src/ZF/AC/HH.thy
author clasohm
Tue Feb 06 12:27:17 1996 +0100 (1996-02-06)
changeset 1478 2b8c2a7547ab
parent 1401 0c439768f45c
child 11317 7f9e4c389318
permissions -rw-r--r--
expanded tabs
     1 (*  Title:      ZF/AC/HH.thy
     2     ID:         $Id$
     3     Author:     Krzysztof Grabczewski
     4 
     5 The theory file for the proofs of
     6   AC17 ==> AC1
     7   AC1 ==> WO2
     8   AC15 ==> WO6
     9 *)
    10 
    11 HH = AC_Equiv + Hartog + WO_AC + Let +
    12 
    13 consts
    14  
    15   HH                      :: [i, i, i] => i
    16 
    17 defs
    18 
    19   HH_def  "HH(f,x,a) == transrec(a, %b r. let z = x - (UN c:b. r`c)
    20                         in  if(f`z:Pow(z)-{0}, f`z, {x}))"
    21 
    22 end
    23