src/HOL/Set.ML
 author paulson Wed Jun 07 12:06:36 2000 +0200 (2000-06-07) changeset 9041 3730ae0f513a parent 8913 0bc13d5e60b8 child 9075 e8521ed7f35b permissions -rw-r--r--
tidied
```     1 (*  Title:      HOL/set
```
```     2     ID:         \$Id\$
```
```     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
```
```     4     Copyright   1991  University of Cambridge
```
```     5
```
```     6 Set theory for higher-order logic.  A set is simply a predicate.
```
```     7 *)
```
```     8
```
```     9 section "Relating predicates and sets";
```
```    10
```
```    11 Addsimps [Collect_mem_eq];
```
```    12 AddIffs  [mem_Collect_eq];
```
```    13
```
```    14 Goal "P(a) ==> a : {x. P(x)}";
```
```    15 by (Asm_simp_tac 1);
```
```    16 qed "CollectI";
```
```    17
```
```    18 Goal "a : {x. P(x)} ==> P(a)";
```
```    19 by (Asm_full_simp_tac 1);
```
```    20 qed "CollectD";
```
```    21
```
```    22 bind_thm ("CollectE", make_elim CollectD);
```
```    23
```
```    24 val [prem] = Goal "[| !!x. (x:A) = (x:B) |] ==> A = B";
```
```    25 by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
```
```    26 by (rtac Collect_mem_eq 1);
```
```    27 by (rtac Collect_mem_eq 1);
```
```    28 qed "set_ext";
```
```    29
```
```    30 val [prem] = Goal "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
```
```    31 by (rtac (prem RS ext RS arg_cong) 1);
```
```    32 qed "Collect_cong";
```
```    33
```
```    34 val CollectE = make_elim CollectD;
```
```    35
```
```    36 AddSIs [CollectI];
```
```    37 AddSEs [CollectE];
```
```    38
```
```    39
```
```    40 section "Bounded quantifiers";
```
```    41
```
```    42 val prems = Goalw [Ball_def]
```
```    43     "[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)";
```
```    44 by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
```
```    45 qed "ballI";
```
```    46
```
```    47 bind_thms ("strip", [impI, allI, ballI]);
```
```    48
```
```    49 Goalw [Ball_def] "[| ALL x:A. P(x);  x:A |] ==> P(x)";
```
```    50 by (Blast_tac 1);
```
```    51 qed "bspec";
```
```    52
```
```    53 val major::prems = Goalw [Ball_def]
```
```    54     "[| ALL x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
```
```    55 by (rtac (major RS spec RS impCE) 1);
```
```    56 by (REPEAT (eresolve_tac prems 1));
```
```    57 qed "ballE";
```
```    58
```
```    59 (*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)
```
```    60 fun ball_tac i = etac ballE i THEN contr_tac (i+1);
```
```    61
```
```    62 AddSIs [ballI];
```
```    63 AddEs  [ballE];
```
```    64 AddXDs [bspec];
```
```    65 (* gives better instantiation for bound: *)
```
```    66 claset_ref() := claset() addWrapper ("bspec", fn tac2 =>
```
```    67 			 (dtac bspec THEN' atac) APPEND' tac2);
```
```    68
```
```    69 (*Normally the best argument order: P(x) constrains the choice of x:A*)
```
```    70 Goalw [Bex_def] "[| P(x);  x:A |] ==> EX x:A. P(x)";
```
```    71 by (Blast_tac 1);
```
```    72 qed "bexI";
```
```    73
```
```    74 (*The best argument order when there is only one x:A*)
```
```    75 Goalw [Bex_def] "[| x:A;  P(x) |] ==> EX x:A. P(x)";
```
```    76 by (Blast_tac 1);
```
```    77 qed "rev_bexI";
```
```    78
```
```    79 val prems = Goal
```
```    80    "[| ALL x:A. ~P(x) ==> P(a);  a:A |] ==> EX x:A. P(x)";
```
```    81 by (rtac classical 1);
```
```    82 by (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ;
```
```    83 qed "bexCI";
```
```    84
```
```    85 val major::prems = Goalw [Bex_def]
```
```    86     "[| EX x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
```
```    87 by (rtac (major RS exE) 1);
```
```    88 by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
```
```    89 qed "bexE";
```
```    90
```
```    91 AddIs  [bexI];
```
```    92 AddSEs [bexE];
```
```    93
```
```    94 (*Trival rewrite rule*)
```
```    95 Goal "(ALL x:A. P) = ((EX x. x:A) --> P)";
```
```    96 by (simp_tac (simpset() addsimps [Ball_def]) 1);
```
```    97 qed "ball_triv";
```
```    98
```
```    99 (*Dual form for existentials*)
```
```   100 Goal "(EX x:A. P) = ((EX x. x:A) & P)";
```
```   101 by (simp_tac (simpset() addsimps [Bex_def]) 1);
```
```   102 qed "bex_triv";
```
```   103
```
```   104 Addsimps [ball_triv, bex_triv];
```
```   105
```
```   106 (** Congruence rules **)
```
```   107
```
```   108 val prems = Goalw [Ball_def]
```
```   109     "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
