src/HOL/Arith.ML
 author nipkow Wed Jul 02 11:59:10 1997 +0200 (1997-07-02) changeset 3484 1e93eb09ebb9 parent 3457 a8ab7c64817c child 3718 d78cf498a88c permissions -rw-r--r--
Added the following lemmas tp Divides and a few others to Arith and NatDef:

div_le_mono, div_le_mono2, div_le_dividend, div_less_dividend

Fixed a broken proof in WF_Rel.ML. No idea what caused this.
```     1 (*  Title:      HOL/Arith.ML
```
```     2     ID:         \$Id\$
```
```     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
```
```     4     Copyright   1993  University of Cambridge
```
```     5
```
```     6 Proofs about elementary arithmetic: addition, multiplication, etc.
```
```     7 Some from the Hoare example from Norbert Galm
```
```     8 *)
```
```     9
```
```    10 (*** Basic rewrite rules for the arithmetic operators ***)
```
```    11
```
```    12 goalw Arith.thy [pred_def] "pred 0 = 0";
```
```    13 by (Simp_tac 1);
```
```    14 qed "pred_0";
```
```    15
```
```    16 goalw Arith.thy [pred_def] "pred(Suc n) = n";
```
```    17 by (Simp_tac 1);
```
```    18 qed "pred_Suc";
```
```    19
```
```    20 Addsimps [pred_0,pred_Suc];
```
```    21
```
```    22 (** pred **)
```
```    23
```
```    24 val prems = goal Arith.thy "n ~= 0 ==> Suc(pred n) = n";
```
```    25 by (res_inst_tac [("n","n")] natE 1);
```
```    26 by (cut_facts_tac prems 1);
```
```    27 by (ALLGOALS Asm_full_simp_tac);
```
```    28 qed "Suc_pred";
```
```    29 Addsimps [Suc_pred];
```
```    30
```
```    31 goal Arith.thy "pred(n) <= (n::nat)";
```
```    32 by (res_inst_tac [("n","n")] natE 1);
```
```    33 by (ALLGOALS Asm_simp_tac);
```
```    34 qed "pred_le";
```
```    35 AddIffs [pred_le];
```
```    36
```
```    37 goalw Arith.thy [pred_def] "m<=n --> pred(m) <= pred(n)";
```
```    38 by(simp_tac (!simpset setloop (split_tac[expand_nat_case])) 1);
```
```    39 qed_spec_mp "pred_le_mono";
```
```    40
```
```    41 (** Difference **)
```
```    42
```
```    43 qed_goalw "diff_0_eq_0" Arith.thy [pred_def]
```
```    44     "0 - n = 0"
```
```    45  (fn _ => [induct_tac "n" 1,  ALLGOALS Asm_simp_tac]);
```
```    46
```
```    47 (*Must simplify BEFORE the induction!!  (Else we get a critical pair)
```
```    48   Suc(m) - Suc(n)   rewrites to   pred(Suc(m) - n)  *)
```
```    49 qed_goalw "diff_Suc_Suc" Arith.thy [pred_def]
```
```    50     "Suc(m) - Suc(n) = m - n"
```
```    51  (fn _ =>
```
```    52   [Simp_tac 1, induct_tac "n" 1, ALLGOALS Asm_simp_tac]);
```
```    53
```
```    54 Addsimps [diff_0_eq_0, diff_Suc_Suc];
```
```    55
```
```    56
```
```    57 (**** Inductive properties of the operators ****)
```
```    58
```
```    59 (*** Addition ***)
```
```    60
```
```    61 qed_goal "add_0_right" Arith.thy "m + 0 = m"
```
```    62  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```    63
```
```    64 qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)"
```
```    65  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```    66
```
```    67 Addsimps [add_0_right,add_Suc_right];
```
```    68
```
```    69 (*Associative law for addition*)
```
```    70 qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)"
```
```    71  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```    72
```
```    73 (*Commutative law for addition*)
```
```    74 qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)"
```
```    75  (fn _ =>  [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```    76
```
```    77 qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)"
```
```    78  (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1,
