1 (* Title: HOL/Orderings.thy
2 Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
5 header {* Abstract orderings *}
10 "~~/src/Provers/order.ML"
11 "~~/src/Provers/quasi.ML" (* FIXME unused? *)
14 subsection {* Syntactic orders *}
17 fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
18 and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
23 less_eq ("(_/ <= _)" [51, 51] 50) and
25 less ("(_/ < _)" [51, 51] 50)
28 less_eq ("op \<le>") and
29 less_eq ("(_/ \<le> _)" [51, 51] 50)
31 notation (HTML output)
32 less_eq ("op \<le>") and
33 less_eq ("(_/ \<le> _)" [51, 51] 50)
36 greater_eq (infix ">=" 50) where
37 "x >= y \<equiv> y <= x"
40 greater_eq (infix "\<ge>" 50)
43 greater (infix ">" 50) where
44 "x > y \<equiv> y < x"
49 subsection {* Quasi orders *}
51 class preorder = ord +
52 assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)"
53 and order_refl [iff]: "x \<le> x"
54 and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
57 text {* Reflexivity. *}
59 lemma eq_refl: "x = y \<Longrightarrow> x \<le> y"
60 -- {* This form is useful with the classical reasoner. *}
61 by (erule ssubst) (rule order_refl)
63 lemma less_irrefl [iff]: "\<not> x < x"
64 by (simp add: less_le_not_le)
66 lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y"
67 unfolding less_le_not_le by blast
72 lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)"
73 by (simp add: less_le_not_le)
75 lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P"
76 by (drule less_not_sym, erule contrapos_np) simp
79 text {* Transitivity. *}
81 lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z"
82 by (auto simp add: less_le_not_le intro: order_trans)
84 lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z"
85 by (auto simp add: less_le_not_le intro: order_trans)
87 lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z"
88 by (auto simp add: less_le_not_le intro: order_trans)
91 text {* Useful for simplification, but too risky to include by default. *}
93 lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True"
94 by (blast elim: less_asym)
96 lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True"
97 by (blast elim: less_asym)
100 text {* Transitivity rules for calculational reasoning *}
102 lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P"
106 text {* Dual order *}
109 "class.preorder (op \<ge>) (op >)"
110 proof qed (auto simp add: less_le_not_le intro: order_trans)
115 subsection {* Partial orders *}
117 class order = preorder +
118 assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
121 text {* Reflexivity. *}
123 lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"
124 by (auto simp add: less_le_not_le intro: antisym)
126 lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y"
127 -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
128 by (simp add: less_le) blast
130 lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y"
131 unfolding less_le by blast
134 text {* Useful for simplification, but too risky to include by default. *}
136 lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False"
139 lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False"
143 text {* Transitivity rules for calculational reasoning *}
145 lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"
146 by (simp add: less_le)
148 lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b"
149 by (simp add: less_le)
152 text {* Asymmetry. *}
154 lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x"
155 by (blast intro: antisym)
157 lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
158 by (blast intro: antisym)
160 lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"
161 by (erule contrapos_pn, erule subst, rule less_irrefl)
164 text {* Least value operator *}
167 Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
168 "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))"
170 lemma Least_equality:
172 and "\<And>y. P y \<Longrightarrow> x \<le> y"
174 unfolding Least_def by (rule the_equality)
175 (blast intro: assms antisym)+
179 and "\<And>y. P y \<Longrightarrow> x \<le> y"
180 and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x"
182 unfolding Least_def by (rule theI2)
183 (blast intro: assms antisym)+
186 text {* Dual order *}
189 "class.order (op \<ge>) (op >)"
190 by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym)
195 subsection {* Linear (total) orders *}
197 class linorder = order +
198 assumes linear: "x \<le> y \<or> y \<le> x"
201 lemma less_linear: "x < y \<or> x = y \<or> y < x"
202 unfolding less_le using less_le linear by blast
204 lemma le_less_linear: "x \<le> y \<or> y < x"
205 by (simp add: le_less less_linear)
207 lemma le_cases [case_names le ge]:
208 "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P"
209 using linear by blast
211 lemma linorder_cases [case_names less equal greater]:
212 "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P"
213 using less_linear by blast
215 lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x"
216 apply (simp add: less_le)
217 using linear apply (blast intro: antisym)
220 lemma not_less_iff_gr_or_eq:
221 "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)"
222 apply(simp add:not_less le_less)
226 lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x"
227 apply (simp add: less_le)
228 using linear apply (blast intro: antisym)
231 lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x"
232 by (cut_tac x = x and y = y in less_linear, auto)