```
```   110 \    (ALL x:A. P(x)) = (ALL x:B. Q(x))";
```
```   111 by (asm_simp_tac (simpset() addsimps prems) 1);
```
```   112 qed "ball_cong";
```
```   113
```
```   114 val prems = Goalw [Bex_def]
```
```   115     "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
```
```   116 \    (EX x:A. P(x)) = (EX x:B. Q(x))";
```
```   117 by (asm_simp_tac (simpset() addcongs [conj_cong] addsimps prems) 1);
```
```   118 qed "bex_cong";
```
```   119
```
```   120 Addcongs [ball_cong,bex_cong];
```
```   121
```
```   122 section "Subsets";
```
```   123
```
```   124 val prems = Goalw [subset_def] "(!!x. x:A ==> x:B) ==> A <= B";
```
```   125 by (REPEAT (ares_tac (prems @ [ballI]) 1));
```
```   126 qed "subsetI";
```
```   127
```
```   128 (*Map the type ('a set => anything) to just 'a.
```
```   129   For overloading constants whose first argument has type "'a set" *)
```
```   130 fun overload_1st_set s = Blast.overloaded (s, HOLogic.dest_setT o domain_type);
```
```   131
```
```   132 (*While (:) is not, its type must be kept
```
```   133   for overloading of = to work.*)
```
```   134 Blast.overloaded ("op :", domain_type);
```
```   135
```
```   136 overload_1st_set "Ball";		(*need UNION, INTER also?*)
```
```   137 overload_1st_set "Bex";
```
```   138
```
```   139 (*Image: retain the type of the set being expressed*)
```
```   140 Blast.overloaded ("image", domain_type);
```
```   141
```
```   142 (*Rule in Modus Ponens style*)
```
```   143 Goalw [subset_def] "[| A <= B;  c:A |] ==> c:B";
```
```   144 by (Blast_tac 1);
```
```   145 qed "subsetD";
```
```   146 AddXIs [subsetD];
```
```   147
```
```   148 (*The same, with reversed premises for use with etac -- cf rev_mp*)
```
```   149 Goal "[| c:A;  A <= B |] ==> c:B";
```
```   150 by (REPEAT (ares_tac [subsetD] 1)) ;
```
```   151 qed "rev_subsetD";
```
```   152 AddXIs [rev_subsetD];
```
```   153
```
```   154 (*Converts A<=B to x:A ==> x:B*)
```
```   155 fun impOfSubs th = th RSN (2, rev_subsetD);
```
```   156
```
```   157 Goal "[| A <= B; c ~: B |] ==> c ~: A";
```
```   158 by (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ;
```
```   159 qed "contra_subsetD";
```
```   160
```
```   161 Goal "[| c ~: B;  A <= B |] ==> c ~: A";
```
```   162 by (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ;
```
```   163 qed "rev_contra_subsetD";
```
```   164
```
```   165 (*Classical elimination rule*)
```
```   166 val major::prems = Goalw [subset_def]
```
```   167     "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
```
```   168 by (rtac (major RS ballE) 1);
```
```   169 by (REPEAT (eresolve_tac prems 1));
```
```   170 qed "subsetCE";
```
```   171
```
```   172 (*Takes assumptions A<=B; c:A and creates the assumption c:B *)
```
```   173 fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
```
```   174
```
```   175 AddSIs [subsetI];
```
```   176 AddEs  [subsetD, subsetCE];
```
```   177
```
```   178 Goal "A <= (A::'a set)";
```
```   179 by (Fast_tac 1);
```
```   180 qed "subset_refl";		(*Blast_tac would try order_refl and fail*)
```
```   181
```
```   182 Goal "[| A<=B;  B<=C |] ==> A<=(C::'a set)";
```
```   183 by (Blast_tac 1);
```
```   184 qed "subset_trans";
```
```   185
```
```   186
```
```   187 section "Equality";
```
```   188
```
```   189 (*Anti-symmetry of the subset relation*)
```
```   190 Goal "[| A <= B;  B <= A |] ==> A = (B::'a set)";
```
```   191 by (rtac set_ext 1);
```
```   192 by (blast_tac (claset() addIs [subsetD]) 1);
```
```   193 qed "subset_antisym";
```
```   194 val equalityI = subset_antisym;
```
```   195
```
```   196 AddSIs [equalityI];
```
```   197
```
```   198 (* Equality rules from ZF set theory -- are they appropriate here? *)
```
```   199 Goal "A = B ==> A<=(B::'a set)";
```
```   200 by (etac ssubst 1);
```
```   201 by (rtac subset_refl 1);
```
```   202 qed "equalityD1";
```
```   203
```
```   204 Goal "A = B ==> B<=(A::'a set)";
```
```   205 by (etac ssubst 1);
```
```   206 by (rtac subset_refl 1);
```
```   207 qed "equalityD2";
```
```   208
```
```   209 val prems = Goal
```
```   210     "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
```
```   211 by (resolve_tac prems 1);
```
```   212 by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
```
```   213 qed "equalityE";
```
```   214
```
```   215 (*This could be tried.  Most things build fine with it.  However, some proofs
```
```   216   become very slow or even fail.
