author wenzelm
Mon Mar 25 17:21:26 2019 +0100 (4 weeks ago)
changeset 69981 3dced198b9ec
parent 69922 4a9167f377b0
child 69986 f2d327275065
permissions -rw-r--r--
more strict AFP properties;
     1 (*  Title:      HOL/Analysis/Path_Connected.thy
     2     Authors:    LC Paulson and Robert Himmelmann (TU Muenchen), based on material from HOL Light
     3 *)
     5 section \<open>Homotopy of Maps\<close>
     7 theory Homotopy
     8   imports Path_Connected Continuum_Not_Denumerable
     9 begin
    11 definition%important homotopic_with ::
    12   "[('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool, 'a set, 'b set, 'a \<Rightarrow> 'b, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
    13 where
    14  "homotopic_with P X Y p q \<equiv>
    15    (\<exists>h:: real \<times> 'a \<Rightarrow> 'b.
    16        continuous_on ({0..1} \<times> X) h \<and>
    17        h ` ({0..1} \<times> X) \<subseteq> Y \<and>
    18        (\<forall>x. h(0, x) = p x) \<and>
    19        (\<forall>x. h(1, x) = q x) \<and>
    20        (\<forall>t \<in> {0..1}. P(\<lambda>x. h(t, x))))"
    22 text\<open>\<open>p\<close>, \<open>q\<close> are functions \<open>X \<rightarrow> Y\<close>, and the property \<open>P\<close> restricts all intermediate maps.
    23 We often just want to require that \<open>P\<close> fixes some subset, but to include the case of a loop homotopy,
    24 it is convenient to have a general property \<open>P\<close>.\<close>
    26 text \<open>We often want to just localize the ending function equality or whatever.\<close>
    27 text%important \<open>%whitespace\<close>
    28 proposition homotopic_with:
    29   fixes X :: "'a::topological_space set" and Y :: "'b::topological_space set"
    30   assumes "\<And>h k. (\<And>x. x \<in> X \<Longrightarrow> h x = k x) \<Longrightarrow> (P h \<longleftrightarrow> P k)"
    31   shows "homotopic_with P X Y p q \<longleftrightarrow>
    32            (\<exists>h :: real \<times> 'a \<Rightarrow> 'b.
    33               continuous_on ({0..1} \<times> X) h \<and>
    34               h ` ({0..1} \<times> X) \<subseteq> Y \<and>
    35               (\<forall>x \<in> X. h(0,x) = p x) \<and>
    36               (\<forall>x \<in> X. h(1,x) = q x) \<and>
    37               (\<forall>t \<in> {0..1}. P(\<lambda>x. h(t, x))))"
    38   unfolding homotopic_with_def
    39   apply (rule iffI, blast, clarify)
    40   apply (rule_tac x="\<lambda>(u,v). if v \<in> X then h(u,v) else if u = 0 then p v else q v" in exI)
    41   apply auto
    42   apply (force elim: continuous_on_eq)
    43   apply (drule_tac x=t in bspec, force)
    44   apply (subst assms; simp)
    45   done
    47 proposition homotopic_with_eq:
    48    assumes h: "homotopic_with P X Y f g"
    49        and f': "\<And>x. x \<in> X \<Longrightarrow> f' x = f x"
    50        and g': "\<And>x. x \<in> X \<Longrightarrow> g' x = g x"
    51        and P:  "(\<And>h k. (\<And>x. x \<in> X \<Longrightarrow> h x = k x) \<Longrightarrow> (P h \<longleftrightarrow> P k))"
    52    shows "homotopic_with P X Y f' g'"
    53   using h unfolding homotopic_with_def