234 lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R"
235 by (simp add: neq_iff) blast
237 lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"
238 by (blast intro: antisym dest: not_less [THEN iffD1])
240 lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
241 by (blast intro: antisym dest: not_less [THEN iffD1])
243 lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"
244 by (blast intro: antisym dest: not_less [THEN iffD1])
246 lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x"
249 lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y"
252 (*FIXME inappropriate name (or delete altogether)*)
253 lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y"
257 text {* Dual order *}
260 "class.linorder (op \<ge>) (op >)"
261 by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear)
266 definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
267 "min a b = (if a \<le> b then a else b)"
269 definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
270 "max a b = (if a \<le> b then b else a)"
272 lemma min_le_iff_disj:
273 "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z"
274 unfolding min_def using linear by (auto intro: order_trans)
276 lemma le_max_iff_disj:
277 "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y"
278 unfolding max_def using linear by (auto intro: order_trans)
280 lemma min_less_iff_disj:
281 "min x y < z \<longleftrightarrow> x < z \<or> y < z"
282 unfolding min_def le_less using less_linear by (auto intro: less_trans)
284 lemma less_max_iff_disj:
285 "z < max x y \<longleftrightarrow> z < x \<or> z < y"
286 unfolding max_def le_less using less_linear by (auto intro: less_trans)
288 lemma min_less_iff_conj [simp]:
289 "z < min x y \<longleftrightarrow> z < x \<and> z < y"
290 unfolding min_def le_less using less_linear by (auto intro: less_trans)
292 lemma max_less_iff_conj [simp]:
293 "max x y < z \<longleftrightarrow> x < z \<and> y < z"
294 unfolding max_def le_less using less_linear by (auto intro: less_trans)
296 lemma split_min [no_atp]:
297 "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)"
298 by (simp add: min_def)
300 lemma split_max [no_atp]:
301 "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)"
302 by (simp add: max_def)
306 text {* Explicit dictionaries for code generation *}
308 lemma min_ord_min [code, code_unfold, code_inline del]:
309 "min = ord.min (op \<le>)"
310 by (rule ext)+ (simp add: min_def ord.min_def)
312 declare ord.min_def [code]
314 lemma max_ord_max [code, code_unfold, code_inline del]:
315 "max = ord.max (op \<le>)"
316 by (rule ext)+ (simp add: max_def ord.max_def)
318 declare ord.max_def [code]
321 subsection {* Reasoning tools setup *}
327 val print_structures: Proof.context -> unit
328 val setup: theory -> theory
329 val order_tac: Proof.context -> thm list -> int -> tactic
332 structure Orders: ORDERS =
335 (** Theory and context data **)
337 fun struct_eq ((s1: string, ts1), (s2, ts2)) =
338 (s1 = s2) andalso eq_list (op aconv) (ts1, ts2);
340 structure Data = Generic_Data
342 type T = ((string * term list) * Order_Tac.less_arith) list;
344 identifier of the structure, list of operations and record of theorems
345 needed to set up the transitivity reasoner,
346 identifier and operations identify the structure uniquely. *)
349 fun merge data = AList.join struct_eq (K fst) data;
352 fun print_structures ctxt =
354 val structs = Data.get (Context.Proof ctxt);
355 fun pretty_term t = Pretty.block
356 [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1,
357 Pretty.str "::", Pretty.brk 1,
358 Pretty.quote (Syntax.pretty_typ ctxt (type_of t))];
359 fun pretty_struct ((s, ts), _) = Pretty.block
360 [Pretty.str s, Pretty.str ":", Pretty.brk 1,
361 Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
363 Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs))
369 fun struct_tac ((s, [eq, le, less]), thms) ctxt prems =
371 fun decomp thy (@{const Trueprop} $ t) =
374 (* exclude numeric types: linear arithmetic subsumes transitivity *)
375 let val T = type_of t
377 T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT
379 fun rel (bin_op $ t1 $ t2) =
380 if excluded t1 then NONE
381 else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2)
382 else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2)
383 else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2)
386 fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
388 | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
391 | decomp thy _ = NONE;
394 "order" => Order_Tac.partial_tac decomp thms ctxt prems
395 | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems
396 | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
399 fun order_tac ctxt prems =
400 FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt)));
405 fun add_struct_thm s tag =
406 Thm.declaration_attribute
407 (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm)));
409 Thm.declaration_attribute
410 (fn _ => Data.map (AList.delete struct_eq s));
413 Attrib.setup @{binding order}
414 (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --|
415 Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name --
416 Scan.repeat Args.term
417 >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag
418 | ((NONE, n), ts) => del_struct (n, ts)))
419 "theorems controlling transitivity reasoner";
422 (** Diagnostic command **)
425 Outer_Syntax.improper_command "print_orders"
426 "print order structures available to transitivity reasoner" Keyword.diag