```
```    79            rtac (add_commute RS arg_cong) 1]);
```
```    80
```
```    81 (*Addition is an AC-operator*)
```
```    82 val add_ac = [add_assoc, add_commute, add_left_commute];
```
```    83
```
```    84 goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)";
```
```    85 by (induct_tac "k" 1);
```
```    86 by (Simp_tac 1);
```
```    87 by (Asm_simp_tac 1);
```
```    88 qed "add_left_cancel";
```
```    89
```
```    90 goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)";
```
```    91 by (induct_tac "k" 1);
```
```    92 by (Simp_tac 1);
```
```    93 by (Asm_simp_tac 1);
```
```    94 qed "add_right_cancel";
```
```    95
```
```    96 goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)";
```
```    97 by (induct_tac "k" 1);
```
```    98 by (Simp_tac 1);
```
```    99 by (Asm_simp_tac 1);
```
```   100 qed "add_left_cancel_le";
```
```   101
```
```   102 goal Arith.thy "!!k::nat. (k + m < k + n) = (m<n)";
```
```   103 by (induct_tac "k" 1);
```
```   104 by (Simp_tac 1);
```
```   105 by (Asm_simp_tac 1);
```
```   106 qed "add_left_cancel_less";
```
```   107
```
```   108 Addsimps [add_left_cancel, add_right_cancel,
```
```   109           add_left_cancel_le, add_left_cancel_less];
```
```   110
```
```   111 (** Reasoning about m+0=0, etc. **)
```
```   112
```
```   113 goal Arith.thy "(m+n = 0) = (m=0 & n=0)";
```
```   114 by (induct_tac "m" 1);
```
```   115 by (ALLGOALS Asm_simp_tac);
```
```   116 qed "add_is_0";
```
```   117 Addsimps [add_is_0];
```
```   118
```
```   119 goal Arith.thy "(pred (m+n) = 0) = (m=0 & pred n = 0 | pred m = 0 & n=0)";
```
```   120 by (induct_tac "m" 1);
```
```   121 by (ALLGOALS (fast_tac (!claset addss (!simpset))));
```
```   122 qed "pred_add_is_0";
```
```   123 Addsimps [pred_add_is_0];
```
```   124
```
```   125 goal Arith.thy "!!n. n ~= 0 ==> m + pred n = pred(m+n)";
```
```   126 by (induct_tac "m" 1);
```
```   127 by (ALLGOALS Asm_simp_tac);
```
```   128 qed "add_pred";
```
```   129 Addsimps [add_pred];
```
```   130
```
```   131
```
```   132 (**** Additional theorems about "less than" ****)
```
```   133
```
```   134 goal Arith.thy "i<j --> (EX k. j = Suc(i+k))";
```
```   135 by (induct_tac "j" 1);
```
```   136 by (Simp_tac 1);
```
```   137 by (blast_tac (!claset addSEs [less_SucE]
```
```   138                        addSIs [add_0_right RS sym, add_Suc_right RS sym]) 1);
```
```   139 val lemma = result();
```
```   140
```
```   141 (* [| i<j;  !!x. j = Suc(i+x) ==> Q |] ==> Q *)
```
```   142 bind_thm ("less_natE", lemma RS mp RS exE);
```
```   143
```
```   144 goal Arith.thy "!!m. m<n --> (? k. n=Suc(m+k))";
```
```   145 by (induct_tac "n" 1);
```
```   146 by (ALLGOALS (simp_tac (!simpset addsimps [less_Suc_eq])));
```
```   147 by (blast_tac (!claset addSEs [less_SucE]
```
```   148                        addSIs [add_0_right RS sym, add_Suc_right RS sym]) 1);
```
```   149 qed_spec_mp "less_eq_Suc_add";
```
```   150
```
```   151 goal Arith.thy "n <= ((m + n)::nat)";
```
```   152 by (induct_tac "m" 1);
```
```   153 by (ALLGOALS Simp_tac);
```
```   154 by (etac le_trans 1);
```
```   155 by (rtac (lessI RS less_imp_le) 1);
```
```   156 qed "le_add2";
```
```   157
```
```   158 goal Arith.thy "n <= ((n + m)::nat)";
```
```   159 by (simp_tac (!simpset addsimps add_ac) 1);
```
```   160 by (rtac le_add2 1);
```
```   161 qed "le_add1";
```
```   162
```
```   163 bind_thm ("less_add_Suc1", (lessI RS (le_add1 RS le_less_trans)));
```
```   164 bind_thm ("less_add_Suc2", (lessI RS (le_add2 RS le_less_trans)));
```
```   165