```
```   217   AddEs [equalityE];
```
```   218 *)
```
```   219
```
```   220 val major::prems = Goal
```
```   221     "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
```
```   222 by (rtac (major RS equalityE) 1);
```
```   223 by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
```
```   224 qed "equalityCE";
```
```   225
```
```   226 (*Lemma for creating induction formulae -- for "pattern matching" on p
```
```   227   To make the induction hypotheses usable, apply "spec" or "bspec" to
```
```   228   put universal quantifiers over the free variables in p. *)
```
```   229 val prems = Goal
```
```   230     "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
```
```   231 by (rtac mp 1);
```
```   232 by (REPEAT (resolve_tac (refl::prems) 1));
```
```   233 qed "setup_induction";
```
```   234
```
```   235 Goal "A = B ==> (x : A) = (x : B)";
```
```   236 by (Asm_simp_tac 1);
```
```   237 qed "eqset_imp_iff";
```
```   238
```
```   239
```
```   240 section "The universal set -- UNIV";
```
```   241
```
```   242 Goalw [UNIV_def] "x : UNIV";
```
```   243 by (rtac CollectI 1);
```
```   244 by (rtac TrueI 1);
```
```   245 qed "UNIV_I";
```
```   246
```
```   247 Addsimps [UNIV_I];
```
```   248 AddIs    [UNIV_I];  (*unsafe makes it less likely to cause problems*)
```
```   249
```
```   250 Goal "A <= UNIV";
```
```   251 by (rtac subsetI 1);
```
```   252 by (rtac UNIV_I 1);
```
```   253 qed "subset_UNIV";
```
```   254
```
```   255 (** Eta-contracting these two rules (to remove P) causes them to be ignored
```
```   256     because of their interaction with congruence rules. **)
```
```   257
```
```   258 Goalw [Ball_def] "Ball UNIV P = All P";
```
```   259 by (Simp_tac 1);
```
```   260 qed "ball_UNIV";
```
```   261
```
```   262 Goalw [Bex_def] "Bex UNIV P = Ex P";
```
```   263 by (Simp_tac 1);
```
```   264 qed "bex_UNIV";
```
```   265 Addsimps [ball_UNIV, bex_UNIV];
```
```   266
```
```   267
```
```   268 section "The empty set -- {}";
```
```   269
```
```   270 Goalw [empty_def] "(c : {}) = False";
```
```   271 by (Blast_tac 1) ;
```
```   272 qed "empty_iff";
```
```   273
```
```   274 Addsimps [empty_iff];
```
```   275
```
```   276 Goal "a:{} ==> P";
```
```   277 by (Full_simp_tac 1);
```
```   278 qed "emptyE";
```
```   279
```
```   280 AddSEs [emptyE];
```
```   281
```
```   282 Goal "{} <= A";
```
```   283 by (Blast_tac 1) ;
```
```   284 qed "empty_subsetI";
```
```   285
```
```   286 (*One effect is to delete the ASSUMPTION {} <= A*)
```
```   287 AddIffs [empty_subsetI];
```
```   288
```
```   289 val [prem]= Goal "[| !!y. y:A ==> False |] ==> A={}";
```
```   290 by (blast_tac (claset() addIs [prem RS FalseE]) 1) ;
```
```   291 qed "equals0I";
```
```   292
```
```   293 (*Use for reasoning about disjointness: A Int B = {} *)
```
```   294 Goal "A={} ==> a ~: A";
```
```   295 by (Blast_tac 1) ;
```
```   296 qed "equals0D";
```
```   297
```
```   298 (* [| A = {};  a : A |] ==> R *)
```
```   299 AddDs [equals0D, sym RS equals0D];
```
```   300
```
```   301 Goalw [Ball_def] "Ball {} P = True";
```
```   302 by (Simp_tac 1);
```
```   303 qed "ball_empty";
```
```   304
```
```   305 Goalw [Bex_def] "Bex {} P = False";
```
```   306 by (Simp_tac 1);
```
```   307 qed "bex_empty";
```
```   308 Addsimps [ball_empty, bex_empty];
```
```   309
```
```   310 Goal "UNIV ~= {}";
```
```   311 by (blast_tac (claset() addEs [equalityE]) 1);
```
```   312 qed "UNIV_not_empty";
```
```   313 AddIffs [UNIV_not_empty];
```
```   314
```
```   315
```
```   316
```
```   317 section "The Powerset operator -- Pow";
```
```   318
```
```   319 Goalw [Pow_def] "(A : Pow(B)) = (A <= B)";
```
```   320 by (Asm_simp_tac 1);
```
```   321 qed "Pow_iff";