427 (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o
428 Toplevel.keep (print_structures o Toplevel.context_of)));
434 Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt [])))
435 "transitivity reasoner" #>
445 text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
450 (* The type constraint on @{term op =} below is necessary since the operation
451 is not a parameter of the locale. *)
453 declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"]
455 declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"]
457 declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"]
459 declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"]
461 declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"]
463 declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"]
465 declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
467 declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
469 declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
471 declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
473 declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
475 declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"]
477 declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
479 declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"]
481 declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"]
488 declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]]
490 declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
492 declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
494 declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
496 declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
498 declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
500 declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
502 declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
504 declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
506 declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
508 declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
510 declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
512 declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
514 declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
516 declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
518 declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
520 declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
522 declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
524 declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
526 declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"]
534 fun prp t thm = (#prop (rep_thm thm) = t);
536 fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =
537 let val prems = prems_of_ss ss;
538 val less = Const (@{const_name less}, T);
539 val t = HOLogic.mk_Trueprop(le $ s $ r);
540 in case find_first (prp t) prems of
542 let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))
543 in case find_first (prp t) prems of
545 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
547 | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
549 handle THM _ => NONE;
551 fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =
552 let val prems = prems_of_ss ss;
553 val le = Const (@{const_name less_eq}, T);
554 val t = HOLogic.mk_Trueprop(le $ r $ s);
555 in case find_first (prp t) prems of
557 let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))
558 in case find_first (prp t) prems of
560 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
562 | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
564 handle THM _ => NONE;
566 fun add_simprocs procs thy =
567 Simplifier.map_simpset (fn ss => ss
568 addsimprocs (map (fn (name, raw_ts, proc) =>
569 Simplifier.simproc_global thy name raw_ts proc) procs)) thy;
570 fun add_solver name tac =
571 Simplifier.map_simpset (fn ss => ss addSolver
572 mk_solver' name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of_ss ss)));
576 ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
577 ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
579 #> add_solver "Transitivity" Orders.order_tac
580 (* Adding the transitivity reasoners also as safe solvers showed a slight
581 speed up, but the reasoning strength appears to be not higher (at least
582 no breaking of additional proofs in the entire HOL distribution, as
583 of 5 March 2004, was observed). *)
588 subsection {* Bounded quantifiers *}
591 "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
592 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
593 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
594 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
596 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10)
597 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10)
598 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10)
599 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10)
602 "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
603 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
604 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
605 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
607 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
608 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
609 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
610 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
613 "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
614 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
