src/HOL/Presburger.thy
 author haftmann Wed Sep 06 13:48:02 2006 +0200 (2006-09-06) changeset 20485 3078fd2eec7b parent 20217 25b068a99d2b child 20595 db6bedfba498 permissions -rw-r--r--
got rid of Numeral.bin type
```     1 (*  Title:      HOL/Integ/Presburger.thy
```
```     2     ID:         \$Id\$
```
```     3     Author:     Amine Chaieb, Tobias Nipkow and Stefan Berghofer, TU Muenchen
```
```     4
```
```     5 File containing necessary theorems for the proof
```
```     6 generation for Cooper Algorithm
```
```     7 *)
```
```     8
```
```     9 header {* Presburger Arithmetic: Cooper's Algorithm *}
```
```    10
```
```    11 theory Presburger
```
```    12 imports NatSimprocs
```
```    13 uses ("cooper_dec.ML") ("cooper_proof.ML") ("qelim.ML")
```
```    14 	("reflected_presburger.ML") ("reflected_cooper.ML") ("presburger.ML")
```
```    15 begin
```
```    16
```
```    17 text {* Theorem for unitifying the coeffitients of @{text x} in an existential formula*}
```
```    18
```
```    19 theorem unity_coeff_ex: "(\<exists>x::int. P (l * x)) = (\<exists>x. l dvd (1*x+0) \<and> P x)"
```
```    20   apply (rule iffI)
```
```    21   apply (erule exE)
```
```    22   apply (rule_tac x = "l * x" in exI)
```
```    23   apply simp
```
```    24   apply (erule exE)
```
```    25   apply (erule conjE)
```
```    26   apply (erule dvdE)
```
```    27   apply (rule_tac x = k in exI)
```
```    28   apply simp
```
```    29   done
```
```    30
```
```    31 lemma uminus_dvd_conv: "(d dvd (t::int)) = (-d dvd t)"
```
```    32 apply(unfold dvd_def)
```
```    33 apply(rule iffI)
```
```    34 apply(clarsimp)
```
```    35 apply(rename_tac k)
```
```    36 apply(rule_tac x = "-k" in exI)
```
```    37 apply simp
```
```    38 apply(clarsimp)
```
```    39 apply(rename_tac k)
```
```    40 apply(rule_tac x = "-k" in exI)
```
```    41 apply simp
```
```    42 done
```
```    43
```
```    44 lemma uminus_dvd_conv': "(d dvd (t::int)) = (d dvd -t)"
```
```    45 apply(unfold dvd_def)
```
```    46 apply(rule iffI)
```
```    47 apply(clarsimp)
```
```    48 apply(rule_tac x = "-k" in exI)
```
```    49 apply simp
```
```    50 apply(clarsimp)
```
```    51 apply(rule_tac x = "-k" in exI)
```
```    52 apply simp
```
```    53 done
```
```    54
```
```    55
```
```    56
```
```    57 text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} less than some integer @{text z}.*}
```
```    58
```
```    59 theorem eq_minf_conjI: "\<exists>z1::int. \<forall>x. x < z1 \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
```
```    60   \<exists>z2::int. \<forall>x. x < z2 \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
```
```    61   \<exists>z::int. \<forall>x. x < z \<longrightarrow> ((A1 x \<and> B1 x) = (A2 x \<and> B2 x))"
```
```    62   apply (erule exE)+
```
```    63   apply (rule_tac x = "min z1 z2" in exI)
```
```    64   apply simp
```
```    65   done
```
```    66
```
```    67
```
```    68 theorem eq_minf_disjI: "\<exists>z1::int. \<forall>x. x < z1 \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
```
```    69   \<exists>z2::int. \<forall>x. x < z2 \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
```
```    70   \<exists>z::int. \<forall>x. x < z \<longrightarrow> ((A1 x \<or> B1 x) = (A2 x \<or> B2 x))"
```
```    71
```
```    72   apply (erule exE)+
```
```    73   apply (rule_tac x = "min z1 z2" in exI)
```
```    74   apply simp
```
```    75   done
```
```    76
```
```    77
```
```    78 text {*Theorems for the combination of proofs of the equality of @{text P} and @{text P_m} for integers @{text x} greather than some integer @{text z}.*}
```
```    79
```
```    80 theorem eq_pinf_conjI: "\<exists>z1::int. \<forall>x. z1 < x \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
```
```    81   \<exists>z2::int. \<forall>x. z2 < x \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
```
```    82   \<exists>z::int. \<forall>x. z < x \<longrightarrow> ((A1 x \<and> B1 x) = (A2 x \<and> B2 x))"
```
```    83   apply (erule exE)+
```
```    84   apply (rule_tac x = "max z1 z2" in exI)
```
```    85   apply simp
```
```    86   done
```
```    87
```
```    88
```
```    89 theorem eq_pinf_disjI: "\<exists>z1::int. \<forall>x. z1 < x \<longrightarrow> (A1 x = A2 x) \<Longrightarrow>
```
```    90   \<exists>z2::int. \<forall>x. z2 < x \<longrightarrow> (B1 x = B2 x) \<Longrightarrow>
```
```    91   \<exists>z::int. \<forall>x. z < x  \<longrightarrow> ((A1 x \<or> B1 x) = (A2 x \<or> B2 x))"
```
```    92   apply (erule exE)+
```
```    93   apply (rule_tac x = "max z1 z2" in exI)
```
```    94   apply simp
```
```    95   done
```
```    96
```
```    97 text {*
```
```    98   \medskip Theorems for the combination of proofs of the modulo @{text
```
```    99   D} property for @{text "P plusinfinity"}
```
```   100
```
```   101   FIXME: This is THE SAME theorem as for the @{text minusinf} version,
```
```   102   but with @{text "+k.."} instead of @{text "-k.."} In the future
```
```   103   replace these both with only one. *}
```
```   104
```
```   105 theorem modd_pinf_conjI: "\<forall>(x::int) k. A x = A (x+k*d) \<Longrightarrow>
```
```   106   \<forall>(x::int) k. B x = B (x+k*d) \<Longrightarrow>
```
```   107   \<forall>(x::int) (k::int). (A x \<and> B x) = (A (x+k*d) \<and> B (x+k*d))"
```
```   108   by simp
```
```   109
```
```   110 theorem modd_pinf_disjI: "\<forall>(x::int) k. A x = A (x+k*d) \<Longrightarrow>
```
```   111   \<forall>(x::int) k. B x = B (x+k*d) \<Longrightarrow>
```
```   112   \<forall>(x::int) (k::int). (A x \<or> B x) = (A (x+k*d) \<or> B (x+k*d))"
```
```   113   by simp
```
```   114
```
```   115 text {*
```
```   116   This is one of the cases where the simplifed formula is prooved to
```
```   117   habe some property (in relation to @{text P_m}) but we need to prove
```
```   118   the property for the original formula (@{text P_m})
```
```   119
```
```   120   FIXME: This is exaclty the same thm as for @{text minusinf}. *}
```
```   121
```
```   122 lemma pinf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x))  ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) "
```
```   123   by blast
```
```   124
```
```   125
```
```   126 text {*
```