```
```   166 (*"i <= j ==> i <= j+m"*)
```
```   167 bind_thm ("trans_le_add1", le_add1 RSN (2,le_trans));
```
```   168
```
```   169 (*"i <= j ==> i <= m+j"*)
```
```   170 bind_thm ("trans_le_add2", le_add2 RSN (2,le_trans));
```
```   171
```
```   172 (*"i < j ==> i < j+m"*)
```
```   173 bind_thm ("trans_less_add1", le_add1 RSN (2,less_le_trans));
```
```   174
```
```   175 (*"i < j ==> i < m+j"*)
```
```   176 bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
```
```   177
```
```   178 goal Arith.thy "!!i. i+j < (k::nat) ==> i<k";
```
```   179 by (etac rev_mp 1);
```
```   180 by (induct_tac "j" 1);
```
```   181 by (ALLGOALS Asm_simp_tac);
```
```   182 by (blast_tac (!claset addDs [Suc_lessD]) 1);
```
```   183 qed "add_lessD1";
```
```   184
```
```   185 goal Arith.thy "!!i::nat. ~ (i+j < i)";
```
```   186 by (rtac notI 1);
```
```   187 by (etac (add_lessD1 RS less_irrefl) 1);
```
```   188 qed "not_add_less1";
```
```   189
```
```   190 goal Arith.thy "!!i::nat. ~ (j+i < i)";
```
```   191 by (simp_tac (!simpset addsimps [add_commute, not_add_less1]) 1);
```
```   192 qed "not_add_less2";
```
```   193 AddIffs [not_add_less1, not_add_less2];
```
```   194
```
```   195 goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
```
```   196 by (etac le_trans 1);
```
```   197 by (rtac le_add1 1);
```
```   198 qed "le_imp_add_le";
```
```   199
```
```   200 goal Arith.thy "!!k::nat. m < n ==> m < n+k";
```
```   201 by (etac less_le_trans 1);
```
```   202 by (rtac le_add1 1);
```
```   203 qed "less_imp_add_less";
```
```   204
```
```   205 goal Arith.thy "m+k<=n --> m<=(n::nat)";
```
```   206 by (induct_tac "k" 1);
```
```   207 by (ALLGOALS Asm_simp_tac);
```
```   208 by (blast_tac (!claset addDs [Suc_leD]) 1);
```
```   209 qed_spec_mp "add_leD1";
```
```   210
```
```   211 goal Arith.thy "!!n::nat. m+k<=n ==> k<=n";
```
```   212 by (full_simp_tac (!simpset addsimps [add_commute]) 1);
```
```   213 by (etac add_leD1 1);
```
```   214 qed_spec_mp "add_leD2";
```
```   215
```
```   216 goal Arith.thy "!!n::nat. m+k<=n ==> m<=n & k<=n";
```
```   217 by (blast_tac (!claset addDs [add_leD1, add_leD2]) 1);
```
```   218 bind_thm ("add_leE", result() RS conjE);
```
```   219
```
```   220 goal Arith.thy "!!k l::nat. [| k<l; m+l = k+n |] ==> m<n";
```
```   221 by (safe_tac (!claset addSDs [less_eq_Suc_add]));
```
```   222 by (asm_full_simp_tac
```
```   223     (!simpset delsimps [add_Suc_right]
```
```   224                 addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
```
```   225 by (etac subst 1);
```
```   226 by (simp_tac (!simpset addsimps [less_add_Suc1]) 1);
```
```   227 qed "less_add_eq_less";
```
```   228
```
```   229
```
```   230 (*** Monotonicity of Addition ***)
```
```   231
```
```   232 (*strict, in 1st argument*)
```
```   233 goal Arith.thy "!!i j k::nat. i < j ==> i + k < j + k";
```
```   234 by (induct_tac "k" 1);
```
```   235 by (ALLGOALS Asm_simp_tac);
```
```   236 qed "add_less_mono1";
```
```   237
```
```   238 (*strict, in both arguments*)
```
```   239 goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l";
```
```   240 by (rtac (add_less_mono1 RS less_trans) 1);
```
```   241 by (REPEAT (assume_tac 1));
```
```   242 by (induct_tac "j" 1);
```
```   243 by (ALLGOALS Asm_simp_tac);
```
```   244 qed "add_less_mono";
```
```   245
```
```   246 (*A [clumsy] way of lifting < monotonicity to <= monotonicity *)
```
```   247 val [lt_mono,le] = goal Arith.thy
```
```   248      "[| !!i j::nat. i<j ==> f(i) < f(j);       \
```
```   249 \        i <= j                                 \