615 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
616 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
619 "_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10)
620 "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10)
621 "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
622 "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
624 "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10)
625 "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10)
626 "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
627 "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
630 "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"
631 "EX x<y. P" => "EX x. x < y \<and> P"
632 "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"
633 "EX x<=y. P" => "EX x. x <= y \<and> P"
634 "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"
635 "EX x>y. P" => "EX x. x > y \<and> P"
636 "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"
637 "EX x>=y. P" => "EX x. x >= y \<and> P"
641 val All_binder = Syntax.binder_name @{const_syntax All};
642 val Ex_binder = Syntax.binder_name @{const_syntax Ex};
643 val impl = @{const_syntax HOL.implies};
644 val conj = @{const_syntax HOL.conj};
645 val less = @{const_syntax less};
646 val less_eq = @{const_syntax less_eq};
649 [((All_binder, impl, less),
650 (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
651 ((All_binder, impl, less_eq),
652 (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
653 ((Ex_binder, conj, less),
654 (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
655 ((Ex_binder, conj, less_eq),
656 (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
658 fun matches_bound v t =
660 Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
662 fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false);
663 fun mk v c n P = Syntax.const c $ Syntax_Trans.mark_bound v $ n $ P;
666 fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _),
667 Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
668 (case AList.lookup (op =) trans (q, c, d) of
671 if matches_bound v t andalso not (contains_var v u) then mk v l u P
672 else if matches_bound v u andalso not (contains_var v t) then mk v g t P
675 in [tr' All_binder, tr' Ex_binder] end
679 subsection {* Transitivity reasoning *}
684 lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c"
687 lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
690 lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c"
693 lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c"
698 lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
699 (!!x y. x < y ==> f x < f y) ==> f a < c"
701 assume r: "!!x y. x < y ==> f x < f y"
702 assume "a < b" hence "f a < f b" by (rule r)
703 also assume "f b < c"
704 finally (less_trans) show ?thesis .
707 lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
708 (!!x y. x < y ==> f x < f y) ==> a < f c"
710 assume r: "!!x y. x < y ==> f x < f y"
712 also assume "b < c" hence "f b < f c" by (rule r)
713 finally (less_trans) show ?thesis .
716 lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
717 (!!x y. x <= y ==> f x <= f y) ==> f a < c"
719 assume r: "!!x y. x <= y ==> f x <= f y"
720 assume "a <= b" hence "f a <= f b" by (rule r)
721 also assume "f b < c"
722 finally (le_less_trans) show ?thesis .
725 lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
726 (!!x y. x < y ==> f x < f y) ==> a < f c"
728 assume r: "!!x y. x < y ==> f x < f y"
730 also assume "b < c" hence "f b < f c" by (rule r)
731 finally (le_less_trans) show ?thesis .
734 lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
735 (!!x y. x < y ==> f x < f y) ==> f a < c"
737 assume r: "!!x y. x < y ==> f x < f y"
738 assume "a < b" hence "f a < f b" by (rule r)
739 also assume "f b <= c"
740 finally (less_le_trans) show ?thesis .
743 lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
744 (!!x y. x <= y ==> f x <= f y) ==> a < f c"
746 assume r: "!!x y. x <= y ==> f x <= f y"
748 also assume "b <= c" hence "f b <= f c" by (rule r)
749 finally (less_le_trans) show ?thesis .
752 lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
753 (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
755 assume r: "!!x y. x <= y ==> f x <= f y"
757 also assume "b <= c" hence "f b <= f c" by (rule r)
758 finally (order_trans) show ?thesis .
761 lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
762 (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
764 assume r: "!!x y. x <= y ==> f x <= f y"
765 assume "a <= b" hence "f a <= f b" by (rule r)
766 also assume "f b <= c"
767 finally (order_trans) show ?thesis .
770 lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
771 (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
773 assume r: "!!x y. x <= y ==> f x <= f y"
774 assume "a <= b" hence "f a <= f b" by (rule r)
775 also assume "f b = c"
776 finally (ord_le_eq_trans) show ?thesis .
779 lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
780 (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
782 assume r: "!!x y. x <= y ==> f x <= f y"
784 also assume "b <= c" hence "f b <= f c" by (rule r)
785 finally (ord_eq_le_trans) show ?thesis .
788 lemma ord_less_eq_subst: "a < b ==> f b = c ==>
789 (!!x y. x < y ==> f x < f y) ==> f a < c"
791 assume r: "!!x y. x < y ==> f x < f y"
792 assume "a < b" hence "f a < f b" by (rule r)
793 also assume "f b = c"
794 finally (ord_less_eq_trans) show ?thesis .
