src/HOL/Tools/SMT/smt_translate.ML
author blanchet
Thu Aug 28 00:40:38 2014 +0200 (2014-08-28)
changeset 58061 3d060f43accb
parent 57541 src/HOL/Tools/SMT2/smt2_translate.ML@147e3f1e0459
child 58360 dee1fd1cc631
permissions -rw-r--r--
renamed new SMT module from 'SMT2' to 'SMT'
     1 (*  Title:      HOL/Tools/SMT/smt_translate.ML
     2     Author:     Sascha Boehme, TU Muenchen
     3 
     4 Translate theorems into an SMT intermediate format and serialize them.
     5 *)
     6 
     7 signature SMT_TRANSLATE =
     8 sig
     9   (*intermediate term structure*)
    10   datatype squant = SForall | SExists
    11   datatype 'a spattern = SPat of 'a list | SNoPat of 'a list
    12   datatype sterm =
    13     SVar of int |
    14     SApp of string * sterm list |
    15     SLet of string * sterm * sterm |
    16     SQua of squant * string list * sterm spattern list * sterm
    17 
    18   (*translation configuration*)
    19   type sign = {
    20     logic: string,
    21     sorts: string list,
    22     dtyps: (string * (string * (string * string) list) list) list list,
    23     funcs: (string * (string list * string)) list }
    24   type config = {
    25     logic: term list -> string,
    26     has_datatypes: bool,
    27     serialize: (string * string) list -> string list -> sign -> sterm list -> string }
    28   type replay_data = {
    29     context: Proof.context,
    30     typs: typ Symtab.table,
    31     terms: term Symtab.table,
    32     ll_defs: term list,
    33     rewrite_rules: thm list,
    34     assms: (int * thm) list }
    35 
    36   (*translation*)
    37   val add_config: SMT_Util.class * (Proof.context -> config) -> Context.generic -> Context.generic
    38   val translate: Proof.context -> (string * string) list -> string list -> (int * thm) list ->
    39     string * replay_data
    40 end;
    41 
    42 structure SMT_Translate: SMT_TRANSLATE =
    43 struct
    44 
    45 
    46 (* intermediate term structure *)
    47 
    48 datatype squant = SForall | SExists
    49 
    50 datatype 'a spattern = SPat of 'a list | SNoPat of 'a list
    51 
    52 datatype sterm =
    53   SVar of int |
    54   SApp of string * sterm list |
    55   SLet of string * sterm * sterm |
    56   SQua of squant * string list * sterm spattern list * sterm
    57 
    58 
    59 (* translation configuration *)
    60 
    61 type sign = {
    62   logic: string,
    63   sorts: string list,
    64   dtyps: (string * (string * (string * string) list) list) list list,
    65   funcs: (string * (string list * string)) list }
    66 
    67 type config = {
    68   logic: term list -> string,
    69   has_datatypes: bool,
    70   serialize: (string * string) list -> string list -> sign -> sterm list -> string }
    71 
    72 type replay_data = {
    73   context: Proof.context,
    74   typs: typ Symtab.table,
    75   terms: term Symtab.table,
    76   ll_defs: term list,
    77   rewrite_rules: thm list,
    78   assms: (int * thm) list }
    79 
    80 
    81 (* translation context *)
    82 
    83 fun add_components_of_typ (Type (s, Ts)) =
    84     cons (Long_Name.base_name s) #> fold_rev add_components_of_typ Ts
    85   | add_components_of_typ (TFree (s, _)) = cons (perhaps (try (unprefix "'")) s)
    86   | add_components_of_typ _ = I;
    87 
    88 fun suggested_name_of_typ T = space_implode "_" (add_components_of_typ T []);
    89 
    90 fun suggested_name_of_term (Const (s, _)) = Long_Name.base_name s
    91   | suggested_name_of_term (Free (s, _)) = s
    92   | suggested_name_of_term _ = Name.uu
    93 
    94 val empty_tr_context = (Name.context, Typtab.empty, Termtab.empty)
    95 val safe_suffix = "$"
    96 