```
```   250 \     |] ==> f(i) <= (f(j)::nat)";
```
```   251 by (cut_facts_tac [le] 1);
```
```   252 by (asm_full_simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
```
```   253 by (blast_tac (!claset addSIs [lt_mono]) 1);
```
```   254 qed "less_mono_imp_le_mono";
```
```   255
```
```   256 (*non-strict, in 1st argument*)
```
```   257 goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
```
```   258 by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
```
```   259 by (etac add_less_mono1 1);
```
```   260 by (assume_tac 1);
```
```   261 qed "add_le_mono1";
```
```   262
```
```   263 (*non-strict, in both arguments*)
```
```   264 goal Arith.thy "!!k l::nat. [|i<=j;  k<=l |] ==> i + k <= j + l";
```
```   265 by (etac (add_le_mono1 RS le_trans) 1);
```
```   266 by (simp_tac (!simpset addsimps [add_commute]) 1);
```
```   267 (*j moves to the end because it is free while k, l are bound*)
```
```   268 by (etac add_le_mono1 1);
```
```   269 qed "add_le_mono";
```
```   270
```
```   271
```
```   272 (*** Multiplication ***)
```
```   273
```
```   274 (*right annihilation in product*)
```
```   275 qed_goal "mult_0_right" Arith.thy "m * 0 = 0"
```
```   276  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```   277
```
```   278 (*right successor law for multiplication*)
```
```   279 qed_goal "mult_Suc_right" Arith.thy  "m * Suc(n) = m + (m * n)"
```
```   280  (fn _ => [induct_tac "m" 1,
```
```   281            ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
```
```   282
```
```   283 Addsimps [mult_0_right, mult_Suc_right];
```
```   284
```
```   285 goal Arith.thy "1 * n = n";
```
```   286 by (Asm_simp_tac 1);
```
```   287 qed "mult_1";
```
```   288
```
```   289 goal Arith.thy "n * 1 = n";
```
```   290 by (Asm_simp_tac 1);
```
```   291 qed "mult_1_right";
```
```   292
```
```   293 (*Commutative law for multiplication*)
```
```   294 qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)"
```
```   295  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```   296
```
```   297 (*addition distributes over multiplication*)
```
```   298 qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)"
```
```   299  (fn _ => [induct_tac "m" 1,
```
```   300            ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
```
```   301
```
```   302 qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)"
```
```   303  (fn _ => [induct_tac "m" 1,
```
```   304            ALLGOALS(asm_simp_tac (!simpset addsimps add_ac))]);
```
```   305
```
```   306 (*Associative law for multiplication*)
```
```   307 qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)"
```
```   308   (fn _ => [induct_tac "m" 1,
```
```   309             ALLGOALS (asm_simp_tac (!simpset addsimps [add_mult_distrib]))]);
```
```   310
```
```   311 qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)"
```
```   312  (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1,
```
```   313            rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]);
```
```   314
```
```   315 val mult_ac = [mult_assoc,mult_commute,mult_left_commute];
```
```   316
```
```   317 goal Arith.thy "(m*n = 0) = (m=0 | n=0)";
```
```   318 by (induct_tac "m" 1);
```
```   319 by (induct_tac "n" 2);
```
```   320 by (ALLGOALS Asm_simp_tac);
```
```   321 qed "mult_is_0";
```
```   322 Addsimps [mult_is_0];
```
```   323
```
```   324
```
```   325 (*** Difference ***)
```
```   326
```
```   327 qed_goal "pred_Suc_diff" Arith.thy "pred(Suc m - n) = m - n"
```
```   328  (fn _ => [induct_tac "n" 1, ALLGOALS Asm_simp_tac]);
```