```   127   \medskip Theorems for the combination of proofs of the modulo @{text D}
```
```   128   property for @{text "P minusinfinity"} *}
```
```   129
```
```   130 theorem modd_minf_conjI: "\<forall>(x::int) k. A x = A (x-k*d) \<Longrightarrow>
```
```   131   \<forall>(x::int) k. B x = B (x-k*d) \<Longrightarrow>
```
```   132   \<forall>(x::int) (k::int). (A x \<and> B x) = (A (x-k*d) \<and> B (x-k*d))"
```
```   133   by simp
```
```   134
```
```   135 theorem modd_minf_disjI: "\<forall>(x::int) k. A x = A (x-k*d) \<Longrightarrow>
```
```   136   \<forall>(x::int) k. B x = B (x-k*d) \<Longrightarrow>
```
```   137   \<forall>(x::int) (k::int). (A x \<or> B x) = (A (x-k*d) \<or> B (x-k*d))"
```
```   138   by simp
```
```   139
```
```   140 text {*
```
```   141   This is one of the cases where the simplifed formula is prooved to
```
```   142   have some property (in relation to @{text P_m}) but we need to
```
```   143   prove the property for the original formula (@{text P_m}). *}
```
```   144
```
```   145 lemma minf_simp_eq: "ALL x. P(x) = Q(x) ==> (EX (x::int). P(x)) --> (EX (x::int). F(x))  ==> (EX (x::int). Q(x)) --> (EX (x::int). F(x)) "
```
```   146   by blast
```
```   147
```
```   148 text {*
```
```   149   Theorem needed for proving at runtime divide properties using the
```
```   150   arithmetic tactic (which knows only about modulo = 0). *}
```
```   151
```
```   152 lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))"
```
```   153   by(simp add:dvd_def zmod_eq_0_iff)
```
```   154
```
```   155 text {*
```
```   156   \medskip Theorems used for the combination of proof for the
```
```   157   backwards direction of Cooper's Theorem. They rely exclusively on
```
```   158   Predicate calculus.*}
```
```   159
```
```   160 lemma not_ast_p_disjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P1(x) --> P1(x + d))
```
```   161 ==>
```
```   162 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d))
```
```   163 ==>
```
```   164 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \<or> P2(x)) --> (P1(x + d) \<or> P2(x + d))) "
```
```   165   by blast
```
```   166
```
```   167
```
```   168 lemma not_ast_p_conjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a- j)) --> P1(x) --> P1(x + d))
```
```   169 ==>
```
```   170 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> P2(x) --> P2(x + d))
```
```   171 ==>
```
```   172 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->(P1(x) \<and> P2(x)) --> (P1(x + d)
```
```   173 \<and> P2(x + d))) "
```
```   174   by blast
```
```   175
```
```   176 lemma not_ast_p_Q_elim: "
```
```   177 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) -->P(x) --> P(x + d))
```
```   178 ==> ( P = Q )
```
```   179 ==> (ALL x. ~(EX (j::int) : {1..d}. EX (a::int) : A. P(a - j)) -->P(x) --> P(x + d))"
```
```   180   by blast
```
```   181
```
```   182 text {*
```
```   183   \medskip Theorems used for the combination of proof for the
```
```   184   backwards direction of Cooper's Theorem. They rely exclusively on
```
```   185   Predicate calculus.*}
```
```   186
```
```   187 lemma not_bst_p_disjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d))
```
```   188 ==>
```
```   189 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d))
```
```   190 ==>
```
```   191 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \<or> P2(x)) --> (P1(x - d)
```
```   192 \<or> P2(x-d))) "
```
```   193   by blast
```
```   194
```
```   195 lemma not_bst_p_conjI: "(ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P1(x) --> P1(x - d))
```
```   196 ==>
```
```   197 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> P2(x) --> P2(x - d))
```
```   198 ==>
```
```   199 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->(P1(x) \<and> P2(x)) --> (P1(x - d)
```
```   200 \<and> P2(x-d))) "
```
```   201   by blast
```
```   202
```
```   203 lemma not_bst_p_Q_elim: "
```
```   204 (ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) -->P(x) --> P(x - d))
```
```   205 ==> ( P = Q )
```
```   206 ==> (ALL x. ~(EX (j::int) : {1..d}. EX (b::int) : B. P(b+j)) -->P(x) --> P(x - d))"
```
```   207   by blast
```
```   208
```
```   209 text {* \medskip This is the first direction of Cooper's Theorem. *}
```
```   210 lemma cooper_thm: "(R --> (EX x::int. P x))  ==> (Q -->(EX x::int.  P x )) ==> ((R|Q) --> (EX x::int. P x )) "
```
```   211   by blast
```
```   212
```
```   213 text {*
```
```   214   \medskip The full Cooper's Theorem in its equivalence Form. Given
```
```   215   the premises it is trivial too, it relies exclusively on prediacte calculus.*}
```
```   216 lemma cooper_eq_thm: "(R --> (EX x::int. P x))  ==> (Q -->(EX x::int.  P x )) ==> ((~Q)
```
```   217 --> (EX x::int. P x ) --> R) ==> (EX x::int. P x) = R|Q "
```
```   218   by blast
```
```   219
```
```   220 text {*
```
```   221   \medskip Some of the atomic theorems generated each time the atom
```
```   222   does not depend on @{text x}, they are trivial.*}
```
```   223
```
```   224 lemma  fm_eq_minf: "EX z::int. ALL x. x < z --> (P = P) "
```
```   225   by blast
```
```   226
```
```   227 lemma  fm_modd_minf: "ALL (x::int). ALL (k::int). (P = P)"
```
```   228   by blast
```
```   229
```
```   230 lemma not_bst_p_fm: "ALL (x::int). Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> fm --> fm"
```
```   231   by blast
```
```   232
```
```   233 lemma  fm_eq_pinf: "EX z::int. ALL x. z < x --> (P = P) "
```
```   234   by blast
```
```   235
```
```   236 text {* The next two thms are the same as the @{text minusinf} version. *}
```
```   237
```
```   238 lemma  fm_modd_pinf: "ALL (x::int). ALL (k::int). (P = P)"
```
```   239   by blast
```
```   240
```
```   241 lemma not_ast_p_fm: "ALL (x::int). Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> fm --> fm"
```
```   242   by blast
```
```   243
```
```   244 text {* Theorems to be deleted from simpset when proving simplified formulaes. *}
```
```   245
```
```   246 lemma P_eqtrue: "(P=True) = P"
```
```   247   by iprover
```
```   248
```
```   249 lemma P_eqfalse: "(P=False) = (~P)"
```
```   250   by iprover
```
```   251
```
```   252 text {*
```
```   253   \medskip Theorems for the generation of the bachwards direction of
```
```   254   Cooper's Theorem.
