src/HOL/Metis.thy
author haftmann
Sun Oct 08 22:28:22 2017 +0200 (22 months ago)
changeset 66816 212a3334e7da
parent 62711 09df6a51ad3c
child 69605 a96320074298
permissions -rw-r--r--
more fundamental definition of div and mod on int
     1 (*  Title:      HOL/Metis.thy
     2     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     3     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 *)
     6 
     7 section \<open>Metis Proof Method\<close>
     8 
     9 theory Metis
    10 imports ATP
    11 begin
    12 
    13 ML_file "~~/src/Tools/Metis/metis.ML"
    14 
    15 
    16 subsection \<open>Literal selection and lambda-lifting helpers\<close>
    17 
    18 definition select :: "'a \<Rightarrow> 'a" where
    19 "select = (\<lambda>x. x)"
    20 
    21 lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
    22 by (cut_tac atomize_not [of "\<not> A"]) simp
    23 
    24 lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
    25 unfolding select_def by (rule atomize_not)
    26 
    27 lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
    28 unfolding select_def by (rule not_atomize)
    29 
    30 lemma select_FalseI: "False \<Longrightarrow> select False" by simp
    31 
    32 definition lambda :: "'a \<Rightarrow> 'a" where
    33 "lambda = (\<lambda>x. x)"
    34 
    35 lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
    36 unfolding lambda_def by assumption
    37 
    38 
    39 subsection \<open>Metis package\<close>
    40 
    41 ML_file "Tools/Metis/metis_generate.ML"
    42 ML_file "Tools/Metis/metis_reconstruct.ML"
    43 ML_file "Tools/Metis/metis_tactic.ML"
    44 
    45 hide_const (open) select fFalse fTrue fNot fComp fconj fdisj fimplies fAll fEx fequal lambda
    46 hide_fact (open) select_def not_atomize atomize_not_select not_atomize_select select_FalseI
    47   fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def fAll_def fEx_def fequal_def
    48   fTrue_ne_fFalse fNot_table fconj_table fdisj_table fimplies_table fAll_table fEx_table
    49   fequal_table fAll_table fEx_table fNot_law fComp_law fconj_laws fdisj_laws fimplies_laws
    50   fequal_laws fAll_law fEx_law lambda_def eq_lambdaI
    51 
    52 end