    54   apply safe
    55   apply (rule_tac x="\<lambda>(u,v). if v \<in> X then h(u,v) else if u = 0 then f' v else g' v" in exI)
    56   apply (simp add: f' g', safe)
    57   apply (fastforce intro: continuous_on_eq, fastforce)
    58   apply (subst P; fastforce)
    59   done
    61 proposition homotopic_with_equal:
    62    assumes contf: "continuous_on X f" and fXY: "f ` X \<subseteq> Y"
    63        and gf: "\<And>x. x \<in> X \<Longrightarrow> g x = f x"
    64        and P:  "P f" "P g"
    65    shows "homotopic_with P X Y f g"
    66   unfolding homotopic_with_def
    67   apply (rule_tac x="\<lambda>(u,v). if u = 1 then g v else f v" in exI)
    68   using assms
    69   apply (intro conjI)
    70   apply (rule continuous_on_eq [where f = "f \<circ> snd"])
    71   apply (rule continuous_intros | force)+
    72   apply clarify
    73   apply (case_tac "t=1"; force)
    74   done
    77 lemma image_Pair_const: "(\<lambda>x. (x, c)) ` A = A \<times> {c}"
    78   by auto
    80 lemma homotopic_constant_maps:
    81    "homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b) \<longleftrightarrow> s = {} \<or> path_component t a b"
    82 proof (cases "s = {} \<or> t = {}")
    83   case True with continuous_on_const show ?thesis
    84     by (auto simp: homotopic_with path_component_def)
    85 next
    86   case False
    87   then obtain c where "c \<in> s" by blast
    88   show ?thesis
    89   proof
    90     assume "homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b)"
    91     then obtain h :: "real \<times> 'a \<Rightarrow> 'b"
    92         where conth: "continuous_on ({0..1} \<times> s) h"
    93           and h: "h ` ({0..1} \<times> s) \<subseteq> t" "(\<forall>x\<in>s. h (0, x) = a)" "(\<forall>x\<in>s. h (1, x) = b)"
    94       by (auto simp: homotopic_with)
    95     have "continuous_on {0..1} (h \<circ> (\<lambda>t. (t, c)))"
    96       apply (rule continuous_intros conth | simp add: image_Pair_const)+
    97       apply (blast intro:  \<open>c \<in> s\<close> continuous_on_subset [OF conth])
    98       done
    99     with \<open>c \<in> s\<close> h show "s = {} \<or> path_component t a b"
   100       apply (simp_all add: homotopic_with path_component_def, auto)
   101       apply (drule_tac x="h \<circ> (\<lambda>t. (t, c))" in spec)
   102       apply (auto simp: pathstart_def pathfinish_def path_image_def path_def)
   103       done
   104   next
   105     assume "s = {} \<or> path_component t a b"
   106     with False show "homotopic_with (\<lambda>x. True) s t (\<lambda>x. a) (\<lambda>x. b)"
   107       apply (clarsimp simp: homotopic_with path_component_def pathstart_def pathfinish_def path_image_def path_def)
   108       apply (rule_tac x="g \<circ> fst" in exI)
   109       apply (rule conjI continuous_intros | force)+
   110       done
   111   qed
   112 qed
   115 subsection%unimportant\<open>Trivial properties\<close>
   117 lemma homotopic_with_imp_property: "homotopic_with P X Y f g \<Longrightarrow> P f \<and> P g"
   118   unfolding homotopic_with_def Ball_def
   119   apply clarify