```
```   255
```
```   256   These are the 6 interesting atomic cases which have to be proved relying on the
```
```   257   properties of B-set and the arithmetic and contradiction proofs. *}
```
```   258
```
```   259 lemma not_bst_p_lt: "0 < (d::int) ==>
```
```   260  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ( 0 < -x + a) --> (0 < -(x - d) + a )"
```
```   261   by arith
```
```   262
```
```   263 lemma not_bst_p_gt: "\<lbrakk> (g::int) \<in> B; g = -a \<rbrakk> \<Longrightarrow>
```
```   264  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 < (x) + a) --> ( 0 < (x - d) + a)"
```
```   265 apply clarsimp
```
```   266 apply(rule ccontr)
```
```   267 apply(drule_tac x = "x+a" in bspec)
```
```   268 apply(simp add:atLeastAtMost_iff)
```
```   269 apply(drule_tac x = "-a" in bspec)
```
```   270 apply assumption
```
```   271 apply(simp)
```
```   272 done
```
```   273
```
```   274 lemma not_bst_p_eq: "\<lbrakk> 0 < d; (g::int) \<in> B; g = -a - 1 \<rbrakk> \<Longrightarrow>
```
```   275  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> (0 = x + a) --> (0 = (x - d) + a )"
```
```   276 apply clarsimp
```
```   277 apply(subgoal_tac "x = -a")
```
```   278  prefer 2 apply arith
```
```   279 apply(drule_tac x = "1" in bspec)
```
```   280 apply(simp add:atLeastAtMost_iff)
```
```   281 apply(drule_tac x = "-a- 1" in bspec)
```
```   282 apply assumption
```
```   283 apply(simp)
```
```   284 done
```
```   285
```
```   286
```
```   287 lemma not_bst_p_ne: "\<lbrakk> 0 < d; (g::int) \<in> B; g = -a \<rbrakk> \<Longrightarrow>
```
```   288  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(0 = x + a) --> ~(0 = (x - d) + a)"
```
```   289 apply clarsimp
```
```   290 apply(subgoal_tac "x = -a+d")
```
```   291  prefer 2 apply arith
```
```   292 apply(drule_tac x = "d" in bspec)
```
```   293 apply(simp add:atLeastAtMost_iff)
```
```   294 apply(drule_tac x = "-a" in bspec)
```
```   295 apply assumption
```
```   296 apply(simp)
```
```   297 done
```
```   298
```
```   299
```
```   300 lemma not_bst_p_dvd: "(d1::int) dvd d ==>
```
```   301  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> d1 dvd (x + a) --> d1 dvd ((x - d) + a )"
```
```   302 apply(clarsimp simp add:dvd_def)
```
```   303 apply(rename_tac m)
```
```   304 apply(rule_tac x = "m - k" in exI)
```
```   305 apply(simp add:int_distrib)
```
```   306 done
```
```   307
```
```   308 lemma not_bst_p_ndvd: "(d1::int) dvd d ==>
```
```   309  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (b::int) : B. Q(b+j)) --> ~(d1 dvd (x + a)) --> ~(d1 dvd ((x - d) + a ))"
```
```   310 apply(clarsimp simp add:dvd_def)
```
```   311 apply(rename_tac m)
```
```   312 apply(erule_tac x = "m + k" in allE)
```
```   313 apply(simp add:int_distrib)
```
```   314 done
```
```   315
```
```   316 text {*
```
```   317   \medskip Theorems for the generation of the bachwards direction of
```
```   318   Cooper's Theorem.
```
```   319
```
```   320   These are the 6 interesting atomic cases which have to be proved
```
```   321   relying on the properties of A-set ant the arithmetic and
```
```   322   contradiction proofs. *}
```
```   323
```
```   324 lemma not_ast_p_gt: "0 < (d::int) ==>
```
```   325  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ( 0 < x + t) --> (0 < (x + d) + t )"
```
```   326   by arith
```
```   327
```
```   328 lemma not_ast_p_lt: "\<lbrakk>0 < d ;(t::int) \<in> A \<rbrakk> \<Longrightarrow>
```
```   329  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 < -x + t) --> ( 0 < -(x + d) + t)"
```
```   330   apply clarsimp
```
```   331   apply (rule ccontr)
```
```   332   apply (drule_tac x = "t-x" in bspec)
```
```   333   apply simp
```
```   334   apply (drule_tac x = "t" in bspec)
```
```   335   apply assumption
```
```   336   apply simp
```
```   337   done
```
```   338
```
```   339 lemma not_ast_p_eq: "\<lbrakk> 0 < d; (g::int) \<in> A; g = -t + 1 \<rbrakk> \<Longrightarrow>
```
```   340  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> (0 = x + t) --> (0 = (x + d) + t )"
```
```   341   apply clarsimp
```
```   342   apply (drule_tac x="1" in bspec)
```
```   343   apply simp
```
```   344   apply (drule_tac x="- t + 1" in bspec)
```
```   345   apply assumption
```
```   346   apply(subgoal_tac "x = -t")
```
```   347   prefer 2 apply arith
```
```   348   apply simp
```
```   349   done
```
```   350
```
```   351 lemma not_ast_p_ne: "\<lbrakk> 0 < d; (g::int) \<in> A; g = -t \<rbrakk> \<Longrightarrow>
```
```   352  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(0 = x + t) --> ~(0 = (x + d) + t)"
```
```   353   apply clarsimp
```
```   354   apply (subgoal_tac "x = -t-d")
```
```   355   prefer 2 apply arith
```
```   356   apply (drule_tac x = "d" in bspec)
```
```   357   apply simp
```
```   358   apply (drule_tac x = "-t" in bspec)
```
```   359   apply assumption
```
```   360   apply simp
```
```   361   done
```
```   362
```
```   363 lemma not_ast_p_dvd: "(d1::int) dvd d ==>
```
```   364  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> d1 dvd (x + t) --> d1 dvd ((x + d) + t )"
```
```   365   apply(clarsimp simp add:dvd_def)
```
```   366   apply(rename_tac m)
```
```   367   apply(rule_tac x = "m + k" in exI)
```
```   368   apply(simp add:int_distrib)
```
```   369   done
```
```   370
```
```   371 lemma not_ast_p_ndvd: "(d1::int) dvd d ==>
```
```   372  ALL x. Q(x::int) \<and> ~(EX (j::int) : {1..d}. EX (a::int) : A. Q(a - j)) --> ~(d1 dvd (x + t)) --> ~(d1 dvd ((x + d) + t ))"
```
```   373   apply(clarsimp simp add:dvd_def)
```
```   374   apply(rename_tac m)
```
```   375   apply(erule_tac x = "m - k" in allE)
```
```   376   apply(simp add:int_distrib)
```
```   377   done
```
```   378
```
```   379 text {*
```
```   380   \medskip These are the atomic cases for the proof generation for the
```
```   381   modulo @{text D} property for @{text "P plusinfinity"}
```
```   382
```
```   383   They are fully based on arithmetics. *}
```
```   384
```
```   385 lemma  dvd_modd_pinf: "((d::int) dvd d1) ==>
```
```   386  (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x+k*d1 + t))))"
```
```   387   apply(clarsimp simp add:dvd_def)
```
```   388   apply(rule iffI)
```
```   389   apply(clarsimp)
```
```   390   apply(rename_tac n m)
```
```   391   apply(rule_tac x = "m + n*k" in exI)
```
```   392   apply(simp add:int_distrib)
```
```   393   apply(clarsimp)
```
```   394   apply(rename_tac n m)
```
```   395   apply(rule_tac x = "m - n*k" in exI)
```
```   396   apply(simp add:int_distrib mult_ac)
```
```   397   done
```
```   398
```
```   399 lemma  not_dvd_modd_pinf: "((d::int) dvd d1) ==>
```
```   400  (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x+k*d1 + t))))"
```
```   401   apply(clarsimp simp add:dvd_def)
```
```   402   apply(rule iffI)
```
```   403   apply(clarsimp)
```
```   404   apply(rename_tac n m)
```
```   405   apply(erule_tac x = "m - n*k" in allE)
```
```   406   apply(simp add:int_distrib mult_ac)
```
```   407   apply(clarsimp)
```
```   408   apply(rename_tac n m)
```
```   409   apply(erule_tac x = "m + n*k" in allE)
```
```   410   apply(simp add:int_distrib mult_ac)
```
```   411   done
```
```   412
```
```   413 text {*
```
```   414   \medskip These are the atomic cases for the proof generation for the
```
```   415   equivalence of @{text P} and @{text "P plusinfinity"} for integers
```
```   416   @{text x} greater than some integer @{text z}.