```
```   322
```
```   323 AddIffs [Pow_iff];
```
```   324
```
```   325 Goalw [Pow_def] "A <= B ==> A : Pow(B)";
```
```   326 by (etac CollectI 1);
```
```   327 qed "PowI";
```
```   328
```
```   329 Goalw [Pow_def] "A : Pow(B)  ==>  A<=B";
```
```   330 by (etac CollectD 1);
```
```   331 qed "PowD";
```
```   332
```
```   333
```
```   334 val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
```
```   335 val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
```
```   336
```
```   337
```
```   338 section "Set complement";
```
```   339
```
```   340 Goalw [Compl_def] "(c : -A) = (c~:A)";
```
```   341 by (Blast_tac 1);
```
```   342 qed "Compl_iff";
```
```   343
```
```   344 Addsimps [Compl_iff];
```
```   345
```
```   346 val prems = Goalw [Compl_def] "[| c:A ==> False |] ==> c : -A";
```
```   347 by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
```
```   348 qed "ComplI";
```
```   349
```
```   350 (*This form, with negated conclusion, works well with the Classical prover.
```
```   351   Negated assumptions behave like formulae on the right side of the notional
```
```   352   turnstile...*)
```
```   353 Goalw [Compl_def] "c : -A ==> c~:A";
```
```   354 by (etac CollectD 1);
```
```   355 qed "ComplD";
```
```   356
```
```   357 val ComplE = make_elim ComplD;
```
```   358
```
```   359 AddSIs [ComplI];
```
```   360 AddSEs [ComplE];
```
```   361
```
```   362
```
```   363 section "Binary union -- Un";
```
```   364
```
```   365 Goalw [Un_def] "(c : A Un B) = (c:A | c:B)";
```
```   366 by (Blast_tac 1);
```
```   367 qed "Un_iff";
```
```   368 Addsimps [Un_iff];
```
```   369
```
```   370 Goal "c:A ==> c : A Un B";
```
```   371 by (Asm_simp_tac 1);
```
```   372 qed "UnI1";
```
```   373
```
```   374 Goal "c:B ==> c : A Un B";
```
```   375 by (Asm_simp_tac 1);
```
```   376 qed "UnI2";
```
```   377
```
```   378 (*Classical introduction rule: no commitment to A vs B*)
```
```   379
```
```   380 val prems = Goal "(c~:B ==> c:A) ==> c : A Un B";
```
```   381 by (Simp_tac 1);
```
```   382 by (REPEAT (ares_tac (prems@[disjCI]) 1)) ;
```
```   383 qed "UnCI";
```
```   384
```
```   385 val major::prems = Goalw [Un_def]
```
```   386     "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
```
```   387 by (rtac (major RS CollectD RS disjE) 1);
```
```   388 by (REPEAT (eresolve_tac prems 1));
```
```   389 qed "UnE";
```
```   390
```
```   391 AddSIs [UnCI];
```
```   392 AddSEs [UnE];
```
```   393
```
```   394
```
```   395 section "Binary intersection -- Int";
```
```   396
```
```   397 Goalw [Int_def] "(c : A Int B) = (c:A & c:B)";
```
```   398 by (Blast_tac 1);
```
```   399 qed "Int_iff";
```
```   400 Addsimps [Int_iff];
```
```   401
```
```   402 Goal "[| c:A;  c:B |] ==> c : A Int B";
```
```   403 by (Asm_simp_tac 1);
```
```   404 qed "IntI";
```
```   405
```
```   406 Goal "c : A Int B ==> c:A";
```
```   407 by (Asm_full_simp_tac 1);
```
```   408 qed "IntD1";
```
```   409
```
```   410 Goal "c : A Int B ==> c:B";
```
```   411 by (Asm_full_simp_tac 1);
```
```   412 qed "IntD2";
```
```   413
```
```   414 val [major,minor] = Goal
```
```   415     "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
```
```   416 by (rtac minor 1);
```
```   417 by (rtac (major RS IntD1) 1);
```
```   418 by (rtac (major RS IntD2) 1);
```
```   419 qed "IntE";
```
```   420
```
```   421 AddSIs [IntI];
```
```   422 AddSEs [IntE];
```
```   423
```
```   424 section "Set difference";
```
```   425
```
```   426 Goalw [set_diff_def] "(c : A-B) = (c:A & c~:B)";
```
```   427 by (Blast_tac 1);
```
```   428 qed "Diff_iff";
```
```   429 Addsimps [Diff_iff];
```
```   430
```
```   431 Goal "[| c : A;  c ~: B |] ==> c : A - B";