    97 fun add_typ T proper (cx as (names, typs, terms)) =
    98   (case Typtab.lookup typs T of
    99     SOME (name, _) => (name, cx)
   100   | NONE =>
   101       let
   102         val sugg = Name.desymbolize (SOME true) (suggested_name_of_typ T) ^ safe_suffix
   103         val (name, names') = Name.variant sugg names
   104         val typs' = Typtab.update (T, (name, proper)) typs
   105       in (name, (names', typs', terms)) end)
   106 
   107 fun add_fun t sort (cx as (names, typs, terms)) =
   108   (case Termtab.lookup terms t of
   109     SOME (name, _) => (name, cx)
   110   | NONE =>
   111       let
   112         val sugg = Name.desymbolize (SOME false) (suggested_name_of_term t) ^ safe_suffix
   113         val (name, names') = Name.variant sugg names
   114         val terms' = Termtab.update (t, (name, sort)) terms
   115       in (name, (names', typs, terms')) end)
   116 
   117 fun sign_of logic dtyps (_, typs, terms) = {
   118   logic = logic,
   119   sorts = Typtab.fold (fn (_, (n, true)) => cons n | _ => I) typs [],
   120   dtyps = dtyps,
   121   funcs = Termtab.fold (fn (_, (n, SOME ss)) => cons (n,ss) | _ => I) terms []}
   122 
   123 fun replay_data_of ctxt ll_defs rules assms (_, typs, terms) =
   124   let
   125     fun add_typ (T, (n, _)) = Symtab.update (n, T)
   126     val typs' = Typtab.fold add_typ typs Symtab.empty
   127 
   128     fun add_fun (t, (n, _)) = Symtab.update (n, t)
   129     val terms' = Termtab.fold add_fun terms Symtab.empty
   130   in
   131     {context = ctxt, typs = typs', terms = terms', ll_defs = ll_defs, rewrite_rules = rules,
   132      assms = assms}
   133   end
   134 
   135 
   136 (* preprocessing *)
   137 
   138 (** datatype declarations **)
   139 
   140 fun collect_datatypes_and_records (tr_context, ctxt) ts =
   141   let
   142     val (declss, ctxt') = fold (Term.fold_types SMT_Datatypes.add_decls) ts ([], ctxt)
   143 
   144     fun is_decl_typ T = exists (exists (equal T o fst)) declss
   145 
   146     fun add_typ' T proper =
   147       (case SMT_Builtin.dest_builtin_typ ctxt' T of
   148         SOME n => pair n
   149       | NONE => add_typ T proper)
   150 
   151     fun tr_select sel =
   152       let val T = Term.range_type (Term.fastype_of sel)
   153       in add_fun sel NONE ##>> add_typ' T (not (is_decl_typ T)) end
   154     fun tr_constr (constr, selects) =
   155       add_fun constr NONE ##>> fold_map tr_select selects
   156     fun tr_typ (T, cases) = add_typ' T false ##>> fold_map tr_constr cases
   157     val (declss', tr_context') = fold_map (fold_map tr_typ) declss tr_context
   158 
   159     fun add (constr, selects) =
   160       Termtab.update (constr, length selects) #>
   161       fold (Termtab.update o rpair 1) selects
   162     val funcs = fold (fold (fold add o snd)) declss Termtab.empty
   163   in ((funcs, declss', tr_context', ctxt'), ts) end
   164     (* FIXME: also return necessary datatype and record theorems *)
   165 
   166 
   167 (** eta-expand quantifiers, let expressions and built-ins *)
   168 
   169 local
   170   fun eta f T t = Abs (Name.uu, T, f (Term.incr_boundvars 1 t $ Bound 0))
   171 
   172   fun exp f T = eta f (Term.domain_type (Term.domain_type T))
   173 
   174   fun exp2 T q =
   175     let val U = Term.domain_type T
   176     in Abs (Name.uu, U, q $ eta I (Term.domain_type U) (Bound 0)) end
   177 
   178   fun expf k i T t =
   179     let val Ts = drop i (fst (SMT_Util.dest_funT k T))
   180     in
   181       Term.incr_boundvars (length Ts) t
   182       |> fold_rev (fn i => fn u => u $ Bound i) (0 upto length Ts - 1)
   183       |> fold_rev (fn T => fn u => Abs (Name.uu, T, u)) Ts
   184     end
   185 in