```
```   417
```
```   418   They are fully based on arithmetics. *}
```
```   419
```
```   420 lemma  eq_eq_pinf: "EX z::int. ALL x. z < x --> (( 0 = x +t ) = False )"
```
```   421   apply(rule_tac x = "-t" in exI)
```
```   422   apply simp
```
```   423   done
```
```   424
```
```   425 lemma  neq_eq_pinf: "EX z::int. ALL x.  z < x --> ((~( 0 = x +t )) = True )"
```
```   426   apply(rule_tac x = "-t" in exI)
```
```   427   apply simp
```
```   428   done
```
```   429
```
```   430 lemma  le_eq_pinf: "EX z::int. ALL x.  z < x --> ( 0 < x +t  = True )"
```
```   431   apply(rule_tac x = "-t" in exI)
```
```   432   apply simp
```
```   433   done
```
```   434
```
```   435 lemma  len_eq_pinf: "EX z::int. ALL x. z < x  --> (0 < -x +t  = False )"
```
```   436   apply(rule_tac x = "t" in exI)
```
```   437   apply simp
```
```   438   done
```
```   439
```
```   440 lemma  dvd_eq_pinf: "EX z::int. ALL x.  z < x --> ((d dvd (x + t)) = (d dvd (x + t))) "
```
```   441   by simp
```
```   442
```
```   443 lemma  not_dvd_eq_pinf: "EX z::int. ALL x. z < x  --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) "
```
```   444   by simp
```
```   445
```
```   446 text {*
```
```   447   \medskip These are the atomic cases for the proof generation for the
```
```   448   modulo @{text D} property for @{text "P minusinfinity"}.
```
```   449
```
```   450   They are fully based on arithmetics. *}
```
```   451
```
```   452 lemma  dvd_modd_minf: "((d::int) dvd d1) ==>
```
```   453  (ALL (x::int). ALL (k::int). (((d::int) dvd (x + t)) = (d dvd (x-k*d1 + t))))"
```
```   454 apply(clarsimp simp add:dvd_def)
```
```   455 apply(rule iffI)
```
```   456 apply(clarsimp)
```
```   457 apply(rename_tac n m)
```
```   458 apply(rule_tac x = "m - n*k" in exI)
```
```   459 apply(simp add:int_distrib)
```
```   460 apply(clarsimp)
```
```   461 apply(rename_tac n m)
```
```   462 apply(rule_tac x = "m + n*k" in exI)
```
```   463 apply(simp add:int_distrib mult_ac)
```
```   464 done
```
```   465
```
```   466
```
```   467 lemma  not_dvd_modd_minf: "((d::int) dvd d1) ==>
```
```   468  (ALL (x::int). ALL k. (~((d::int) dvd (x + t))) = (~(d dvd (x-k*d1 + t))))"
```
```   469 apply(clarsimp simp add:dvd_def)
```
```   470 apply(rule iffI)
```
```   471 apply(clarsimp)
```
```   472 apply(rename_tac n m)
```
```   473 apply(erule_tac x = "m + n*k" in allE)
```
```   474 apply(simp add:int_distrib mult_ac)
```
```   475 apply(clarsimp)
```
```   476 apply(rename_tac n m)
```
```   477 apply(erule_tac x = "m - n*k" in allE)
```
```   478 apply(simp add:int_distrib mult_ac)
```
```   479 done
```
```   480
```
```   481 text {*
```
```   482   \medskip These are the atomic cases for the proof generation for the
```
```   483   equivalence of @{text P} and @{text "P minusinfinity"} for integers
```
```   484   @{text x} less than some integer @{text z}.
```
```   485
```
```   486   They are fully based on arithmetics. *}
```
```   487
```
```   488 lemma  eq_eq_minf: "EX z::int. ALL x. x < z --> (( 0 = x +t ) = False )"
```
```   489 apply(rule_tac x = "-t" in exI)
```
```   490 apply simp
```
```   491 done
```
```   492
```
```   493 lemma  neq_eq_minf: "EX z::int. ALL x. x < z --> ((~( 0 = x +t )) = True )"
```
```   494 apply(rule_tac x = "-t" in exI)
```
```   495 apply simp
```
```   496 done
```
```   497
```
```   498 lemma  le_eq_minf: "EX z::int. ALL x. x < z --> ( 0 < x +t  = False )"
```
```   499 apply(rule_tac x = "-t" in exI)
```
```   500 apply simp
```
```   501 done
```
```   502
```
```   503
```
```   504 lemma  len_eq_minf: "EX z::int. ALL x. x < z --> (0 < -x +t  = True )"
```
```   505 apply(rule_tac x = "t" in exI)
```
```   506 apply simp
```
```   507 done
```
```   508
```
```   509 lemma  dvd_eq_minf: "EX z::int. ALL x. x < z --> ((d dvd (x + t)) = (d dvd (x + t))) "
```
```   510   by simp
```
```   511
```
```   512 lemma  not_dvd_eq_minf: "EX z::int. ALL x. x < z --> ((~(d dvd (x + t))) = (~(d dvd (x + t)))) "
```
```   513   by simp
```
```   514
```
```   515 text {*
```
```   516   \medskip This Theorem combines whithnesses about @{text "P
```
```   517   minusinfinity"} to show one component of the equivalence proof for
```
```   518   Cooper's Theorem.