   120   apply (frule_tac x=0 in spec)
   121   apply (drule_tac x=1 in spec, auto)
   122   done
   124 lemma continuous_on_o_Pair: "\<lbrakk>continuous_on (T \<times> X) h; t \<in> T\<rbrakk> \<Longrightarrow> continuous_on X (h \<circ> Pair t)"
   125   by (fast intro: continuous_intros elim!: continuous_on_subset)
   127 lemma homotopic_with_imp_continuous:
   128     assumes "homotopic_with P X Y f g"
   129     shows "continuous_on X f \<and> continuous_on X g"
   130 proof -
   131   obtain h :: "real \<times> 'a \<Rightarrow> 'b"
   132     where conth: "continuous_on ({0..1} \<times> X) h"
   133       and h: "\<forall>x. h (0, x) = f x" "\<forall>x. h (1, x) = g x"
   134     using assms by (auto simp: homotopic_with_def)
   135   have *: "t \<in> {0..1} \<Longrightarrow> continuous_on X (h \<circ> (\<lambda>x. (t,x)))" for t
   136     by (rule continuous_intros continuous_on_subset [OF conth] | force)+
   137   show ?thesis
   138     using h *[of 0] *[of 1] by auto
   139 qed
   141 proposition homotopic_with_imp_subset1:
   142      "homotopic_with P X Y f g \<Longrightarrow> f ` X \<subseteq> Y"
   143   by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)
   145 proposition homotopic_with_imp_subset2:
   146      "homotopic_with P X Y f g \<Longrightarrow> g ` X \<subseteq> Y"
   147   by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)
   149 proposition homotopic_with_mono:
   150     assumes hom: "homotopic_with P X Y f g"
   151         and Q: "\<And>h. \<lbrakk>continuous_on X h; image h X \<subseteq> Y \<and> P h\<rbrakk> \<Longrightarrow> Q h"
   152       shows "homotopic_with Q X Y f g"
   153   using hom
   154   apply (simp add: homotopic_with_def)
   155   apply (erule ex_forward)
   156   apply (force simp: intro!: Q dest: continuous_on_o_Pair)
   157   done
   159 proposition homotopic_with_subset_left:
   160      "\<lbrakk>homotopic_with P X Y f g; Z \<subseteq> X\<rbrakk> \<Longrightarrow> homotopic_with P Z Y f g"
   161   apply (simp add: homotopic_with_def)
   162   apply (fast elim!: continuous_on_subset ex_forward)
   163   done
   165 proposition homotopic_with_subset_right:
   166      "\<lbrakk>homotopic_with P X Y f g; Y \<subseteq> Z\<rbrakk> \<Longrightarrow> homotopic_with P X Z f g"
   167   apply (simp add: homotopic_with_def)
   168   apply (fast elim!: continuous_on_subset ex_forward)
   169   done
   171 proposition homotopic_with_compose_continuous_right:
   172     "\<lbrakk>homotopic_with (\<lambda>f. p (f \<circ> h)) X Y f g; continuous_on W h; h ` W \<subseteq> X\<rbrakk>
   173      \<Longrightarrow> homotopic_with p W Y (f \<circ> h) (g \<circ> h)"
   174   apply (clarsimp simp add: homotopic_with_def)
   175   apply (rename_tac k)
   176   apply (rule_tac x="k \<circ> (\<lambda>y. (fst y, h (snd y)))" in exI)
   177   apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
   178   apply (erule continuous_on_subset)
   179   apply (fastforce simp: o_def)+
   180   done
   182 proposition homotopic_compose_continuous_right:
   183      "\<lbrakk>homotopic_with (\<lambda>f. True) X Y f g; continuous_on W h; h ` W \<subseteq> X\<rbrakk>
