpretation multiset_order: ordered_ab_semigroup_add plus le_multiset less_multiset
1623 qed (auto simp add: le_multiset_def intro: union_less_mono2)
1626 subsection {* Termination proofs with multiset orders *}
1628 lemma multi_member_skip: "x \<in># XS \<Longrightarrow> x \<in># {# y #} + XS"
1629 and multi_member_this: "x \<in># {# x #} + XS"
1630 and multi_member_last: "x \<in># {# x #}"
1633 definition "ms_strict = mult pair_less"
1634 definition "ms_weak = ms_strict \<union> Id"
1636 lemma ms_reduction_pair: "reduction_pair (ms_strict, ms_weak)"
1637 unfolding reduction_pair_def ms_strict_def ms_weak_def pair_less_def
1638 by (auto intro: wf_mult1 wf_trancl simp: mult_def)
1641 "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z + B) \<in> ms_strict"
1642 unfolding ms_strict_def
1643 by (rule one_step_implies_mult) (auto simp add: max_strict_def pair_less_def elim!:max_ext.cases)
1646 "(set_of A, set_of B) \<in> max_strict \<or> A = {#} \<and> B = {#}
1647 \<Longrightarrow> (Z + A, Z + B) \<in> ms_weak"
1648 unfolding ms_weak_def ms_strict_def
1649 by (auto simp add: pair_less_def max_strict_def elim!:max_ext.cases intro: one_step_implies_mult)
1653 pw_leq_empty: "pw_leq {#} {#}"
1654 | pw_leq_step: "\<lbrakk>(x,y) \<in> pair_leq; pw_leq X Y \<rbrakk> \<Longrightarrow> pw_leq ({#x#} + X) ({#y#} + Y)"
1657 "(x, y) \<in> pair_leq \<Longrightarrow> pw_leq {#x#} {#y#}"
1658 by (drule pw_leq_step) (rule pw_leq_empty, simp)
1661 assumes "pw_leq X Y"
1662 shows "\<exists>A B Z. X = A + Z \<and> Y = B + Z \<and> ((set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
1665 case pw_leq_empty thus ?case by auto
1667 case (pw_leq_step x y X Y)
1668 then obtain A B Z where
1669 [simp]: "X = A + Z" "Y = B + Z"
1670 and 1[simp]: "(set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#})"
1672 from pw_leq_step have "x = y \<or> (x, y) \<in> pair_less"
1673 unfolding pair_leq_def by auto
1676 assume [simp]: "x = y"
1678 "{#x#} + X = A + ({#y#}+Z)
1679 \<and> {#y#} + Y = B + ({#y#}+Z)
1680 \<and> ((set_of A, set_of B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
1681 by (auto simp: add_ac)
1682 thus ?case by (intro exI)
1684 assume A: "(x, y) \<in> pair_less"
1685 let ?A' = "{#x#} + A" and ?B' = "{#y#} + B"
1686 have "{#x#} + X = ?A' + Z"
1687 "{#y#} + Y = ?B' + Z"
1688 by (auto simp add: add_ac)
1690 "(set_of ?A', set_of ?B') \<in> max_strict"
1691 using 1 A unfolding max_strict_def
1692 by (auto elim!: max_ext.cases)
1693 ultimately show ?thesis by blast
1698 assumes pwleq: "pw_leq Z Z'"
1699 shows ms_strictI: "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_strict"
1700 and ms_weakI1: "(set_of A, set_of B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_weak"
1701 and ms_weakI2: "(Z + {#}, Z' + {#}) \<in> ms_weak"
1703 from pw_leq_split[OF pwleq]
1705 where [simp]: "Z = A' + Z''" "Z' = B' + Z''"
1706 and mx_or_empty: "(set_of A', set_of B') \<in> max_strict \<or> (A' = {#} \<and> B' = {#})"
1709 assume max: "(set_of A, set_of B) \<in> max_strict"
1711 have "(Z'' + (A + A'), Z'' + (B + B')) \<in> ms_strict"
1713 assume max': "(set_of A', set_of B') \<in> max_strict"
1714 with max have "(set_of (A + A'), set_of (B + B')) \<in> max_strict"
1715 by (auto simp: max_strict_def intro: max_ext_additive)
1716 thus ?thesis by (rule smsI)
1718 assume [simp]: "A' = {#} \<and> B' = {#}"
1719 show ?thesis by (rule smsI) (auto intro: max)
1721 thus "(Z + A, Z' + B) \<in> ms_strict" by (simp add:add_ac)
1722 thus "(Z + A, Z' + B) \<in> ms_weak" by (simp add: ms_weak_def)
1725 have "(Z'' + A', Z'' + B') \<in> ms_weak" by (rule wmsI)
1726 thus "(Z + {#}, Z' + {#}) \<in> ms_weak" by (simp add:add_ac)
1729 lemma empty_neutral: "{#} + x = x" "x + {#} = x"
1730 and nonempty_plus: "{# x #} + rs \<noteq> {#}"
1731 and nonempty_single: "{# x #} \<noteq> {#}"
1736 fun msetT T = Type (@{type_name multiset}, [T]);
1738 fun mk_mset T [] = Const (@{const_abbrev Mempty}, msetT T)
1739 | mk_mset T [x] = Const (@{const_name single}, T --> msetT T) $ x
1740 | mk_mset T (x :: xs) =