```
```   519
```
```   520   FIXME: remove once they are part of the distribution. *}
```
```   521
```
```   522 theorem int_ge_induct[consumes 1,case_names base step]:
```
```   523   assumes ge: "k \<le> (i::int)" and
```
```   524         base: "P(k)" and
```
```   525         step: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
```
```   526   shows "P i"
```
```   527 proof -
```
```   528   { fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k <= i \<Longrightarrow> P i"
```
```   529     proof (induct n)
```
```   530       case 0
```
```   531       hence "i = k" by arith
```
```   532       thus "P i" using base by simp
```
```   533     next
```
```   534       case (Suc n)
```
```   535       hence "n = nat((i - 1) - k)" by arith
```
```   536       moreover
```
```   537       have ki1: "k \<le> i - 1" using Suc.prems by arith
```
```   538       ultimately
```
```   539       have "P(i - 1)" by(rule Suc.hyps)
```
```   540       from step[OF ki1 this] show ?case by simp
```
```   541     qed
```
```   542   }
```
```   543   from this ge show ?thesis by fast
```
```   544 qed
```
```   545
```
```   546 theorem int_gr_induct[consumes 1,case_names base step]:
```
```   547   assumes gr: "k < (i::int)" and
```
```   548         base: "P(k+1)" and
```
```   549         step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
```
```   550   shows "P i"
```
```   551 apply(rule int_ge_induct[of "k + 1"])
```
```   552   using gr apply arith
```
```   553  apply(rule base)
```
```   554 apply(rule step)
```
```   555  apply simp+
```
```   556 done
```
```   557
```
```   558 lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"
```
```   559 apply(induct rule: int_gr_induct)
```
```   560  apply simp
```
```   561 apply (simp add:int_distrib)
```
```   562 done
```
```   563
```
```   564 lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"
```
```   565 apply(induct rule: int_gr_induct)
```
```   566  apply simp
```
```   567 apply (simp add:int_distrib)
```
```   568 done
```
```   569
```
```   570 lemma  minusinfinity:
```
```   571   assumes "0 < d" and
```
```   572     P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and
```
```   573     ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)"
```
```   574   shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"
```
```   575 proof
```
```   576   assume eP1: "EX x. P1 x"
```
```   577   then obtain x where P1: "P1 x" ..
```
```   578   from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" ..
```
```   579   let ?w = "x - (abs(x-z)+1) * d"
```
```   580   show "EX x. P x"
```
```   581   proof
```
```   582     have w: "?w < z" by(rule decr_lemma)
```
```   583     have "P1 x = P1 ?w" using P1eqP1 by blast
```
```   584     also have "\<dots> = P(?w)" using w P1eqP by blast
```
```   585     finally show "P ?w" using P1 by blast
```
```   586   qed
```
```   587 qed
```
```   588
```
```   589 text {*
```
```   590   \medskip This Theorem combines whithnesses about @{text "P
```
```   591   minusinfinity"} to show one component of the equivalence proof for
```
```   592   Cooper's Theorem. *}
```
```   593
```
```   594 lemma plusinfinity:
```
```   595   assumes "0 < d" and
```
```   596     P1eqP1: "ALL (x::int) (k::int). P1 x = P1 (x + k * d)" and
```
```   597     ePeqP1: "EX z::int. ALL x. z < x  --> (P x = P1 x)"
```
```   598   shows "(EX x::int. P1 x) --> (EX x::int. P x)"
```
```   599 proof
```
```   600   assume eP1: "EX x. P1 x"
```
```   601   then obtain x where P1: "P1 x" ..
```
```   602   from ePeqP1 obtain z where P1eqP: "ALL x. z < x \<longrightarrow> (P x = P1 x)" ..
```
```   603   let ?w = "x + (abs(x-z)+1) * d"
```
```   604   show "EX x. P x"
```
```   605   proof
```
```   606     have w: "z < ?w" by(rule incr_lemma)
```
```   607     have "P1 x = P1 ?w" using P1eqP1 by blast
```
```   608     also have "\<dots> = P(?w)" using w P1eqP by blast
```
```   609     finally show "P ?w" using P1 by blast
```
```   610   qed
```
```   611 qed
```
```   612
```
```   613 text {*
```
```   614   \medskip Theorem for periodic function on discrete sets. *}
```
```   615
```
```   616 lemma minf_vee:
```
```   617   assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)"
```
```   618   shows "(EX x. P x) = (EX j : {1..d}. P j)"
```
```   619   (is "?LHS = ?RHS")
```
```   620 proof
```
```   621   assume ?LHS
```
```   622   then obtain x where P: "P x" ..
```
```   623   have "x mod d = x - (x div d)*d"
```
```   624     by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
```
```   625   hence Pmod: "P x = P(x mod d)" using modd by simp
```
```   626   show ?RHS
```
```   627   proof (cases)
```
```   628     assume "x mod d = 0"
```
```   629     hence "P 0" using P Pmod by simp
```
```   630     moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
```
```   631     ultimately have "P d" by simp
```
```   632     moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
```
```   633     ultimately show ?RHS ..
```
```   634   next
```
```   635     assume not0: "x mod d \<noteq> 0"
```
```   636     have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
```
```   637     moreover have "x mod d : {1..d}"
```
```   638     proof -
```
```   639       have "0 \<le> x mod d" by(rule pos_mod_sign)
```
```   640       moreover have "x mod d < d" by(rule pos_mod_bound)
```
```   641       ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
```
```   642     qed
```
```   643     ultimately show ?RHS ..
```
```   644   qed
```
```   645 next
```
```   646   assume ?RHS thus ?LHS by blast
```
```   647 qed
```
```   648
```
```   649 text {*
```
```   650   \medskip Theorem for periodic function on discrete sets. *}
```
```   651
```
```   652 lemma pinf_vee:
```
```   653   assumes dpos: "0 < (d::int)" and modd: "ALL (x::int) (k::int). P x = P (x+k*d)"
```
```   654   shows "(EX x::int. P x) = (EX (j::int) : {1..d} . P j)"
```
```   655   (is "?LHS = ?RHS")
```
```   656 proof
```
```   657   assume ?LHS
```
```   658   then obtain x where P: "P x" ..