   184       \<Longrightarrow> homotopic_with (\<lambda>f. True) W Y (f \<circ> h) (g \<circ> h)"
   185   using homotopic_with_compose_continuous_right by fastforce
   187 proposition homotopic_with_compose_continuous_left:
   188      "\<lbrakk>homotopic_with (\<lambda>f. p (h \<circ> f)) X Y f g; continuous_on Y h; h ` Y \<subseteq> Z\<rbrakk>
   189       \<Longrightarrow> homotopic_with p X Z (h \<circ> f) (h \<circ> g)"
   190   apply (clarsimp simp add: homotopic_with_def)
   191   apply (rename_tac k)
   192   apply (rule_tac x="h \<circ> k" in exI)
   193   apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
   194   apply (erule continuous_on_subset)
   195   apply (fastforce simp: o_def)+
   196   done
   198 proposition homotopic_compose_continuous_left:
   199    "\<lbrakk>homotopic_with (\<lambda>_. True) X Y f g;
   200      continuous_on Y h; h ` Y \<subseteq> Z\<rbrakk>
   201     \<Longrightarrow> homotopic_with (\<lambda>f. True) X Z (h \<circ> f) (h \<circ> g)"
   202   using homotopic_with_compose_continuous_left by fastforce
   204 proposition homotopic_with_Pair:
   205    assumes hom: "homotopic_with p s t f g" "homotopic_with p' s' t' f' g'"
   206        and q: "\<And>f g. \<lbrakk>p f; p' g\<rbrakk> \<Longrightarrow> q(\<lambda>(x,y). (f x, g y))"
   207      shows "homotopic_with q (s \<times> s') (t \<times> t')
   208                   (\<lambda>(x,y). (f x, f' y)) (\<lambda>(x,y). (g x, g' y))"
   209   using hom
   210   apply (clarsimp simp add: homotopic_with_def)
   211   apply (rename_tac k k')
   212   apply (rule_tac x="\<lambda>z. ((k \<circ> (\<lambda>x. (fst x, fst (snd x)))) z, (k' \<circ> (\<lambda>x. (fst x, snd (snd x)))) z)" in exI)
   213   apply (rule conjI continuous_intros | erule continuous_on_subset | clarsimp)+
   214   apply (auto intro!: q [unfolded case_prod_unfold])
   215   done
   217 lemma homotopic_on_empty [simp]: "homotopic_with (\<lambda>x. True) {} t f g"
   218   by (metis continuous_on_def empty_iff homotopic_with_equal image_subset_iff)
   221 text\<open>Homotopy with P is an equivalence relation (on continuous functions mapping X into Y that satisfy P,
   222      though this only affects reflexivity.\<close>
   225 proposition homotopic_with_refl:
   226    "homotopic_with P X Y f f \<longleftrightarrow> continuous_on X f \<and> image f X \<subseteq> Y \<and> P f"
   227   apply (rule iffI)
   228   using homotopic_with_imp_continuous homotopic_with_imp_property homotopic_with_imp_subset2 apply blast
   229   apply (simp add: homotopic_with_def)
   230   apply (rule_tac x="f \<circ> snd" in exI)
   231   apply (rule conjI continuous_intros | force)+
   232   done
   234 lemma homotopic_with_symD:
   235   fixes X :: "'a::real_normed_vector set"
   236     assumes "homotopic_with P X Y f g"
   237       shows "homotopic_with P X Y g f"
   238   using assms
   239   apply (clarsimp simp add: homotopic_with_def)
   240   apply (rename_tac h)
   241   apply (rule_tac x="h \<circ> (\<lambda>y. (1 - fst y, snd y))" in exI)
   242   apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: image_subset_iff)+