```
```   432 by (Asm_simp_tac 1) ;
```
```   433 qed "DiffI";
```
```   434
```
```   435 Goal "c : A - B ==> c : A";
```
```   436 by (Asm_full_simp_tac 1) ;
```
```   437 qed "DiffD1";
```
```   438
```
```   439 Goal "[| c : A - B;  c : B |] ==> P";
```
```   440 by (Asm_full_simp_tac 1) ;
```
```   441 qed "DiffD2";
```
```   442
```
```   443 val prems = Goal "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P";
```
```   444 by (resolve_tac prems 1);
```
```   445 by (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ;
```
```   446 qed "DiffE";
```
```   447
```
```   448 AddSIs [DiffI];
```
```   449 AddSEs [DiffE];
```
```   450
```
```   451
```
```   452 section "Augmenting a set -- insert";
```
```   453
```
```   454 Goalw [insert_def] "a : insert b A = (a=b | a:A)";
```
```   455 by (Blast_tac 1);
```
```   456 qed "insert_iff";
```
```   457 Addsimps [insert_iff];
```
```   458
```
```   459 Goal "a : insert a B";
```
```   460 by (Simp_tac 1);
```
```   461 qed "insertI1";
```
```   462
```
```   463 Goal "!!a. a : B ==> a : insert b B";
```
```   464 by (Asm_simp_tac 1);
```
```   465 qed "insertI2";
```
```   466
```
```   467 val major::prems = Goalw [insert_def]
```
```   468     "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P";
```
```   469 by (rtac (major RS UnE) 1);
```
```   470 by (REPEAT (eresolve_tac (prems @ [CollectE]) 1));
```
```   471 qed "insertE";
```
```   472
```
```   473 (*Classical introduction rule*)
```
```   474 val prems = Goal "(a~:B ==> a=b) ==> a: insert b B";
```
```   475 by (Simp_tac 1);
```
```   476 by (REPEAT (ares_tac (prems@[disjCI]) 1)) ;
```
```   477 qed "insertCI";
```
```   478
```
```   479 AddSIs [insertCI];
```
```   480 AddSEs [insertE];
```
```   481
```
```   482 Goal "A <= insert x B ==> A <= B & x ~: A | (EX B'. A = insert x B' & B' <= B)";
```
```   483 by (case_tac "x:A" 1);
```
```   484 by  (Fast_tac 2);
```
```   485 by (rtac disjI2 1);
```
```   486 by (res_inst_tac [("x","A-{x}")] exI 1);
```
```   487 by (Fast_tac 1);
```
```   488 qed "subset_insertD";
```
```   489
```
```   490 section "Singletons, using insert";
```
```   491
```
```   492 Goal "a : {a}";
```
```   493 by (rtac insertI1 1) ;
```
```   494 qed "singletonI";
```
```   495
```
```   496 Goal "b : {a} ==> b=a";
```
```   497 by (Blast_tac 1);
```
```   498 qed "singletonD";
```
```   499
```
```   500 bind_thm ("singletonE", make_elim singletonD);
```
```   501
```
```   502 Goal "(b : {a}) = (b=a)";
```
```   503 by (Blast_tac 1);
```
```   504 qed "singleton_iff";
```
```   505
```
```   506 Goal "{a}={b} ==> a=b";
```
```   507 by (blast_tac (claset() addEs [equalityE]) 1);
```
```   508 qed "singleton_inject";
```
```   509
```
```   510 (*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
```
```   511 AddSIs [singletonI];
```
```   512 AddSDs [singleton_inject];
```
```   513 AddSEs [singletonE];
```
```   514
```
```   515 Goal "{b} = insert a A = (a = b & A <= {b})";
```
```   516 by (blast_tac (claset() addSEs [equalityE]) 1);
```
```   517 qed "singleton_insert_inj_eq";
```
```   518
```
```   519 Goal "(insert a A = {b}) = (a = b & A <= {b})";
```
```   520 by (blast_tac (claset() addSEs [equalityE]) 1);
```
```   521 qed "singleton_insert_inj_eq'";
```
```   522
```
```   523 AddIffs [singleton_insert_inj_eq, singleton_insert_inj_eq'];
```
```   524
```
```   525 Goal "A <= {x} ==> A={} | A = {x}";
```
```   526 by (Fast_tac 1);
```
```   527 qed "subset_singletonD";
```
```   528
```
```   529 Goal "{x. x=a} = {a}";
```
```   530 by (Blast_tac 1);
```
```   531 qed "singleton_conv";
```
```   532 Addsimps [singleton_conv];
```
```   533
```
```   534 Goal "{x. a=x} = {a}";
```
```   535 by (Blast_tac 1);
```
