src/HOL/Real/HahnBanach/README.html
author wenzelm
Wed Sep 29 15:35:09 1999 +0200 (1999-09-29)
changeset 7655 21b7b0fd41bd
child 7927 b50446a33c16
permissions -rw-r--r--
The Hahn-Banach theorem for real vectorspaces;
     1 <HTML><HEAD><TITLE>HOL/Real/HahnBanach/README</TITLE></HEAD><BODY>
     2 
     3 <H3> The Hahn-Banach theorem for real vectorspaces (Isabelle/Isar).</H3>
     4 
     5 Author:     Gertrud Bauer, Technische Universit&auml;t M&uuml;nchen<P>
     6 
     7 This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,
     8 following H. Heuser, Funktionalanalysis, p. 228 -232.
     9 The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.
    10 It is a conclusion of Zorn's lemma.<P>
    11 
    12 Two different formaulations of the theorem are presented, one for general real vectorspaces
    13 and its application to normed vectorspaces. <P>
    14 
    15 The theorem says, that every continous linearform, defined on arbitrary subspaces
    16 (not only one-dimensional subspaces), can be extended to a continous linearform on
    17 the whole vectorspace.
    18 
    19 
    20 <HR>
    21 
    22 <ADDRESS>
    23 <A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>
    24 </ADDRESS>
    25 
    26 </BODY></HTML>
    27