```   329 Addsimps [pred_Suc_diff];
```
```   330
```
```   331 qed_goal "diff_self_eq_0" Arith.thy "m - m = 0"
```
```   332  (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]);
```
```   333 Addsimps [diff_self_eq_0];
```
```   334
```
```   335 (*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *)
```
```   336 goal Arith.thy "~ m<n --> n+(m-n) = (m::nat)";
```
```   337 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   338 by (ALLGOALS Asm_simp_tac);
```
```   339 qed_spec_mp "add_diff_inverse";
```
```   340
```
```   341 goal Arith.thy "!!m. n<=m ==> n+(m-n) = (m::nat)";
```
```   342 by (asm_simp_tac (!simpset addsimps [add_diff_inverse, not_less_iff_le]) 1);
```
```   343 qed "le_add_diff_inverse";
```
```   344
```
```   345 goal Arith.thy "!!m. n<=m ==> (m-n)+n = (m::nat)";
```
```   346 by (asm_simp_tac (!simpset addsimps [le_add_diff_inverse, add_commute]) 1);
```
```   347 qed "le_add_diff_inverse2";
```
```   348
```
```   349 Addsimps  [le_add_diff_inverse, le_add_diff_inverse2];
```
```   350 Delsimps  [diff_Suc];
```
```   351
```
```   352
```
```   353 (*** More results about difference ***)
```
```   354
```
```   355 val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)";
```
```   356 by (rtac (prem RS rev_mp) 1);
```
```   357 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   358 by (ALLGOALS Asm_simp_tac);
```
```   359 qed "Suc_diff_n";
```
```   360
```
```   361 goal Arith.thy "m - n < Suc(m)";
```
```   362 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   363 by (etac less_SucE 3);
```
```   364 by (ALLGOALS (asm_simp_tac (!simpset addsimps [less_Suc_eq])));
```
```   365 qed "diff_less_Suc";
```
```   366
```
```   367 goal Arith.thy "!!m::nat. m - n <= m";
```
```   368 by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1);
```
```   369 by (ALLGOALS Asm_simp_tac);
```
```   370 qed "diff_le_self";
```
```   371
```
```   372 goal Arith.thy "!!i::nat. i-j-k = i - (j+k)";
```
```   373 by (res_inst_tac [("m","i"),("n","j")] diff_induct 1);
```
```   374 by (ALLGOALS Asm_simp_tac);
```
```   375 qed "diff_diff_left";
```
```   376
```
```   377 (*This and the next few suggested by Florian Kammueller*)
```
```   378 goal Arith.thy "!!i::nat. i-j-k = i-k-j";
```
```   379 by (simp_tac (!simpset addsimps [diff_diff_left, add_commute]) 1);
```
```   380 qed "diff_commute";
```
```   381
```
```   382 goal Arith.thy "!!i j k:: nat. k<=j --> j<=i --> i - (j - k) = i - j + k";
```
```   383 by (res_inst_tac [("m","i"),("n","j")] diff_induct 1);
```
```   384 by (ALLGOALS Asm_simp_tac);
```
```   385 by (asm_simp_tac
```
```   386     (!simpset addsimps [Suc_diff_n, le_imp_less_Suc, le_Suc_eq]) 1);
```
```   387 qed_spec_mp "diff_diff_right";
```
```   388
```
```   389 goal Arith.thy "!!i j k:: nat. k<=j --> (i + j) - k = i + (j - k)";
```
```   390 by (res_inst_tac [("m","j"),("n","k")] diff_induct 1);
```
```   391 by (ALLGOALS Asm_simp_tac);
```
```   392 qed_spec_mp "diff_add_assoc";
```
```   393
```
```   394 goal Arith.thy "!!n::nat. (n+m) - n = m";
```
```   395 by (induct_tac "n" 1);
```
```   396 by (ALLGOALS Asm_simp_tac);
```
```   397 qed "diff_add_inverse";
```
```   398 Addsimps [diff_add_inverse];
```
```   399
```
```   400 goal Arith.thy "!!n::nat.(m+n) - n = m";
```
```   401 by (simp_tac (!simpset addsimps [diff_add_assoc]) 1);
```
```   402 qed "diff_add_inverse2";
```
```   403 Addsimps [diff_add_inverse2];
```
```   404
```
```   405 goal Arith.thy "!!i j k::nat. i<=j ==> (j-i=k) = (j=k+i)";
```
```   406 by (Step_tac 1);
```
```   407 by (ALLGOALS Asm_simp_tac);
```