```
```   659   have "x mod d = x + (-(x div d))*d"
```
```   660     by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq)
```
```   661   hence Pmod: "P x = P(x mod d)" using modd by (simp only:)
```
```   662   show ?RHS
```
```   663   proof (cases)
```
```   664     assume "x mod d = 0"
```
```   665     hence "P 0" using P Pmod by simp
```
```   666     moreover have "P 0 = P(0 + 1*d)" using modd by blast
```
```   667     ultimately have "P d" by simp
```
```   668     moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
```
```   669     ultimately show ?RHS ..
```
```   670   next
```
```   671     assume not0: "x mod d \<noteq> 0"
```
```   672     have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound)
```
```   673     moreover have "x mod d : {1..d}"
```
```   674     proof -
```
```   675       have "0 \<le> x mod d" by(rule pos_mod_sign)
```
```   676       moreover have "x mod d < d" by(rule pos_mod_bound)
```
```   677       ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff)
```
```   678     qed
```
```   679     ultimately show ?RHS ..
```
```   680   qed
```
```   681 next
```
```   682   assume ?RHS thus ?LHS by blast
```
```   683 qed
```
```   684
```
```   685 lemma decr_mult_lemma:
```
```   686   assumes dpos: "(0::int) < d" and
```
```   687           minus: "ALL x::int. P x \<longrightarrow> P(x - d)" and
```
```   688           knneg: "0 <= k"
```
```   689   shows "ALL x. P x \<longrightarrow> P(x - k*d)"
```
```   690 using knneg
```
```   691 proof (induct rule:int_ge_induct)
```
```   692   case base thus ?case by simp
```
```   693 next
```
```   694   case (step i)
```
```   695   show ?case
```
```   696   proof
```
```   697     fix x
```
```   698     have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast
```
```   699     also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)"
```
```   700       using minus[THEN spec, of "x - i * d"]
```
```   701       by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric])
```
```   702     ultimately show "P x \<longrightarrow> P(x - (i + 1) * d)" by blast
```
```   703   qed
```
```   704 qed
```
```   705
```
```   706 lemma incr_mult_lemma:
```
```   707   assumes dpos: "(0::int) < d" and
```
```   708           plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and
```
```   709           knneg: "0 <= k"
```
```   710   shows "ALL x. P x \<longrightarrow> P(x + k*d)"
```
```   711 using knneg
```
```   712 proof (induct rule:int_ge_induct)
```
```   713   case base thus ?case by simp
```
```   714 next
```
```   715   case (step i)
```
```   716   show ?case
```
```   717   proof
```
```   718     fix x
```
```   719     have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast
```
```   720     also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)"
```
```   721       using plus[THEN spec, of "x + i * d"]
```
```   722       by (simp add:int_distrib zadd_ac)
```
```   723     ultimately show "P x \<longrightarrow> P(x + (i + 1) * d)" by blast
```
```   724   qed
```
```   725 qed
```
```   726
```
```   727 lemma cpmi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. x < z --> (P x = P1 x))
```
```   728 ==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)
```
```   729 ==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
```
```   730 ==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
```
```   731 apply(rule iffI)
```
```   732 prefer 2
```
```   733 apply(drule minusinfinity)
```
```   734 apply assumption+
```
```   735 apply(fastsimp)
```
```   736 apply clarsimp
```
```   737 apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x - k*D)")
```
```   738 apply(frule_tac x = x and z=z in decr_lemma)
```
```   739 apply(subgoal_tac "P1(x - (\<bar>x - z\<bar> + 1) * D)")
```
```   740 prefer 2
```
```   741 apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
```
```   742 prefer 2 apply arith
```
```   743  apply fastsimp
```
```   744 apply(drule (1) minf_vee)
```
```   745 apply blast
```
```   746 apply(blast dest:decr_mult_lemma)
```
```   747 done
```
```   748
```
```   749 text {* Cooper Theorem, plus infinity version. *}
```
```   750 lemma cppi_eq: "0 < D \<Longrightarrow> (EX z::int. ALL x. z < x --> (P x = P1 x))
```
```   751 ==> ALL x.~(EX (j::int) : {1..D}. EX (a::int) : A. P(a - j)) --> P (x) --> P (x + D)
```
```   752 ==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x+k*D))))
```
```   753 ==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (a::int) : A. P (a - j)))"
```
```   754   apply(rule iffI)
```
```   755   prefer 2
```
```   756   apply(drule plusinfinity)
```
```   757   apply assumption+
```
```   758   apply(fastsimp)
```
```   759   apply clarsimp
```
```   760   apply(subgoal_tac "!!k. 0<=k \<Longrightarrow> !x. P x \<longrightarrow> P (x + k*D)")
```
```   761   apply(frule_tac x = x and z=z in incr_lemma)
```
```   762   apply(subgoal_tac "P1(x + (\<bar>x - z\<bar> + 1) * D)")
```
```   763   prefer 2
```
```   764   apply(subgoal_tac "0 <= (\<bar>x - z\<bar> + 1)")
```
```   765   prefer 2 apply arith
```
```   766   apply fastsimp
```
```   767   apply(drule (1) pinf_vee)
```
```   768   apply blast
```
```   769   apply(blast dest:incr_mult_lemma)
```
```   770   done
```
```   771
```
```   772
```
```   773 text {*
```
```   774   \bigskip Theorems for the quantifier elminination Functions. *}
```
```   775
```
```   776 lemma qe_ex_conj: "(EX (x::int). A x) = R
```
```   777 		==> (EX (x::int). P x) = (Q & (EX x::int. A x))
```
```   778 		==> (EX (x::int). P x) = (Q & R)"
```
```   779 by blast
```
```   780
```
```   781 lemma qe_ex_nconj: "(EX (x::int). P x) = (True & Q)
```
```   782 		==> (EX (x::int). P x) = Q"
```
```   783 by blast
```
```   784
```
```   785 lemma qe_conjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 & Q1) = (P2 & Q2)"