```   536 qed "singleton_conv2";
```
```   537 Addsimps [singleton_conv2];
```
```   538
```
```   539
```
```   540 section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
```
```   541
```
```   542 Goalw [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
```
```   543 by (Blast_tac 1);
```
```   544 qed "UN_iff";
```
```   545
```
```   546 Addsimps [UN_iff];
```
```   547
```
```   548 (*The order of the premises presupposes that A is rigid; b may be flexible*)
```
```   549 Goal "[| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
```
```   550 by Auto_tac;
```
```   551 qed "UN_I";
```
```   552
```
```   553 val major::prems = Goalw [UNION_def]
```
```   554     "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
```
```   555 by (rtac (major RS CollectD RS bexE) 1);
```
```   556 by (REPEAT (ares_tac prems 1));
```
```   557 qed "UN_E";
```
```   558
```
```   559 AddIs  [UN_I];
```
```   560 AddSEs [UN_E];
```
```   561
```
```   562 val prems = Goalw [UNION_def]
```
```   563     "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
```
```   564 \    (UN x:A. C(x)) = (UN x:B. D(x))";
```
```   565 by (asm_simp_tac (simpset() addsimps prems) 1);
```
```   566 qed "UN_cong";
```
```   567
```
```   568
```
```   569 section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
```
```   570
```
```   571 Goalw [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
```
```   572 by Auto_tac;
```
```   573 qed "INT_iff";
```
```   574
```
```   575 Addsimps [INT_iff];
```
```   576
```
```   577 val prems = Goalw [INTER_def]
```
```   578     "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
```
```   579 by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
```
```   580 qed "INT_I";
```
```   581
```
```   582 Goal "[| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
```
```   583 by Auto_tac;
```
```   584 qed "INT_D";
```
```   585
```
```   586 (*"Classical" elimination -- by the Excluded Middle on a:A *)
```
```   587 val major::prems = Goalw [INTER_def]
```
```   588     "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
```
```   589 by (rtac (major RS CollectD RS ballE) 1);
```
```   590 by (REPEAT (eresolve_tac prems 1));
```
```   591 qed "INT_E";
```
```   592
```
```   593 AddSIs [INT_I];
```
```   594 AddEs  [INT_D, INT_E];
```
```   595
```
```   596 val prems = Goalw [INTER_def]
```
```   597     "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
```
```   598 \    (INT x:A. C(x)) = (INT x:B. D(x))";
```
```   599 by (asm_simp_tac (simpset() addsimps prems) 1);
```
```   600 qed "INT_cong";
```
```   601
```
```   602
```
```   603 section "Union";
```
```   604
```
```   605 Goalw [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
```
```   606 by (Blast_tac 1);
```
```   607 qed "Union_iff";
```
```   608
```
```   609 Addsimps [Union_iff];
```
```   610
```
```   611 (*The order of the premises presupposes that C is rigid; A may be flexible*)
```
```   612 Goal "[| X:C;  A:X |] ==> A : Union(C)";
```
```   613 by Auto_tac;
```
```   614 qed "UnionI";
```
```   615
```
```   616 val major::prems = Goalw [Union_def]
```
```   617     "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
```
```   618 by (rtac (major RS UN_E) 1);
```
```   619 by (REPEAT (ares_tac prems 1));
```
```   620 qed "UnionE";
```
```   621
```
```   622 AddIs  [UnionI];
```
```   623 AddSEs [UnionE];
```
```   624
```
```   625
```
```   626 section "Inter";
```
```   627
```
```   628 Goalw [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
```
```   629 by (Blast_tac 1);
```
```   630 qed "Inter_iff";
```
```   631
```
```   632 Addsimps [Inter_iff];
```
```   633
```
```   634 val prems = Goalw [Inter_def]
```
```   635     "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