```   408 qed "le_imp_diff_is_add";
```
```   409
```
```   410 val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0";
```
```   411 by (rtac (prem RS rev_mp) 1);
```
```   412 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   413 by (asm_simp_tac (!simpset addsimps [less_Suc_eq]) 1);
```
```   414 by (ALLGOALS Asm_simp_tac);
```
```   415 qed "less_imp_diff_is_0";
```
```   416
```
```   417 val prems = goal Arith.thy "m-n = 0  -->  n-m = 0  -->  m=n";
```
```   418 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   419 by (REPEAT(Simp_tac 1 THEN TRY(atac 1)));
```
```   420 qed_spec_mp "diffs0_imp_equal";
```
```   421
```
```   422 val [prem] = goal Arith.thy "m<n ==> 0<n-m";
```
```   423 by (rtac (prem RS rev_mp) 1);
```
```   424 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   425 by (ALLGOALS Asm_simp_tac);
```
```   426 qed "less_imp_diff_positive";
```
```   427
```
```   428 goal Arith.thy "Suc(m)-n = (if m<n then 0 else Suc(m-n))";
```
```   429 by (simp_tac (!simpset addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
```
```   430                     setloop (split_tac [expand_if])) 1);
```
```   431 qed "if_Suc_diff_n";
```
```   432
```
```   433 goal Arith.thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)";
```
```   434 by (res_inst_tac [("m","k"),("n","i")] diff_induct 1);
```
```   435 by (ALLGOALS (strip_tac THEN' Simp_tac THEN' TRY o Blast_tac));
```
```   436 qed "zero_induct_lemma";
```
```   437
```
```   438 val prems = goal Arith.thy "[| P(k);  !!n. P(Suc(n)) ==> P(n) |] ==> P(0)";
```
```   439 by (rtac (diff_self_eq_0 RS subst) 1);
```
```   440 by (rtac (zero_induct_lemma RS mp RS mp) 1);
```
```   441 by (REPEAT (ares_tac ([impI,allI]@prems) 1));
```
```   442 qed "zero_induct";
```
```   443
```
```   444 goal Arith.thy "!!k::nat. (k+m) - (k+n) = m - n";
```
```   445 by (induct_tac "k" 1);
```
```   446 by (ALLGOALS Asm_simp_tac);
```
```   447 qed "diff_cancel";
```
```   448 Addsimps [diff_cancel];
```
```   449
```
```   450 goal Arith.thy "!!m::nat. (m+k) - (n+k) = m - n";
```
```   451 val add_commute_k = read_instantiate [("n","k")] add_commute;
```
```   452 by (asm_simp_tac (!simpset addsimps ([add_commute_k])) 1);
```
```   453 qed "diff_cancel2";
```
```   454 Addsimps [diff_cancel2];
```
```   455
```
```   456 (*From Clemens Ballarin*)
```
```   457 goal Arith.thy "!!n::nat. [| k<=n; n<=m |] ==> (m-k) - (n-k) = m-n";
```
```   458 by (subgoal_tac "k<=n --> n<=m --> (m-k) - (n-k) = m-n" 1);
```
```   459 by (Asm_full_simp_tac 1);
```
```   460 by (induct_tac "k" 1);
```
```   461 by (Simp_tac 1);
```
```   462 (* Induction step *)
```
```   463 by (subgoal_tac "Suc na <= m --> n <= m --> Suc na <= n --> \
```
```   464 \                Suc (m - Suc na) - Suc (n - Suc na) = m-n" 1);
```
```   465 by (Asm_full_simp_tac 1);
```
```   466 by (blast_tac (!claset addIs [le_trans]) 1);
```
```   467 by (auto_tac (!claset addIs [Suc_leD], !simpset delsimps [diff_Suc_Suc]));
```
```   468 by (asm_full_simp_tac (!simpset delsimps [Suc_less_eq]
```
```   469 		       addsimps [Suc_diff_n RS sym, le_eq_less_Suc]) 1);
```
```   470 qed "diff_right_cancel";
```
```   471
```
```   472 goal Arith.thy "!!n::nat. n - (n+m) = 0";
```
```   473 by (induct_tac "n" 1);
```
```   474 by (ALLGOALS Asm_simp_tac);
```
```   475 qed "diff_add_0";
```
```   476 Addsimps [diff_add_0];
```
```   477
```
```   478 (** Difference distributes over multiplication **)
```
```   479
```
```   480 goal Arith.thy "!!m::nat. (m - n) * k = (m * k) - (n * k)";
```
```   481 by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