```
```   786 by blast
```
```   787
```
```   788 lemma qe_disjI: "P1 = P2 ==> Q1 = Q2 ==> (P1 | Q1) = (P2 | Q2)"
```
```   789 by blast
```
```   790
```
```   791 lemma qe_impI: "P1 = P2 ==> Q1 = Q2 ==> (P1 --> Q1) = (P2 --> Q2)"
```
```   792 by blast
```
```   793
```
```   794 lemma qe_eqI: "P1 = P2 ==> Q1 = Q2 ==> (P1 = Q1) = (P2 = Q2)"
```
```   795 by blast
```
```   796
```
```   797 lemma qe_Not: "P = Q ==> (~P) = (~Q)"
```
```   798 by blast
```
```   799
```
```   800 lemma qe_ALL: "(EX x. ~P x) = R ==> (ALL x. P x) = (~R)"
```
```   801 by blast
```
```   802
```
```   803 text {* \bigskip Theorems for proving NNF *}
```
```   804
```
```   805 lemma nnf_im: "((~P) = P1) ==> (Q=Q1) ==> ((P --> Q) = (P1 | Q1))"
```
```   806 by blast
```
```   807
```
```   808 lemma nnf_eq: "((P & Q) = (P1 & Q1)) ==> (((~P) & (~Q)) = (P2 & Q2)) ==> ((P = Q) = ((P1 & Q1)|(P2 & Q2)))"
```
```   809 by blast
```
```   810
```
```   811 lemma nnf_nn: "(P = Q) ==> ((~~P) = Q)"
```
```   812   by blast
```
```   813 lemma nnf_ncj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P & Q)) = (P1 | Q1))"
```
```   814 by blast
```
```   815
```
```   816 lemma nnf_ndj: "((~P) = P1) ==> ((~Q) = Q1) ==> ((~(P | Q)) = (P1 & Q1))"
```
```   817 by blast
```
```   818 lemma nnf_nim: "(P = P1) ==> ((~Q) = Q1) ==> ((~(P --> Q)) = (P1 & Q1))"
```
```   819 by blast
```
```   820 lemma nnf_neq: "((P & (~Q)) = (P1 & Q1)) ==> (((~P) & Q) = (P2 & Q2)) ==> ((~(P = Q)) = ((P1 & Q1)|(P2 & Q2)))"
```
```   821 by blast
```
```   822 lemma nnf_sdj: "((A & (~B)) = (A1 & B1)) ==> ((C & (~D)) = (C1 & D1)) ==> (A = (~C)) ==> ((~((A & B) | (C & D))) = ((A1 & B1) | (C1 & D1)))"
```
```   823 by blast
```
```   824
```
```   825
```
```   826 lemma qe_exI2: "A = B ==> (EX (x::int). A(x)) = (EX (x::int). B(x))"
```
```   827   by simp
```
```   828
```
```   829 lemma qe_exI: "(!!x::int. A x = B x) ==> (EX (x::int). A(x)) = (EX (x::int). B(x))"
```
```   830   by iprover
```
```   831
```
```   832 lemma qe_ALLI: "(!!x::int. A x = B x) ==> (ALL (x::int). A(x)) = (ALL (x::int). B(x))"
```
```   833   by iprover
```
```   834
```
```   835 lemma cp_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j)))
```
```   836 ==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (b::int) : B. (P1 (j) | P(b+j))) "
```
```   837 by blast
```
```   838
```
```   839 lemma cppi_expand: "(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j)))
```
```   840 ==>(EX (x::int). P (x)) = (EX (j::int) : {1..d}. EX (a::int) : A. (P1 (j) | P(a - j))) "
```
```   841 by blast
```
```   842
```
```   843
```
```   844 lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
```
```   845 apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
```
```   846 apply(fastsimp)
```
```   847 done
```
```   848
```
```   849 text {* \bigskip Theorems required for the @{text adjustcoeffitienteq} *}
```
```   850
```
```   851 lemma ac_dvd_eq: assumes not0: "0 ~= (k::int)"
```
```   852 shows "((m::int) dvd (c*n+t)) = (k*m dvd ((k*c)*n+(k*t)))" (is "?P = ?Q")
```
```   853 proof
```
```   854   assume ?P
```
```   855   thus ?Q
```
```   856     apply(simp add:dvd_def)
```
```   857     apply clarify
```
```   858     apply(rename_tac d)
```
```   859     apply(drule_tac f = "op * k" in arg_cong)
```
```   860     apply(simp only:int_distrib)
```
```   861     apply(rule_tac x = "d" in exI)
```
```   862     apply(simp only:mult_ac)
```
```   863     done
```
```   864 next
```
```   865   assume ?Q
```
```   866   then obtain d where "k * c * n + k * t = (k*m)*d" by(fastsimp simp:dvd_def)
```
```   867   hence "(c * n + t) * k = (m*d) * k" by(simp add:int_distrib mult_ac)
```
```   868   hence "((c * n + t) * k) div k = ((m*d) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"])
```
```   869   hence "c*n+t = m*d" by(simp add: zdiv_zmult_self1[OF not0[symmetric]])
```
```   870   thus ?P by(simp add:dvd_def)
```
```   871 qed
```
```   872
```
```   873 lemma ac_lt_eq: assumes gr0: "0 < (k::int)"
```
```   874 shows "((m::int) < (c*n+t)) = (k*m <((k*c)*n+(k*t)))" (is "?P = ?Q")
```
```   875 proof
```
```   876   assume P: ?P
```
```   877   show ?Q using zmult_zless_mono2[OF P gr0] by(simp add: int_distrib mult_ac)
```
```   878 next
```
```   879   assume ?Q
```
```   880   hence "0 < k*(c*n + t - m)" by(simp add: int_distrib mult_ac)
```
```   881   with gr0 have "0 < (c*n + t - m)" by(simp add: zero_less_mult_iff)
```
```   882   thus ?P by(simp)
```
```   883 qed
```
```   884
```
```   885 lemma ac_eq_eq : assumes not0: "0 ~= (k::int)" shows "((m::int) = (c*n+t)) = (k*m =((k*c)*n+(k*t)) )" (is "?P = ?Q")
```
```   886 proof
```
```   887   assume ?P
```
```   888   thus ?Q
```
```   889     apply(drule_tac f = "op * k" in arg_cong)
```
```   890     apply(simp only:int_distrib)
```
```   891     done
```
```   892 next
```
```   893   assume ?Q
```
```   894   hence "m * k = (c*n + t) * k" by(simp add:int_distrib mult_ac)
```
```   895   hence "((m) * k) div k = ((c*n + t) * k) div k" by(rule arg_cong[of _ _ "%t. t div k"])
```
```   896   thus ?P by(simp add: zdiv_zmult_self1[OF not0[symmetric]])
```
```   897 qed
```
```   898
```
```   899 lemma ac_pi_eq: assumes gr0: "0 < (k::int)" shows "(~((0::int) < (c*n + t))) = (0 < ((-k)*c)*n + ((-k)*t + k))"
```
```   900 proof -
```
```   901   have "(~ (0::int) < (c*n + t)) = (0<1-(c*n + t))" by arith
```
```   902   also have  "(1-(c*n + t)) = (-1*c)*n + (-t+1)" by(simp add: int_distrib mult_ac)
```
```   903   also have "0<(-1*c)*n + (-t+1) = (0 < (k*(-1*c)*n) + (k*(-t+1)))" by(rule ac_lt_eq[of _ 0,OF gr0,simplified])
```
```   904   also have "(k*(-1*c)*n) + (k*(-t+1)) = ((-k)*c)*n + ((-k)*t + k)" by(simp add: int_distrib mult_ac)
```
```   905   finally show ?thesis .
