src/HOL/Tools/nat_arith.ML
author haftmann
Thu, 08 Jul 2010 16:19:24 +0200
changeset 37744 3daaf23b9ab4
parent 35267 8dfd816713c6
child 38715 6513ea67d95d
permissions -rw-r--r--
tuned titles

(* Author: Markus Wenzel, Stefan Berghofer, and Tobias Nipkow

Basic arithmetic for natural numbers.
*)

signature NAT_ARITH =
sig
  val mk_sum: term list -> term
  val mk_norm_sum: term list -> term
  val dest_sum: term -> term list

  val nat_cancel_sums_add: simproc list
  val nat_cancel_sums: simproc list
  val setup: Context.generic -> Context.generic
end;

structure Nat_Arith: NAT_ARITH =
struct

(** abstract syntax of structure nat: 0, Suc, + **)

val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;

fun mk_sum [] = HOLogic.zero
  | mk_sum [t] = t
  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);

(*normal form of sums: Suc (... (Suc (a + (b + ...))))*)
fun mk_norm_sum ts =
  let val (ones, sums) = List.partition (equal HOLogic.Suc_zero) ts in
    funpow (length ones) HOLogic.mk_Suc (mk_sum sums)
  end;

fun dest_sum tm =
  if HOLogic.is_zero tm then []
  else
    (case try HOLogic.dest_Suc tm of
      SOME t => HOLogic.Suc_zero :: dest_sum t
    | NONE =>
        (case try dest_plus tm of
          SOME (t, u) => dest_sum t @ dest_sum u
        | NONE => [tm]));


(** cancel common summands **)

structure CommonCancelSums =
struct
  val mk_sum = mk_norm_sum;
  val dest_sum = dest_sum;
  val prove_conv = Arith_Data.prove_conv2;
  val norm_tac1 = Arith_Data.simp_all_tac [@{thm add_Suc}, @{thm add_Suc_right},
    @{thm Nat.add_0}, @{thm Nat.add_0_right}];
  val norm_tac2 = Arith_Data.simp_all_tac @{thms add_ac};
  fun norm_tac ss = norm_tac1 ss THEN norm_tac2 ss;
  fun gen_uncancel_tac rule = let val rule' = rule RS @{thm subst_equals}
    in fn ct => rtac (instantiate' [] [NONE, SOME ct] rule') 1 end;
end;

structure EqCancelSums = CancelSumsFun
(struct
  open CommonCancelSums;
  val mk_bal = HOLogic.mk_eq;
  val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT;
  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel"};
end);

structure LessCancelSums = CancelSumsFun
(struct
  open CommonCancelSums;
  val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less};
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} HOLogic.natT;
  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_less"};
end);

structure LeCancelSums = CancelSumsFun
(struct
  open CommonCancelSums;
  val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq};
  val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} HOLogic.natT;
  val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_le"};
end);

structure DiffCancelSums = CancelSumsFun
(struct
  open CommonCancelSums;
  val mk_bal = HOLogic.mk_binop @{const_name Groups.minus};
  val dest_bal = HOLogic.dest_bin @{const_name Groups.minus} HOLogic.natT;
  val uncancel_tac = gen_uncancel_tac @{thm "diff_cancel"};
end);

val nat_cancel_sums_add =
  [Simplifier.simproc @{theory} "nateq_cancel_sums"
     ["(l::nat) + m = n", "(l::nat) = m + n", "Suc m = n", "m = Suc n"]
     (K EqCancelSums.proc),
   Simplifier.simproc @{theory} "natless_cancel_sums"
     ["(l::nat) + m < n", "(l::nat) < m + n", "Suc m < n", "m < Suc n"]
     (K LessCancelSums.proc),
   Simplifier.simproc @{theory} "natle_cancel_sums"
     ["(l::nat) + m <= n", "(l::nat) <= m + n", "Suc m <= n", "m <= Suc n"]
     (K LeCancelSums.proc)];

val nat_cancel_sums = nat_cancel_sums_add @
  [Simplifier.simproc @{theory} "natdiff_cancel_sums"
    ["((l::nat) + m) - n", "(l::nat) - (m + n)", "Suc m - n", "m - Suc n"]
    (K DiffCancelSums.proc)];

val setup =
  Simplifier.map_ss (fn ss => ss addsimprocs nat_cancel_sums);

end;