```
```   482 by (ALLGOALS Asm_simp_tac);
```
```   483 qed "diff_mult_distrib" ;
```
```   484
```
```   485 goal Arith.thy "!!m::nat. k * (m - n) = (k * m) - (k * n)";
```
```   486 val mult_commute_k = read_instantiate [("m","k")] mult_commute;
```
```   487 by (simp_tac (!simpset addsimps [diff_mult_distrib, mult_commute_k]) 1);
```
```   488 qed "diff_mult_distrib2" ;
```
```   489 (*NOT added as rewrites, since sometimes they are used from right-to-left*)
```
```   490
```
```   491
```
```   492 (*** Monotonicity of Multiplication ***)
```
```   493
```
```   494 goal Arith.thy "!!i::nat. i<=j ==> i*k<=j*k";
```
```   495 by (induct_tac "k" 1);
```
```   496 by (ALLGOALS (asm_simp_tac (!simpset addsimps [add_le_mono])));
```
```   497 qed "mult_le_mono1";
```
```   498
```
```   499 (*<=monotonicity, BOTH arguments*)
```
```   500 goal Arith.thy "!!i::nat. [| i<=j; k<=l |] ==> i*k<=j*l";
```
```   501 by (etac (mult_le_mono1 RS le_trans) 1);
```
```   502 by (rtac le_trans 1);
```
```   503 by (stac mult_commute 2);
```
```   504 by (etac mult_le_mono1 2);
```
```   505 by (simp_tac (!simpset addsimps [mult_commute]) 1);
```
```   506 qed "mult_le_mono";
```
```   507
```
```   508 (*strict, in 1st argument; proof is by induction on k>0*)
```
```   509 goal Arith.thy "!!i::nat. [| i<j; 0<k |] ==> k*i < k*j";
```
```   510 by (eres_inst_tac [("i","0")] less_natE 1);
```
```   511 by (Asm_simp_tac 1);
```
```   512 by (induct_tac "x" 1);
```
```   513 by (ALLGOALS (asm_simp_tac (!simpset addsimps [add_less_mono])));
```
```   514 qed "mult_less_mono2";
```
```   515
```
```   516 goal Arith.thy "!!i::nat. [| i<j; 0<k |] ==> i*k < j*k";
```
```   517 by (dtac mult_less_mono2 1);
```
```   518 by (ALLGOALS (asm_full_simp_tac (!simpset addsimps [mult_commute])));
```
```   519 qed "mult_less_mono1";
```
```   520
```
```   521 goal Arith.thy "(0 < m*n) = (0<m & 0<n)";
```
```   522 by (induct_tac "m" 1);
```
```   523 by (induct_tac "n" 2);
```
```   524 by (ALLGOALS Asm_simp_tac);
```
```   525 qed "zero_less_mult_iff";
```
```   526
```
```   527 goal Arith.thy "(m*n = 1) = (m=1 & n=1)";
```
```   528 by (induct_tac "m" 1);
```
```   529 by (Simp_tac 1);
```
```   530 by (induct_tac "n" 1);
```
```   531 by (Simp_tac 1);
```
```   532 by (fast_tac (!claset addss !simpset) 1);
```
```   533 qed "mult_eq_1_iff";
```
```   534
```
```   535 goal Arith.thy "!!k. 0<k ==> (m*k < n*k) = (m<n)";
```
```   536 by (safe_tac (!claset addSIs [mult_less_mono1]));
```
```   537 by (cut_facts_tac [less_linear] 1);
```
```   538 by (blast_tac (!claset addDs [mult_less_mono1] addEs [less_asym]) 1);
```
```   539 qed "mult_less_cancel2";
```
```   540
```
```   541 goal Arith.thy "!!k. 0<k ==> (k*m < k*n) = (m<n)";
```
```   542 by (dtac mult_less_cancel2 1);
```
```   543 by (asm_full_simp_tac (!simpset addsimps [mult_commute]) 1);
```
```   544 qed "mult_less_cancel1";
```
```   545 Addsimps [mult_less_cancel1, mult_less_cancel2];
```
```   546
```
```   547 goal Arith.thy "!!k. 0<k ==> (m*k = n*k) = (m=n)";
```
```   548 by (cut_facts_tac [less_linear] 1);
```
```   549 by (Step_tac 1);
```
```   550 by (assume_tac 2);
```
```   551 by (ALLGOALS (dtac mult_less_mono1 THEN' assume_tac));
```
```   552 by (ALLGOALS Asm_full_simp_tac);
```
```   553 qed "mult_cancel2";
```
```   554
```
```   555 goal Arith.thy "!!k. 0<k ==> (k*m = k*n) = (m=n)";
```
```   556 by (dtac mult_cancel2 1);
```
```   557 by (asm_full_simp_tac (!simpset addsimps [mult_commute]) 1);
```
```   558 qed "mult_cancel1";
```
```   559 Addsimps [mult_cancel1, mult_cancel2];