```
```   906 qed
```
```   907
```
```   908 lemma binminus_uminus_conv: "(a::int) - b = a + (-b)"
```
```   909 by arith
```
```   910
```
```   911 lemma  linearize_dvd: "(t::int) = t1 ==> (d dvd t) = (d dvd t1)"
```
```   912 by simp
```
```   913
```
```   914 lemma lf_lt: "(l::int) = ll ==> (r::int) = lr ==> (l < r) =(ll < lr)"
```
```   915 by simp
```
```   916
```
```   917 lemma lf_eq: "(l::int) = ll ==> (r::int) = lr ==> (l = r) =(ll = lr)"
```
```   918 by simp
```
```   919
```
```   920 lemma lf_dvd: "(l::int) = ll ==> (r::int) = lr ==> (l dvd r) =(ll dvd lr)"
```
```   921 by simp
```
```   922
```
```   923 text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
```
```   924
```
```   925 theorem all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))"
```
```   926   by (simp split add: split_nat)
```
```   927
```
```   928 theorem ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))"
```
```   929   apply (simp split add: split_nat)
```
```   930   apply (rule iffI)
```
```   931   apply (erule exE)
```
```   932   apply (rule_tac x = "int x" in exI)
```
```   933   apply simp
```
```   934   apply (erule exE)
```
```   935   apply (rule_tac x = "nat x" in exI)
```
```   936   apply (erule conjE)
```
```   937   apply (erule_tac x = "nat x" in allE)
```
```   938   apply simp
```
```   939   done
```
```   940
```
```   941 theorem zdiff_int_split: "P (int (x - y)) =
```
```   942   ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))"
```
```   943   apply (case_tac "y \<le> x")
```
```   944   apply (simp_all add: zdiff_int)
```
```   945   done
```
```   946
```
```   947 theorem zdvd_int: "(x dvd y) = (int x dvd int y)"
```
```   948   apply (simp only: dvd_def ex_nat int_int_eq [symmetric] zmult_int [symmetric]
```
```   949     nat_0_le cong add: conj_cong)
```
```   950   apply (rule iffI)
```
```   951   apply iprover
```
```   952   apply (erule exE)
```
```   953   apply (case_tac "x=0")
```
```   954   apply (rule_tac x=0 in exI)
```
```   955   apply simp
```
```   956   apply (case_tac "0 \<le> k")
```
```   957   apply iprover
```
```   958   apply (simp add: linorder_not_le)
```
```   959   apply (drule mult_strict_left_mono_neg [OF iffD2 [OF zero_less_int_conv]])
```
```   960   apply assumption
```
```   961   apply (simp add: mult_ac)
```
```   962   done
```
```   963
```
```   964 theorem number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)"
```
```   965   by simp
```
```   966
```
```   967 theorem number_of2: "(0::int) <= Numeral0" by simp
```
```   968
```
```   969 theorem Suc_plus1: "Suc n = n + 1" by simp
```
```   970
```
```   971 text {*
```
```   972   \medskip Specific instances of congruence rules, to prevent
```
```   973   simplifier from looping. *}
```
```   974
```
```   975 theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')"
```
```   976   by simp
```
```   977
```
```   978 theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')"
```
```   979   by (simp cong: conj_cong)
```
```   980
```
```   981     (* Theorems used in presburger.ML for the computation simpset*)
```
```   982     (* FIXME: They are present in Float.thy, so may be Float.thy should be lightened.*)
```
```   983
```
```   984 lemma lift_bool: "x \<Longrightarrow> x=True"
```
```   985   by simp
```
```   986
```
```   987 lemma nlift_bool: "~x \<Longrightarrow> x=False"
```
```   988   by simp
```
```   989
```
```   990 lemma not_false_eq_true: "(~ False) = True" by simp
```
```   991
```
```   992 lemma not_true_eq_false: "(~ True) = False" by simp
```
```   993
```
```   994
```
```   995 lemma int_eq_number_of_eq:
```
```   996   "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)"
```
```   997   by simp
```
```   998 lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)"
```
```   999   by (simp only: iszero_number_of_Pls)
```
```  1000
```
```  1001 lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
```
```  1002   by simp
```
```  1003
```
```  1004 lemma int_iszero_number_of_0: "iszero ((number_of (w BIT bit.B0))::int) = iszero ((number_of w)::int)"
```
```  1005   by simp
```
```  1006
```
```  1007 lemma int_iszero_number_of_1: "\<not> iszero ((number_of (w BIT bit.B1))::int)"
```
```  1008   by simp
```
```  1009
```
```  1010 lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
```
```  1011   by simp
```
```  1012
```
```  1013 lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))"
```
```  1014   by simp
```
```  1015
```
```  1016 lemma int_neg_number_of_Min: "neg (-1::int)"
```
```  1017   by simp
```
```  1018
```
```  1019 lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)"
```
```  1020   by simp
```
```  1021
```
```  1022 lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
```
```  1023   by simp
```
```  1024 lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
```
```  1025   by simp
```
```  1026
```
```  1027 lemma int_number_of_diff_sym:
```
```  1028   "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
```
```  1029   by simp
```
```  1030
```
```  1031 lemma int_number_of_mult_sym:
```
```  1032   "((number_of v)::int) * number_of w = number_of (v * w)"
```
```  1033   by simp
```
```  1034
```
```  1035 lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
```
```  1036   by simp
```
```  1037 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
```
```  1038   by simp
```
```  1039
```
```  1040 lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
```
```  1041   by simp
```
```  1042
```
```  1043 lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
```
```  1044   by simp
```
```  1045
```
```  1046 lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
```
```  1047   by simp
```
```  1048
```
```  1049 lemma int_pow_0: "(a::int)^(Numeral0) = 1"
```
```  1050   by simp
```
```  1051
```
```  1052 lemma int_pow_1: "(a::int)^(Numeral1) = a"
```
```  1053   by simp
```
```  1054
```
```  1055 lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
```
```  1056   by simp
```
```  1057
```
```  1058 lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
```
```  1059   by simp
```
```  1060
```
```  1061 lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
```
```  1062   by simp
```
```  1063
```
```  1064 lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
```
```  1065   by simp
```
```  1066
```
```  1067 lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
```
```  1068   by simp
```
```  1069
```
```  1070 lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
```
```  1071 proof -
```
```  1072   have 1:"((-1)::nat) = 0"
```
```  1073     by simp
```
```  1074   show ?thesis by (simp add: 1)
```
```  1075 qed
```
```  1076
```
```  1077 use "cooper_dec.ML"
```
```  1078 use "reflected_presburger.ML"
```
```  1079 use "reflected_cooper.ML"
```
```  1080 oracle
```
```  1081   presburger_oracle ("term") = ReflectedCooper.presburger_oracle
```
```  1082
```
```  1083 use "cooper_proof.ML"
```
```  1084 use "qelim.ML"
```
```  1085 use "presburger.ML"
```
```  1086
```
```  1087 setup "Presburger.setup"
```
```  1088
```
```  1089 end
```