```
```   636 by (REPEAT (ares_tac ([INT_I] @ prems) 1));
```
```   637 qed "InterI";
```
```   638
```
```   639 (*A "destruct" rule -- every X in C contains A as an element, but
```
```   640   A:X can hold when X:C does not!  This rule is analogous to "spec". *)
```
```   641 Goal "[| A : Inter(C);  X:C |] ==> A:X";
```
```   642 by Auto_tac;
```
```   643 qed "InterD";
```
```   644
```
```   645 (*"Classical" elimination rule -- does not require proving X:C *)
```
```   646 val major::prems = Goalw [Inter_def]
```
```   647     "[| A : Inter(C);  X~:C ==> R;  A:X ==> R |] ==> R";
```
```   648 by (rtac (major RS INT_E) 1);
```
```   649 by (REPEAT (eresolve_tac prems 1));
```
```   650 qed "InterE";
```
```   651
```
```   652 AddSIs [InterI];
```
```   653 AddEs  [InterD, InterE];
```
```   654
```
```   655
```
```   656 (*** Image of a set under a function ***)
```
```   657
```
```   658 (*Frequently b does not have the syntactic form of f(x).*)
```
```   659 Goalw [image_def] "[| b=f(x);  x:A |] ==> b : f``A";
```
```   660 by (Blast_tac 1);
```
```   661 qed "image_eqI";
```
```   662 Addsimps [image_eqI];
```
```   663
```
```   664 bind_thm ("imageI", refl RS image_eqI);
```
```   665
```
```   666 (*This version's more effective when we already have the required x*)
```
```   667 Goalw [image_def] "[| x:A;  b=f(x) |] ==> b : f``A";
```
```   668 by (Blast_tac 1);
```
```   669 qed "rev_image_eqI";
```
```   670
```
```   671 (*The eta-expansion gives variable-name preservation.*)
```
```   672 val major::prems = Goalw [image_def]
```
```   673     "[| b : (%x. f(x))``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P";
```
```   674 by (rtac (major RS CollectD RS bexE) 1);
```
```   675 by (REPEAT (ares_tac prems 1));
```
```   676 qed "imageE";
```
```   677
```
```   678 AddIs  [image_eqI];
```
```   679 AddSEs [imageE];
```
```   680
```
```   681 Goal "f``(A Un B) = f``A Un f``B";
```
```   682 by (Blast_tac 1);
```
```   683 qed "image_Un";
```
```   684
```
```   685 Goal "(z : f``A) = (EX x:A. z = f x)";
```
```   686 by (Blast_tac 1);
```
```   687 qed "image_iff";
```
```   688
```
```   689 (*This rewrite rule would confuse users if made default.*)
```
```   690 Goal "(f``A <= B) = (ALL x:A. f(x): B)";
```
```   691 by (Blast_tac 1);
```
```   692 qed "image_subset_iff";
```
```   693
```
```   694 (*Replaces the three steps subsetI, imageE, hyp_subst_tac, but breaks too
```
```   695   many existing proofs.*)
```
```   696 val prems = Goal "(!!x. x:A ==> f(x) : B) ==> f``A <= B";
```
```   697 by (blast_tac (claset() addIs prems) 1);
```
```   698 qed "image_subsetI";
```
```   699
```
```   700
```
```   701 (*** Range of a function -- just a translation for image! ***)
```
```   702
```
```   703 Goal "b=f(x) ==> b : range(f)";
```
```   704 by (EVERY1 [etac image_eqI, rtac UNIV_I]);
```
```   705 bind_thm ("range_eqI", UNIV_I RSN (2,image_eqI));
```
```   706
```
```   707 bind_thm ("rangeI", UNIV_I RS imageI);
```
```   708
```
```   709 val [major,minor] = Goal
```
```   710     "[| b : range(%x. f(x));  !!x. b=f(x) ==> P |] ==> P";
```
```   711 by (rtac (major RS imageE) 1);
```
```   712 by (etac minor 1);
```
```   713 qed "rangeE";
```
```   714
```
```   715
```
```   716 (*** Set reasoning tools ***)
```
```   717
```
```   718
```
```   719 (** Rewrite rules for boolean case-splitting: faster than
```
```   720 	addsplits[split_if]
```
```   721 **)
```
```   722
```
```   723 bind_thm ("split_if_eq1", read_instantiate [("P", "%x. x = ?b")] split_if);
```
```   724 bind_thm ("split_if_eq2", read_instantiate [("P", "%x. ?a = x")] split_if);
```
```   725
```
```   726 (*Split ifs on either side of the membership relation.