```
```   560
```
```   561
```
```   562 (** Lemma for gcd **)
```
```   563
```
```   564 goal Arith.thy "!!m n. m = m*n ==> n=1 | m=0";
```
```   565 by (dtac sym 1);
```
```   566 by (rtac disjCI 1);
```
```   567 by (rtac nat_less_cases 1 THEN assume_tac 2);
```
```   568 by (fast_tac (!claset addSEs [less_SucE] addss !simpset) 1);
```
```   569 by (best_tac (!claset addDs [mult_less_mono2]
```
```   570                       addss (!simpset addsimps [zero_less_eq RS sym])) 1);
```
```   571 qed "mult_eq_self_implies_10";
```
```   572
```
```   573
```
```   574 (*** Subtraction laws -- from Clemens Ballarin ***)
```
```   575
```
```   576 goal Arith.thy "!! a b c::nat. [| a < b; c <= a |] ==> a-c < b-c";
```
```   577 by (subgoal_tac "c+(a-c) < c+(b-c)" 1);
```
```   578 by (Full_simp_tac 1);
```
```   579 by (subgoal_tac "c <= b" 1);
```
```   580 by (blast_tac (!claset addIs [less_imp_le, le_trans]) 2);
```
```   581 by (Asm_simp_tac 1);
```
```   582 qed "diff_less_mono";
```
```   583
```
```   584 goal Arith.thy "!! a b c::nat. a+b < c ==> a < c-b";
```
```   585 by (dtac diff_less_mono 1);
```
```   586 by (rtac le_add2 1);
```
```   587 by (Asm_full_simp_tac 1);
```
```   588 qed "add_less_imp_less_diff";
```
```   589
```
```   590 goal Arith.thy "!! n. n <= m ==> Suc m - n = Suc (m - n)";
```
```   591 by (rtac Suc_diff_n 1);
```
```   592 by (asm_full_simp_tac (!simpset addsimps [le_eq_less_Suc]) 1);
```
```   593 qed "Suc_diff_le";
```
```   594
```
```   595 goal Arith.thy "!! n. Suc i <= n ==> Suc (n - Suc i) = n - i";
```
```   596 by (asm_full_simp_tac
```
```   597     (!simpset addsimps [Suc_diff_n RS sym, le_eq_less_Suc]) 1);
```
```   598 qed "Suc_diff_Suc";
```
```   599
```
```   600 goal Arith.thy "!! i::nat. i <= n ==> n - (n - i) = i";
```
```   601 by (subgoal_tac "(n-i) + (n - (n-i)) = (n-i) + i" 1);
```
```   602 by (Full_simp_tac 1);
```
```   603 by (asm_simp_tac (!simpset addsimps [diff_le_self, add_commute]) 1);
```
```   604 qed "diff_diff_cancel";
```
```   605 Addsimps [diff_diff_cancel];
```
```   606
```
```   607 goal Arith.thy "!!k::nat. k <= n ==> m <= n + m - k";
```
```   608 by (etac rev_mp 1);
```
```   609 by (res_inst_tac [("m", "k"), ("n", "n")] diff_induct 1);
```
```   610 by (Simp_tac 1);
```
```   611 by (simp_tac (!simpset addsimps [less_add_Suc2, less_imp_le]) 1);
```
```   612 by (Simp_tac 1);
```
```   613 qed "le_add_diff";
```
```   614
```
```   615
```
```   616 (** (Anti)Monotonicity of subtraction -- by Stefan Merz **)
```
```   617
```
```   618 (* Monotonicity of subtraction in first argument *)
```
```   619 goal Arith.thy "!!n::nat. m<=n --> (m-l) <= (n-l)";
```
```   620 by (induct_tac "n" 1);
```
```   621 by (Simp_tac 1);
```
```   622 by (simp_tac (!simpset addsimps [le_Suc_eq]) 1);
```
```   623 by (rtac impI 1);
```
```   624 by (etac impE 1);
```
```   625 by (atac 1);
```
```   626 by (etac le_trans 1);
```
```   627 by (res_inst_tac [("m1","n")] (pred_Suc_diff RS subst) 1);
```
```   628 by (rtac pred_le 1);
```
```   629 qed_spec_mp "diff_le_mono";
```
```   630
```
```   631 goal Arith.thy "!!n::nat. m<=n ==> (l-n) <= (l-m)";
```
```   632 by (induct_tac "l" 1);
```
```   633 by (Simp_tac 1);
```
```   634 by (case_tac "n <= l" 1);
```
```   635 by (subgoal_tac "m <= l" 1);
```
```   636 by (asm_simp_tac (!simpset addsimps [Suc_diff_le]) 1);
```
```   637 by (fast_tac (!claset addEs [le_trans]) 1);
```
```   638 by (dtac not_leE 1);
```
```   639 by (asm_simp_tac (!simpset addsimps [if_Suc_diff_n]) 1);
```
```   640 qed_spec_mp "diff_le_mono2";
```