   243   done
   245 proposition homotopic_with_sym:
   246     fixes X :: "'a::real_normed_vector set"
   247     shows "homotopic_with P X Y f g \<longleftrightarrow> homotopic_with P X Y g f"
   248   using homotopic_with_symD by blast
   250 lemma split_01: "{0..1::real} = {0..1/2} \<union> {1/2..1}"
   251   by force
   253 lemma split_01_prod: "{0..1::real} \<times> X = ({0..1/2} \<times> X) \<union> ({1/2..1} \<times> X)"
   254   by force
   256 proposition homotopic_with_trans:
   257     fixes X :: "'a::real_normed_vector set"
   258     assumes "homotopic_with P X Y f g" and "homotopic_with P X Y g h"
   259       shows "homotopic_with P X Y f h"
   260 proof -
   261   have clo1: "closedin (top_of_set ({0..1/2} \<times> X \<union> {1/2..1} \<times> X)) ({0..1/2::real} \<times> X)"
   262     apply (simp add: closedin_closed split_01_prod [symmetric])
   263     apply (rule_tac x="{0..1/2} \<times> UNIV" in exI)
   264     apply (force simp: closed_Times)
   265     done
   266   have clo2: "closedin (top_of_set ({0..1/2} \<times> X \<union> {1/2..1} \<times> X)) ({1/2..1::real} \<times> X)"
   267     apply (simp add: closedin_closed split_01_prod [symmetric])
   268     apply (rule_tac x="{1/2..1} \<times> UNIV" in exI)
   269     apply (force simp: closed_Times)
   270     done
   271   { fix k1 k2:: "real \<times> 'a \<Rightarrow> 'b"
   272     assume cont: "continuous_on ({0..1} \<times> X) k1" "continuous_on ({0..1} \<times> X) k2"
   273        and Y: "k1 ` ({0..1} \<times> X) \<subseteq> Y" "k2 ` ({0..1} \<times> X) \<subseteq> Y"
   274        and geq: "\<forall>x. k1 (1, x) = g x" "\<forall>x. k2 (0, x) = g x"
   275        and k12: "\<forall>x. k1 (0, x) = f x" "\<forall>x. k2 (1, x) = h x"
   276        and P:   "\<forall>t\<in>{0..1}. P (\<lambda>x. k1 (t, x))" "\<forall>t\<in>{0..1}. P (\<lambda>x. k2 (t, x))"
   277     define k where "k y =
   278       (if fst y \<le> 1 / 2
   279        then (k1 \<circ> (\<lambda>x. (2 *\<^sub>R fst x, snd x))) y
   280        else (k2 \<circ> (\<lambda>x. (2 *\<^sub>R fst x -1, snd x))) y)" for y
   281     have keq: "k1 (2 * u, v) = k2 (2 * u - 1, v)" if "u = 1/2"  for u v
   282       by (simp add: geq that)
   283     have "continuous_on ({0..1} \<times> X) k"
   284       using cont
   285       apply (simp add: split_01_prod k_def)
   286       apply (rule clo1 clo2 continuous_on_cases_local continuous_intros | erule continuous_on_subset | simp add: linear image_subset_iff)+
   287       apply (force simp: keq)
   288       done
   289     moreover have "k ` ({0..1} \<times> X) \<subseteq> Y"
   290       using Y by (force simp: k_def)
   291     moreover have "\<forall>x. k (0, x) = f x"
   292       by (simp add: k_def k12)
   293     moreover have "(\<forall>x. k (1, x) = h x)"
   294       by (simp add: k_def k12)
   295     moreover have "\<forall>t\<in>{0..1}. P (\<lambda>x. k (t, x))"
   296       using P
   297       apply (clarsimp simp add: k_def)
   298       apply (case_tac "t \<le> 1/2", auto)
   299       done
   300     ultimately have *: "\<exists>k :: real \<times> 'a \<Rightarrow> 'b.