```
```   727 	Not for Addsimps -- can cause goals to blow up!*)
```
```   728 bind_thm ("split_if_mem1",
```
```   729     read_instantiate_sg (Theory.sign_of Set.thy) [("P", "%x. x : ?b")] split_if);
```
```   730 bind_thm ("split_if_mem2",
```
```   731     read_instantiate_sg (Theory.sign_of Set.thy) [("P", "%x. ?a : x")] split_if);
```
```   732
```
```   733 val split_ifs = [if_bool_eq_conj, split_if_eq1, split_if_eq2,
```
```   734 		  split_if_mem1, split_if_mem2];
```
```   735
```
```   736
```
```   737 (*Each of these has ALREADY been added to simpset() above.*)
```
```   738 val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff,
```
```   739                  mem_Collect_eq, UN_iff, Union_iff, INT_iff, Inter_iff];
```
```   740
```
```   741 (*Would like to add these, but the existing code only searches for the
```
```   742   outer-level constant, which in this case is just "op :"; we instead need
```
```   743   to use term-nets to associate patterns with rules.  Also, if a rule fails to
```
```   744   apply, then the formula should be kept.
```
```   745   [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
```
```   746    ("op Int", [IntD1,IntD2]),
```
```   747    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
```
```   748  *)
```
```   749 val mksimps_pairs =
```
```   750   [("Ball",[bspec])] @ mksimps_pairs;
```
```   751
```
```   752 simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs);
```
```   753
```
```   754 Addsimps[subset_UNIV, subset_refl];
```
```   755
```
```   756
```
```   757 (*** The 'proper subset' relation (<) ***)
```
```   758
```
```   759 Goalw [psubset_def] "!!A::'a set. [| A <= B; A ~= B |] ==> A<B";
```
```   760 by (Blast_tac 1);
```
```   761 qed "psubsetI";
```
```   762 AddSIs [psubsetI];
```
```   763
```
```   764 Goalw [psubset_def] "A < insert x B ==> (x ~: A) & A<=B | x:A & A-{x}<B";
```
```   765 by Auto_tac;
```
```   766 qed "psubset_insertD";
```
```   767
```
```   768 bind_thm ("psubset_eq", psubset_def RS meta_eq_to_obj_eq);
```
```   769
```
```   770 bind_thm ("psubset_imp_subset", psubset_eq RS iffD1 RS conjunct1);
```
```   771
```
```   772 Goal"[| (A::'a set) < B; B <= C |] ==> A < C";
```
```   773 by (auto_tac (claset(), simpset() addsimps [psubset_eq]));
```
```   774 qed "psubset_subset_trans";
```
```   775
```
```   776 Goal"[| (A::'a set) <= B; B < C|] ==> A < C";
```
```   777 by (auto_tac (claset(), simpset() addsimps [psubset_eq]));
```
```   778 qed "subset_psubset_trans";
```
```   779
```
```   780 Goalw [psubset_def] "A < B ==> EX b. b : (B - A)";
```
```   781 by (Blast_tac 1);
```
```   782 qed "psubset_imp_ex_mem";
```
```   783
```
```   784
```
```   785 (* attributes *)
```
```   786
```
```   787 local
```
```   788
```
```   789 fun gen_rulify_prems x =
```
```   790   Attrib.no_args (Drule.rule_attribute (fn _ => (standard o
```
```   791     rule_by_tactic (REPEAT (ALLGOALS (resolve_tac [allI, ballI, impI])))))) x;
```
```   792
```
```   793 in
```
```   794
```
```   795 val rulify_prems_attrib_setup =
```
```   796  [Attrib.add_attributes
```
```   797   [("rulify_prems", (gen_rulify_prems, gen_rulify_prems), "put theorem into standard rule form")]];
```
```   798
```
```   799 end;
```