   186 
   187 fun eta_expand ctxt funcs =
   188   let
   189     fun exp_func t T ts =
   190       (case Termtab.lookup funcs t of
   191         SOME k => Term.list_comb (t, ts) |> k <> length ts ? expf k (length ts) T
   192       | NONE => Term.list_comb (t, ts))
   193 
   194     fun expand ((q as Const (@{const_name All}, _)) $ Abs a) = q $ abs_expand a
   195       | expand ((q as Const (@{const_name All}, T)) $ t) = q $ exp expand T t
   196       | expand (q as Const (@{const_name All}, T)) = exp2 T q
   197       | expand ((q as Const (@{const_name Ex}, _)) $ Abs a) = q $ abs_expand a
   198       | expand ((q as Const (@{const_name Ex}, T)) $ t) = q $ exp expand T t
   199       | expand (q as Const (@{const_name Ex}, T)) = exp2 T q
   200       | expand (Const (@{const_name Let}, _) $ t $ u) = expand (Term.betapply (u, t))
   201       | expand (Const (@{const_name Let}, T) $ t) =
   202           let val U = Term.domain_type (Term.range_type T)
   203           in Abs (Name.uu, U, Bound 0 $ Term.incr_boundvars 1 t) end
   204       | expand (Const (@{const_name Let}, T)) =
   205           let val U = Term.domain_type (Term.range_type T)
   206           in Abs (Name.uu, Term.domain_type T, Abs (Name.uu, U, Bound 0 $ Bound 1)) end
   207       | expand t =
   208           (case Term.strip_comb t of
   209             (u as Const (c as (_, T)), ts) =>
   210               (case SMT_Builtin.dest_builtin ctxt c ts of
   211                 SOME (_, k, us, mk) =>
   212                   if k = length us then mk (map expand us)
   213                   else if k < length us then chop k (map expand us) |>> mk |> Term.list_comb
   214                   else expf k (length ts) T (mk (map expand us))
   215               | NONE => exp_func u T (map expand ts))
   216           | (u as Free (_, T), ts) => exp_func u T (map expand ts)
   217           | (Abs a, ts) => Term.list_comb (abs_expand a, map expand ts)
   218           | (u, ts) => Term.list_comb (u, map expand ts))
   219 
   220     and abs_expand (n, T, t) = Abs (n, T, expand t)
   221 
   222   in map expand end
   223 
   224 end
   225 
   226 
   227 (** introduce explicit applications **)
   228 
   229 local
   230   (*
   231     Make application explicit for functions with varying number of arguments.
   232   *)
   233 
   234   fun add t i = apfst (Termtab.map_default (t, i) (Integer.min i))
   235   fun add_type T = apsnd (Typtab.update (T, ()))
   236 
   237   fun min_arities t =
   238     (case Term.strip_comb t of
   239       (u as Const _, ts) => add u (length ts) #> fold min_arities ts
   240     | (u as Free _, ts) => add u (length ts) #> fold min_arities ts
   241     | (Abs (_, T, u), ts) => (can dest_funT T ? add_type T) #> min_arities u #> fold min_arities ts
   242     | (_, ts) => fold min_arities ts)
   243 
   244   fun minimize types t i =
   245     let
   246       fun find_min j [] _ = j
   247         | find_min j (U :: Us) T =
   248             if Typtab.defined types T then j else find_min (j + 1) Us (U --> T)
   249 
   250       val (Ts, T) = Term.strip_type (Term.type_of t)
   251     in find_min 0 (take i (rev Ts)) T end
   252 
   253   fun app u (t, T) = (Const (@{const_name fun_app}, T --> T) $ t $ u, Term.range_type T)
   254 
   255   fun apply i t T ts =
   256     let
   257       val (ts1, ts2) = chop i ts
   258       val (_, U) = SMT_Util.dest_funT i T
   259     in fst (fold app ts2 (Term.list_comb (t, ts1), U)) end
   260 in
   261 
   262 fun intro_explicit_application ctxt funcs ts =
   263   let
   264     val (arities, types) = fold min_arities ts (Termtab.empty, Typtab.empty)
   265     val arities' = Termtab.map (minimize types) arities (* FIXME: highly suspicious *)