1741 Const (@{const_name plus}, msetT T --> msetT T --> msetT T) $
1742 mk_mset T [x] $ mk_mset T xs
1744 fun mset_member_tac m i =
1746 rtac @{thm multi_member_this} i ORELSE rtac @{thm multi_member_last} i
1748 rtac @{thm multi_member_skip} i THEN mset_member_tac (m - 1) i)
1750 val mset_nonempty_tac =
1751 rtac @{thm nonempty_plus} ORELSE' rtac @{thm nonempty_single}
1753 val regroup_munion_conv =
1754 Function_Lib.regroup_conv @{const_abbrev Mempty} @{const_name plus}
1755 (map (fn t => t RS eq_reflection) (@{thms add_ac} @ @{thms empty_neutral}))
1757 fun unfold_pwleq_tac i =
1758 (rtac @{thm pw_leq_step} i THEN (fn st => unfold_pwleq_tac (i + 1) st))
1759 ORELSE (rtac @{thm pw_leq_lstep} i)
1760 ORELSE (rtac @{thm pw_leq_empty} i)
1762 val set_of_simps = [@{thm set_of_empty}, @{thm set_of_single}, @{thm set_of_union},
1763 @{thm Un_insert_left}, @{thm Un_empty_left}]
1765 ScnpReconstruct.multiset_setup (ScnpReconstruct.Multiset
1767 msetT=msetT, mk_mset=mk_mset, mset_regroup_conv=regroup_munion_conv,
1768 mset_member_tac=mset_member_tac, mset_nonempty_tac=mset_nonempty_tac,
1769 mset_pwleq_tac=unfold_pwleq_tac, set_of_simps=set_of_simps,
1770 smsI'= @{thm ms_strictI}, wmsI2''= @{thm ms_weakI2}, wmsI1= @{thm ms_weakI1},
1771 reduction_pair= @{thm ms_reduction_pair}
1777 subsection {* Legacy theorem bindings *}
1779 lemmas multi_count_eq = multiset_eq_iff [symmetric]
1781 lemma union_commute: "M + N = N + (M::'a multiset)"
1782 by (fact add_commute)
1784 lemma union_assoc: "(M + N) + K = M + (N + (K::'a multiset))"
1787 lemma union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))"
1788 by (fact add_left_commute)
1790 lemmas union_ac = union_assoc union_commute union_lcomm
1792 lemma union_right_cancel: "M + K = N + K \<longleftrightarrow> M = (N::'a multiset)"
1793 by (fact add_right_cancel)
1795 lemma union_left_cancel: "K + M = K + N \<longleftrightarrow> M = (N::'a multiset)"
1796 by (fact add_left_cancel)
1798 lemma multi_union_self_other_eq: "(A::'a multiset) + X = A + Y \<Longrightarrow> X = Y"
1799 by (fact add_imp_eq)
1801 lemma mset_less_trans: "(M::'a multiset) < K \<Longrightarrow> K < N \<Longrightarrow> M < N"
1802 by (fact order_less_trans)
1804 lemma multiset_inter_commute: "A #\<inter> B = B #\<inter> A"
1805 by (fact inf.commute)
1807 lemma multiset_inter_assoc: "A #\<inter> (B #\<inter> C) = A #\<inter> B #\<inter> C"
1808 by (fact inf.assoc [symmetric])
1810 lemma multiset_inter_left_commute: "A #\<inter> (B #\<inter> C) = B #\<inter> (A #\<inter> C)"
1811 by (fact inf.left_commute)
1813 lemmas multiset_inter_ac =
1814 multiset_inter_commute
1815 multiset_inter_assoc
1816 multiset_inter_left_commute
1818 lemma mult_less_not_refl:
1819 "\<not> M \<subset># (M::'a::order multiset)"
1820 by (fact multiset_order.less_irrefl)
1822 lemma mult_less_trans:
1823 "K \<subset># M ==> M \<subset># N ==> K \<subset># (N::'a::order multiset)"
1824 by (fact multiset_order.less_trans)
1826 lemma mult_less_not_sym:
1827 "M \<subset># N ==> \<not> N \<subset># (M::'a::order multiset)"
1828 by (fact multiset_order.less_not_sym)
1830 lemma mult_less_asym:
1831 "M \<subset># N ==> (\<not> P ==> N \<subset># (M::'a::order multiset)) ==> P"
1832 by (fact multiset_order.less_asym)
1835 fun multiset_postproc _ maybe_name all_values (T as Type (_, [elem_T]))
1838 val (maybe_opt, ps) =
1839 Nitpick_Model.dest_plain_fun t' ||> op ~~
1840 ||> map (apsnd (snd o HOLogic.dest_number))
1842 case AList.lookup (op =) ps t of
1843 SOME n => replicate n t
1844 | NONE => [Const (maybe_name, elem_T --> elem_T) $ t]
1846 case maps elems_for (all_values elem_T) @
1847 (if maybe_opt then [Const (Nitpick_Model.unrep (), elem_T)]
1849 [] => Const (@{const_name zero_class.zero}, T)
1850 | ts => foldl1 (fn (t1, t2) =>
1851 Const (@{const_name plus_class.plus}, T --> T --> T)
1853 (map (curry (op $) (Const (@{const_name single},
1856 | multiset_postproc _ _ _ _ t = t
1860 Nitpick_Model.register_term_postprocessor @{typ "'a multiset"}
1864 hide_const (open) fold