797 lemma ord_eq_less_subst: "a = f b ==> b < c ==>
798 (!!x y. x < y ==> f x < f y) ==> a < f c"
800 assume r: "!!x y. x < y ==> f x < f y"
802 also assume "b < c" hence "f b < f c" by (rule r)
803 finally (ord_eq_less_trans) show ?thesis .
807 Note that this list of rules is in reverse order of priorities.
828 lemmas (in order) [trans] =
832 lemmas (in preorder) [trans] =
839 lemmas (in order) [trans] =
842 lemmas (in ord) [trans] =
851 lemmas order_trans_rules =
882 text {* These support proving chains of decreasing inequalities
883 a >= b >= c ... in Isar proofs. *}
886 "a = b ==> b > c ==> a > c"
887 "a > b ==> b = c ==> a > c"
888 "a = b ==> b >= c ==> a >= c"
889 "a >= b ==> b = c ==> a >= c"
890 "(x::'a::order) >= y ==> y >= x ==> x = y"
891 "(x::'a::order) >= y ==> y >= z ==> x >= z"
892 "(x::'a::order) > y ==> y >= z ==> x > z"
893 "(x::'a::order) >= y ==> y > z ==> x > z"
894 "(a::'a::order) > b ==> b > a ==> P"
895 "(x::'a::order) > y ==> y > z ==> x > z"
896 "(a::'a::order) >= b ==> a ~= b ==> a > b"
897 "(a::'a::order) ~= b ==> a >= b ==> a > b"
898 "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"
899 "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"
900 "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
901 "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"
905 "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"
906 by (subgoal_tac "f b >= f c", force, force)
908 lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>
909 (!!x y. x >= y ==> f x >= f y) ==> f a >= c"
910 by (subgoal_tac "f a >= f b", force, force)
912 lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
913 (!!x y. x >= y ==> f x >= f y) ==> a > f c"
914 by (subgoal_tac "f b >= f c", force, force)
916 lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
917 (!!x y. x > y ==> f x > f y) ==> f a > c"
918 by (subgoal_tac "f a > f b", force, force)
920 lemma xt6: "(a::'a::order) >= f b ==> b > c ==>
921 (!!x y. x > y ==> f x > f y) ==> a > f c"
922 by (subgoal_tac "f b > f c", force, force)
924 lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
925 (!!x y. x >= y ==> f x >= f y) ==> f a > c"
926 by (subgoal_tac "f a >= f b", force, force)
928 lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
929 (!!x y. x > y ==> f x > f y) ==> a > f c"
930 by (subgoal_tac "f b > f c", force, force)
932 lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
933 (!!x y. x > y ==> f x > f y) ==> f a > c"
934 by (subgoal_tac "f a > f b", force, force)
936 lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9
939 Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
940 for the wrong thing in an Isar proof.
942 The extra transitivity rules can be used as follows:
944 lemma "(a::'a::order) > z"
946 have "a >= b" (is "_ >= ?rhs")
948 also have "?rhs >= c" (is "_ >= ?rhs")
950 also (xtrans) have "?rhs = d" (is "_ = ?rhs")
952 also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
954 also (xtrans) have "?rhs > f" (is "_ > ?rhs")
956 also (xtrans) have "?rhs > z"
958 finally (xtrans) show ?thesis .
961 Alternatively, one can use "declare xtrans [trans]" and then
962 leave out the "(xtrans)" above.
966 subsection {* Monotonicity, least value operator and min/max *}
971 definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
972 "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"
974 lemma monoI [intro?]:
975 fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
976 shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"
977 unfolding mono_def by iprover
980 fixes f :: "'a \<Rightarrow> 'b\<Colon>order"
981 shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
982 unfolding mono_def by iprover
984 definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
985 "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"
987 lemma strict_monoI [intro?]:
988 assumes "\<And>x y. x < y \<Longrightarrow> f x < f y"
989 shows "strict_mono f"
990 using assms unfolding strict_mono_def by auto
992 lemma strict_monoD [dest?]:
993 "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y"
994 unfolding strict_mono_def by auto
996 lemma strict_mono_mono [dest?]:
997 assumes "strict_mono f"
1002 show "f x \<le> f y"
1003 proof (cases "x = y")
1004 case True then show ?thesis by simp
1006 case False with `x \<le> y` have "x < y" by simp
1007 with assms strict_monoD have "f x < f y" by auto
1008 then show ?thesis by simp
1017 lemma strict_mono_eq:
1018 assumes "strict_mono f"
1019 shows "f x = f y \<longleftrightarrow> x = y"
1022 show "x = y" proof (cases x y rule: linorder_cases)
1023 case less with assms strict_monoD have "f x < f y" by auto
1024 with `f x = f y` show ?thesis by simp
1026 case equal then show ?thesis .