   266 
   267     fun app_func t T ts =
   268       if is_some (Termtab.lookup funcs t) then Term.list_comb (t, ts)
   269       else apply (the (Termtab.lookup arities' t)) t T ts
   270 
   271     fun in_list T f t = SMT_Util.mk_symb_list T (map f (SMT_Util.dest_symb_list t))
   272 
   273     fun traverse Ts t =
   274       (case Term.strip_comb t of
   275         (q as Const (@{const_name All}, _), [Abs (x, T, u)]) =>
   276           q $ Abs (x, T, in_trigger (T :: Ts) u)
   277       | (q as Const (@{const_name Ex}, _), [Abs (x, T, u)]) =>
   278           q $ Abs (x, T, in_trigger (T :: Ts) u)
   279       | (q as Const (@{const_name Let}, _), [u1, u2 as Abs _]) =>
   280           q $ traverse Ts u1 $ traverse Ts u2
   281       | (u as Const (c as (_, T)), ts) =>
   282           (case SMT_Builtin.dest_builtin ctxt c ts of
   283             SOME (_, k, us, mk) =>
   284               let
   285                 val (ts1, ts2) = chop k (map (traverse Ts) us)
   286                 val U = Term.strip_type T |>> snd o chop k |> (op --->)
   287               in apply 0 (mk ts1) U ts2 end
   288           | NONE => app_func u T (map (traverse Ts) ts))
   289       | (u as Free (_, T), ts) => app_func u T (map (traverse Ts) ts)
   290       | (u as Bound i, ts) => apply 0 u (nth Ts i) (map (traverse Ts) ts)
   291       | (Abs (n, T, u), ts) => traverses Ts (Abs (n, T, traverse (T::Ts) u)) ts
   292       | (u, ts) => traverses Ts u ts)
   293     and in_trigger Ts ((c as @{const trigger}) $ p $ t) = c $ in_pats Ts p $ traverse Ts t
   294       | in_trigger Ts t = traverse Ts t
   295     and in_pats Ts ps =
   296       in_list @{typ "pattern symb_list"} (in_list @{typ pattern} (in_pat Ts)) ps
   297     and in_pat Ts ((p as Const (@{const_name pat}, _)) $ t) = p $ traverse Ts t
   298       | in_pat Ts ((p as Const (@{const_name nopat}, _)) $ t) = p $ traverse Ts t
   299       | in_pat _ t = raise TERM ("bad pattern", [t])
   300     and traverses Ts t ts = Term.list_comb (t, map (traverse Ts) ts)
   301   in map (traverse []) ts end
   302 
   303 val fun_app_eq = mk_meta_eq @{thm fun_app_def}
   304 
   305 end
   306 
   307 
   308 (** map HOL formulas to FOL formulas (i.e., separate formulas froms terms) **)
   309 
   310 local
   311   val is_quant = member (op =) [@{const_name All}, @{const_name Ex}]
   312 
   313   val fol_rules = [
   314     Let_def,
   315     @{lemma "P = True == P" by (rule eq_reflection) simp},
   316     @{lemma "if P then True else False == P" by (rule eq_reflection) simp}]
   317 
   318   exception BAD_PATTERN of unit
   319 
   320   fun wrap_in_if pat t =
   321     if pat then raise BAD_PATTERN () else @{const If (bool)} $ t $ @{const True} $ @{const False}
   322 
   323   fun is_builtin_conn_or_pred ctxt c ts =
   324     is_some (SMT_Builtin.dest_builtin_conn ctxt c ts) orelse
   325     is_some (SMT_Builtin.dest_builtin_pred ctxt c ts)
   326 in
   327 
   328 fun folify ctxt =
   329   let
   330     fun in_list T f t = SMT_Util.mk_symb_list T (map_filter f (SMT_Util.dest_symb_list t))
   331 
   332     fun in_term pat t =
   333       (case Term.strip_comb t of
   334         (@{const True}, []) => t
   335       | (@{const False}, []) => t
   336       | (u as Const (@{const_name If}, _), [t1, t2, t3]) =>
   337           if pat then raise BAD_PATTERN () else u $ in_form t1 $ in_term pat t2 $ in_term pat t3
   338       | (Const (c as (n, _)), ts) =>
   339           if is_builtin_conn_or_pred ctxt c ts then wrap_in_if pat (in_form t)
   340           else if is_quant n then wrap_in_if pat (in_form t)
   341           else Term.list_comb (Const c, map (in_term pat) ts)
