src/HOL/Lifting_Sum.thy
author kuncar
Thu, 10 Apr 2014 17:48:15 +0200
changeset 56520 3373f5d1e074
parent 56519 c1048f5bbb45
child 56525 b5b6ad5dc2ae
permissions -rw-r--r--
abstract Domainp in relator_domain rules => more natural statement of the rule

(*  Title:      HOL/Lifting_Sum.thy
    Author:     Brian Huffman and Ondrej Kuncar
*)

header {* Setup for Lifting/Transfer for the sum type *}

theory Lifting_Sum
imports Lifting Basic_BNFs
begin

subsection {* Relator and predicator properties *}

abbreviation (input) "sum_pred \<equiv> case_sum"

lemmas rel_sum_eq[relator_eq] = sum.rel_eq
lemmas rel_sum_mono[relator_mono] = sum.rel_mono

lemma rel_sum_OO[relator_distr]:
  "(rel_sum A B) OO (rel_sum C D) = rel_sum (A OO C) (B OO D)"
  by (rule ext)+ (auto simp add: rel_sum_def OO_def split_sum_ex split: sum.split)

lemma Domainp_sum[relator_domain]:
  "Domainp (rel_sum R1 R2) = (sum_pred (Domainp R1) (Domainp R2))"
by (auto simp add: Domainp_iff split_sum_ex iff: fun_eq_iff split: sum.split)

lemma left_total_rel_sum[transfer_rule]:
  "left_total R1 \<Longrightarrow> left_total R2 \<Longrightarrow> left_total (rel_sum R1 R2)"
  using assms unfolding left_total_def split_sum_all split_sum_ex by simp

lemma left_unique_rel_sum [transfer_rule]:
  "left_unique R1 \<Longrightarrow> left_unique R2 \<Longrightarrow> left_unique (rel_sum R1 R2)"
  using assms unfolding left_unique_def split_sum_all by simp

lemma right_total_rel_sum [transfer_rule]:
  "right_total R1 \<Longrightarrow> right_total R2 \<Longrightarrow> right_total (rel_sum R1 R2)"
  unfolding right_total_def split_sum_all split_sum_ex by simp

lemma right_unique_rel_sum [transfer_rule]:
  "right_unique R1 \<Longrightarrow> right_unique R2 \<Longrightarrow> right_unique (rel_sum R1 R2)"
  unfolding right_unique_def split_sum_all by simp

lemma bi_total_rel_sum [transfer_rule]:
  "bi_total R1 \<Longrightarrow> bi_total R2 \<Longrightarrow> bi_total (rel_sum R1 R2)"
  using assms unfolding bi_total_def split_sum_all split_sum_ex by simp

lemma bi_unique_rel_sum [transfer_rule]:
  "bi_unique R1 \<Longrightarrow> bi_unique R2 \<Longrightarrow> bi_unique (rel_sum R1 R2)"
  using assms unfolding bi_unique_def split_sum_all by simp

lemma sum_relator_eq_onp [relator_eq_onp]: 
  "rel_sum (eq_onp P1) (eq_onp P2) = eq_onp (sum_pred P1 P2)"
  by (auto simp add: fun_eq_iff eq_onp_def rel_sum_def split: sum.split)

subsection {* Quotient theorem for the Lifting package *}

lemma Quotient_sum[quot_map]:
  assumes "Quotient R1 Abs1 Rep1 T1"
  assumes "Quotient R2 Abs2 Rep2 T2"
  shows "Quotient (rel_sum R1 R2) (map_sum Abs1 Abs2) (map_sum Rep1 Rep2) (rel_sum T1 T2)"
  using assms unfolding Quotient_alt_def
  by (simp add: split_sum_all)

subsection {* Transfer rules for the Transfer package *}

context
begin
interpretation lifting_syntax .

lemma Inl_transfer [transfer_rule]: "(A ===> rel_sum A B) Inl Inl"
  unfolding rel_fun_def by simp

lemma Inr_transfer [transfer_rule]: "(B ===> rel_sum A B) Inr Inr"
  unfolding rel_fun_def by simp

lemma case_sum_transfer [transfer_rule]:
  "((A ===> C) ===> (B ===> C) ===> rel_sum A B ===> C) case_sum case_sum"
  unfolding rel_fun_def rel_sum_def by (simp split: sum.split)

end

end