1028 case greater with assms strict_monoD have "f y < f x" by auto
1029 with `f x = f y` show ?thesis by simp
1033 lemma strict_mono_less_eq:
1034 assumes "strict_mono f"
1035 shows "f x \<le> f y \<longleftrightarrow> x \<le> y"
1038 with assms strict_mono_mono monoD show "f x \<le> f y" by auto
1040 assume "f x \<le> f y"
1041 show "x \<le> y" proof (rule ccontr)
1042 assume "\<not> x \<le> y" then have "y < x" by simp
1043 with assms strict_monoD have "f y < f x" by auto
1044 with `f x \<le> f y` show False by simp
1048 lemma strict_mono_less:
1049 assumes "strict_mono f"
1050 shows "f x < f y \<longleftrightarrow> x < y"
1052 by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)
1055 fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"
1056 shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)"
1057 by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym)
1060 fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"
1061 shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)"
1062 by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym)
1066 lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
1067 by (simp add: min_def)
1069 lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
1070 by (simp add: max_def)
1072 lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"
1073 apply (simp add: min_def)
1074 apply (blast intro: antisym)
1077 lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"
1078 apply (simp add: max_def)
1079 apply (blast intro: antisym)
1083 subsection {* Top and bottom elements *}
1085 class bot = preorder +
1087 assumes bot_least [simp]: "bot \<le> x"
1089 class top = preorder +
1091 assumes top_greatest [simp]: "x \<le> top"
1094 subsection {* Dense orders *}
1096 class dense_linorder = linorder +
1097 assumes gt_ex: "\<exists>y. x < y"
1098 and lt_ex: "\<exists>y. y < x"
1099 and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)"
1104 assumes "\<And>x. x < y \<Longrightarrow> x \<le> z"
1107 assume "\<not> ?thesis"
1108 hence "z < y" by simp
1110 obtain x where "x < y" and "z < x" by safe
1111 moreover have "x \<le> z" using assms[OF `x < y`] .
1112 ultimately show False by auto
1115 lemma dense_le_bounded:
1118 assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z"
1120 proof (rule dense_le)
1121 fix w assume "w < y"
1122 from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe
1127 from less_le_trans[OF `x < u` `u \<le> w`] `w < y`
1128 show "w \<le> z" by (rule *)
1131 from `w \<le> u` *[OF `x < u` `u < y`]
1132 show "w \<le> z" by (rule order_trans)
1138 subsection {* Wellorders *}
1140 class wellorder = linorder +
1141 assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a"
1144 lemma wellorder_Least_lemma:
1147 shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k"
1149 have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k"
1150 using assms proof (induct k rule: less_induct)
1151 case (less x) then have "P x" by simp
1152 show ?case proof (rule classical)
1153 assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)"
1154 have "\<And>y. P y \<Longrightarrow> x \<le> y"
1155 proof (rule classical)
1157 assume "P y" and "\<not> x \<le> y"
1158 with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
1159 by (auto simp add: not_le)
1160 with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y"
1162 then show "x \<le> y" by auto
1164 with `P x` have Least: "(LEAST a. P a) = x"
1165 by (rule Least_equality)
1166 with `P x` show ?thesis by simp
1169 then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto
1172 -- "The following 3 lemmas are due to Brian Huffman"
1173 lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)"
1174 by (erule exE) (erule LeastI)
1177 "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
1178 by (blast intro: LeastI)
1181 "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)"
1182 by (blast intro: LeastI_ex)
1184 lemma LeastI2_wellorder:
1186 and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a"
1188 proof (rule LeastI2_order)
1189 show "P (Least P)" using `P a` by (rule LeastI)