   342       | (Free c, ts) => Term.list_comb (Free c, map (in_term pat) ts)
   343       | _ => t)
   344 
   345     and in_pat ((p as Const (@{const_name pat}, _)) $ t) =
   346           p $ in_term true t
   347       | in_pat ((p as Const (@{const_name nopat}, _)) $ t) =
   348           p $ in_term true t
   349       | in_pat t = raise TERM ("bad pattern", [t])
   350 
   351     and in_pats ps =
   352       in_list @{typ "pattern symb_list"} (SOME o in_list @{typ pattern} (try in_pat)) ps
   353 
   354     and in_trigger ((c as @{const trigger}) $ p $ t) = c $ in_pats p $ in_form t
   355       | in_trigger t = in_form t
   356 
   357     and in_form t =
   358       (case Term.strip_comb t of
   359         (q as Const (qn, _), [Abs (n, T, u)]) =>
   360           if is_quant qn then q $ Abs (n, T, in_trigger u)
   361           else in_term false t
   362       | (Const c, ts) =>
   363           (case SMT_Builtin.dest_builtin_conn ctxt c ts of
   364             SOME (_, _, us, mk) => mk (map in_form us)
   365           | NONE =>
   366               (case SMT_Builtin.dest_builtin_pred ctxt c ts of
   367                 SOME (_, _, us, mk) => mk (map (in_term false) us)
   368               | NONE => in_term false t))
   369       | _ => in_term false t)
   370   in
   371     map in_form #>
   372     pair (fol_rules, I)
   373   end
   374 
   375 end
   376 
   377 
   378 (* translation into intermediate format *)
   379 
   380 (** utility functions **)
   381 
   382 val quantifier = (fn
   383     @{const_name All} => SOME SForall
   384   | @{const_name Ex} => SOME SExists
   385   | _ => NONE)
   386 
   387 fun group_quant qname Ts (t as Const (q, _) $ Abs (_, T, u)) =
   388       if q = qname then group_quant qname (T :: Ts) u else (Ts, t)
   389   | group_quant _ Ts t = (Ts, t)
   390 
   391 fun dest_pat (Const (@{const_name pat}, _) $ t) = (t, true)
   392   | dest_pat (Const (@{const_name nopat}, _) $ t) = (t, false)
   393   | dest_pat t = raise TERM ("bad pattern", [t])
   394 
   395 fun dest_pats [] = I
   396   | dest_pats ts =
   397       (case map dest_pat ts |> split_list ||> distinct (op =) of
   398         (ps, [true]) => cons (SPat ps)
   399       | (ps, [false]) => cons (SNoPat ps)
   400       | _ => raise TERM ("bad multi-pattern", ts))
   401 
   402 fun dest_trigger (@{const trigger} $ tl $ t) =
   403       (rev (fold (dest_pats o SMT_Util.dest_symb_list) (SMT_Util.dest_symb_list tl) []), t)
   404   | dest_trigger t = ([], t)
   405 
   406 fun dest_quant qn T t = quantifier qn |> Option.map (fn q =>
   407   let
   408     val (Ts, u) = group_quant qn [T] t
   409     val (ps, p) = dest_trigger u
   410   in (q, rev Ts, ps, p) end)
   411 
   412 fun fold_map_pat f (SPat ts) = fold_map f ts #>> SPat
   413   | fold_map_pat f (SNoPat ts) = fold_map f ts #>> SNoPat
   414 
   415 
   416 (** translation from Isabelle terms into SMT intermediate terms **)
   417 
   418 fun intermediate logic dtyps builtin ctxt ts trx =
   419   let
   420     fun transT (T as TFree _) = add_typ T true
   421       | transT (T as TVar _) = (fn _ => raise TYPE ("bad SMT type", [T], []))
   422       | transT (T as Type _) =
   423           (case SMT_Builtin.dest_builtin_typ ctxt T of
   424             SOME n => pair n
   425           | NONE => add_typ T true)
   426 
   427     fun app n ts = SApp (n, ts)
   428 
   429     fun trans t =
   430       (case Term.strip_comb t of
   431         (Const (qn, _), [Abs (_, T, t1)]) =>
   432           (case dest_quant qn T t1 of
   433             SOME (q, Ts, ps, b) =>
   434               fold_map transT Ts ##>> fold_map (fold_map_pat trans) ps ##>>
   435               trans b #>> (fn ((Ts', ps'), b') => SQua (q, Ts', ps', b'))
   436           | NONE => raise TERM ("unsupported quantifier", [t]))
   437       | (Const (@{const_name Let}, _), [t1, Abs (_, T, t2)]) =>
   438           transT T ##>> trans t1 ##>> trans t2 #>> (fn ((U, u1), u2) => SLet (U, u1, u2))
   439       | (u as Const (c as (_, T)), ts) =>
   440           (case builtin ctxt c ts of
   441             SOME (n, _, us, _) => fold_map trans us #>> app n
   442           | NONE => transs u T ts)
   443       | (u as Free (_, T), ts) => transs u T ts
   444       | (Bound i, []) => pair (SVar i)
   445       | _ => raise TERM ("bad SMT term", [t]))
   446 
   447     and transs t T ts =
   448       let val (Us, U) = SMT_Util.dest_funT (length ts) T
   449       in
   450         fold_map transT Us ##>> transT U #-> (fn Up =>
   451           add_fun t (SOME Up) ##>> fold_map trans ts #>> SApp)
   452       end
   453 
   454     val (us, trx') = fold_map trans ts trx
   455   in ((sign_of (logic ts) dtyps trx', us), trx') end
   456 
   457 
   458 (* translation *)
   459 
   460 structure Configs = Generic_Data
   461 (
   462   type T = (Proof.context -> config) SMT_Util.dict
   463   val empty = []
   464   val extend = I
   465   fun merge data = SMT_Util.dict_merge fst data
   466 )
   467 
   468 fun add_config (cs, cfg) = Configs.map (SMT_Util.dict_update (cs, cfg))
   469 
   470 fun get_config ctxt =
   471   let val cs = SMT_Config.solver_class_of ctxt
   472   in
   473     (case SMT_Util.dict_get (Configs.get (Context.Proof ctxt)) cs of
   474       SOME cfg => cfg ctxt
   475     | NONE => error ("SMT: no translation configuration found " ^
   476         "for solver class " ^ quote (SMT_Util.string_of_class cs)))
   477   end
   478 
   479 fun translate ctxt smt_options comments ithms =
   480   let
   481     val {logic, has_datatypes, serialize} = get_config ctxt
   482 
   483     fun no_dtyps (tr_context, ctxt) ts =
   484       ((Termtab.empty, [], tr_context, ctxt), ts)
   485 
   486     val ts1 = map (Envir.beta_eta_contract o SMT_Util.prop_of o snd) ithms
   487 
   488     val ((funcs, dtyps, tr_context, ctxt1), ts2) =
   489       ((empty_tr_context, ctxt), ts1)
   490       |-> (if has_datatypes then collect_datatypes_and_records else no_dtyps)
   491 
   492     fun is_binder (Const (@{const_name Let}, _) $ _) = true
   493       | is_binder t = Lambda_Lifting.is_quantifier t
   494 
   495     fun mk_trigger ((q as Const (@{const_name All}, _)) $ Abs (n, T, t)) =
   496           q $ Abs (n, T, mk_trigger t)
   497       | mk_trigger (eq as (Const (@{const_name HOL.eq}, T) $ lhs $ _)) =
   498           Term.domain_type T --> @{typ pattern}
   499           |> (fn T => Const (@{const_name pat}, T) $ lhs)
   500           |> SMT_Util.mk_symb_list @{typ pattern} o single
   501           |> SMT_Util.mk_symb_list @{typ "pattern symb_list"} o single
   502           |> (fn t => @{const trigger} $ t $ eq)
   503       | mk_trigger t = t
   504 
   505     val (ctxt2, (ts3, ll_defs)) =
   506       ts2
   507       |> eta_expand ctxt1 funcs
   508       |> rpair ctxt1
   509       |-> Lambda_Lifting.lift_lambdas NONE is_binder
   510       |-> (fn (ts', ll_defs) => fn ctxt' =>
   511           (ctxt', (intro_explicit_application ctxt' funcs (map mk_trigger ll_defs @ ts'), ll_defs)))
   512 
   513     val ((rewrite_rules, builtin), ts4) = folify ctxt2 ts3
   514       |>> apfst (cons fun_app_eq)
   515   in
   516     (ts4, tr_context)
   517     |-> intermediate logic dtyps (builtin SMT_Builtin.dest_builtin) ctxt2
   518     |>> uncurry (serialize smt_options comments)
   519     ||> replay_data_of ctxt2 ll_defs rewrite_rules ithms
   520   end
   521 
   522 end;