1191 fix y assume "P y" thus "Least P \<le> y" by (rule Least_le)
1193 fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2))
1196 lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k"
1197 apply (simp (no_asm_use) add: not_le [symmetric])
1198 apply (erule contrapos_nn)
1199 apply (erule Least_le)
1205 subsection {* Order on bool *}
1207 instantiation bool :: "{order, bot, top}"
1211 le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q"
1214 [simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q"
1217 [simp]: "bot \<longleftrightarrow> False"
1220 [simp]: "top \<longleftrightarrow> True"
1227 lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"
1230 lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"
1233 lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"
1236 lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"
1239 lemma bot_boolE: "bot \<Longrightarrow> P"
1242 lemma top_boolI: top
1246 "False \<le> b \<longleftrightarrow> True"
1247 "True \<le> b \<longleftrightarrow> b"
1248 "False < b \<longleftrightarrow> b"
1249 "True < b \<longleftrightarrow> False"
1253 subsection {* Order on functions *}
1255 instantiation "fun" :: (type, ord) ord
1259 le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)"
1262 "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)"
1268 instance "fun" :: (type, preorder) preorder proof
1269 qed (auto simp add: le_fun_def less_fun_def
1270 intro: order_trans antisym intro!: ext)
1272 instance "fun" :: (type, order) order proof
1273 qed (auto simp add: le_fun_def intro: antisym ext)
1275 instantiation "fun" :: (type, bot) bot
1279 "bot = (\<lambda>x. bot)"
1283 by (simp add: bot_fun_def)
1286 qed (simp add: le_fun_def bot_apply)
1290 instantiation "fun" :: (type, top) top
1294 [no_atp]: "top = (\<lambda>x. top)"
1295 declare top_fun_def_raw [no_atp]
1299 by (simp add: top_fun_def)
1302 qed (simp add: le_fun_def top_apply)
1306 lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"
1307 unfolding le_fun_def by simp
1309 lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"
1310 unfolding le_fun_def by simp
1312 lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"
1313 unfolding le_fun_def by simp
1316 subsection {* Name duplicates *}
1318 lemmas order_eq_refl = preorder_class.eq_refl
1319 lemmas order_less_irrefl = preorder_class.less_irrefl
1320 lemmas order_less_imp_le = preorder_class.less_imp_le
1321 lemmas order_less_not_sym = preorder_class.less_not_sym
1322 lemmas order_less_asym = preorder_class.less_asym
1323 lemmas order_less_trans = preorder_class.less_trans
1324 lemmas order_le_less_trans = preorder_class.le_less_trans
1325 lemmas order_less_le_trans = preorder_class.less_le_trans
1326 lemmas order_less_imp_not_less = preorder_class.less_imp_not_less
1327 lemmas order_less_imp_triv = preorder_class.less_imp_triv
1328 lemmas order_less_asym' = preorder_class.less_asym'
1330 lemmas order_less_le = order_class.less_le
1331 lemmas order_le_less = order_class.le_less
1332 lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq
1333 lemmas order_less_imp_not_eq = order_class.less_imp_not_eq
1334 lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2
1335 lemmas order_neq_le_trans = order_class.neq_le_trans
1336 lemmas order_le_neq_trans = order_class.le_neq_trans
1337 lemmas order_antisym = order_class.antisym
1338 lemmas order_eq_iff = order_class.eq_iff
1339 lemmas order_antisym_conv = order_class.antisym_conv
1341 lemmas linorder_linear = linorder_class.linear
1342 lemmas linorder_less_linear = linorder_class.less_linear
1343 lemmas linorder_le_less_linear = linorder_class.le_less_linear
1344 lemmas linorder_le_cases = linorder_class.le_cases
1345 lemmas linorder_not_less = linorder_class.not_less
1346 lemmas linorder_not_le = linorder_class.not_le
1347 lemmas linorder_neq_iff = linorder_class.neq_iff
1348 lemmas linorder_neqE = linorder_class.neqE
1349 lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1
1350 lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2
1351 lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3