   301                        continuous_on ({0..1} \<times> X) k \<and> k ` ({0..1} \<times> X) \<subseteq> Y \<and>
   302                        (\<forall>x. k (0, x) = f x) \<and> (\<forall>x. k (1, x) = h x) \<and> (\<forall>t\<in>{0..1}. P (\<lambda>x. k (t, x)))"
   303       by blast
   304   } note * = this
   305   show ?thesis
   306     using assms by (auto intro: * simp add: homotopic_with_def)
   307 qed
   309 proposition homotopic_compose:
   310       fixes s :: "'a::real_normed_vector set"
   311       shows "\<lbrakk>homotopic_with (\<lambda>x. True) s t f f'; homotopic_with (\<lambda>x. True) t u g g'\<rbrakk>
   312              \<Longrightarrow> homotopic_with (\<lambda>x. True) s u (g \<circ> f) (g' \<circ> f')"
   313   apply (rule homotopic_with_trans [where g = "g \<circ> f'"])
   314   apply (metis homotopic_compose_continuous_left homotopic_with_imp_continuous homotopic_with_imp_subset1)
   315   by (metis homotopic_compose_continuous_right homotopic_with_imp_continuous homotopic_with_imp_subset2)
   318 text\<open>Homotopic triviality implicitly incorporates path-connectedness.\<close>
   319 lemma homotopic_triviality:
   320   fixes S :: "'a::real_normed_vector set"
   321   shows  "(\<forall>f g. continuous_on S f \<and> f ` S \<subseteq> T \<and>
   322                  continuous_on S g \<and> g ` S \<subseteq> T
   323                  \<longrightarrow> homotopic_with (\<lambda>x. True) S T f g) \<longleftrightarrow>
   324           (S = {} \<or> path_connected T) \<and>
   325           (\<forall>f. continuous_on S f \<and> f ` S \<subseteq> T \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)))"
   326           (is "?lhs = ?rhs")
   327 proof (cases "S = {} \<or> T = {}")
   328   case True then show ?thesis by auto
   329 next
   330   case False show ?thesis
   331   proof
   332     assume LHS [rule_format]: ?lhs
   333     have pab: "path_component T a b" if "a \<in> T" "b \<in> T" for a b
   334     proof -
   335       have "homotopic_with (\<lambda>x. True) S T (\<lambda>x. a) (\<lambda>x. b)"
   336         by (simp add: LHS continuous_on_const image_subset_iff that)
   337       then show ?thesis
   338         using False homotopic_constant_maps by blast
   339     qed
   340       moreover
   341     have "\<exists>c. homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)" if "continuous_on S f" "f ` S \<subseteq> T" for f
   342       by (metis (full_types) False LHS equals0I homotopic_constant_maps homotopic_with_imp_continuous homotopic_with_imp_subset2 pab that)
   343     ultimately show ?rhs
   344       by (simp add: path_connected_component)
   345   next
   346     assume RHS: ?rhs
   347     with False have T: "path_connected T"
   348       by blast
   349     show ?lhs
   350     proof clarify
   351       fix f g
   352       assume "continuous_on S f" "f ` S \<subseteq> T" "continuous_on S g" "g ` S \<subseteq> T"
   353       obtain c d where c: "homotopic_with (\<lambda>x. True) S T f (\<lambda>x. c)" and d: "homotopic_with (\<lambda>x. True) S T g (\<lambda>x. d)"
   354         using False \<open>continuous_on S f\<close> \<open>f ` S \<subseteq> T\<close>  RHS \<open>continuous_on S g\<close> \<open>g ` S \<subseteq> T\<close> by blast
   355       then have "c \<in> T" "d \<in> T"
   356         using False homotopic_with_imp_subset2 by fastforce+
   357       with T have "path_component T c d"
   358         using path_connected_component by blast
   359       then have "homotopic_with (\<lambda>x. True) S T (\<lambda>x. c) (\<lambda>x. d)"
   360         by (simp add: homotopic_constant_maps)
   361       with c d show "homotopic_with (\<lambda>x. True) S T f g"
   362         by (meson homotopic_with_symD homotopic_with_trans)
   363     qed
   364   qed
   365 qed
   368 subsection\<open>Homotopy of paths, maintaining the same endpoints\<close>
   371 definition%important homotopic_paths :: "['a set, real \<Rightarrow> 'a, real \<Rightarrow> 'a::topological_space] \<Rightarrow> bool"
   372   where
   373      "homotopic_paths s p q \<equiv>
   374        homotopic_with (\<lambda>r. pathstart r = pathstart p \<and> pathfinish r = pathfinish p) {0..1} s p q"
   376 lemma homotopic_paths:
   377    "homotopic_paths s p q \<longleftrightarrow>
   378       (\<exists>h. continuous_on ({0..1} \<times> {0..1}) h \<and>
   379           h ` ({0..1} \<times> {0..1}) \<subseteq> s \<and>
   380           (\<forall>x \<in> {0..1}. h(0,x) = p x) \<and>
   381           (\<forall>x \<in> {0..1}. h(1,x) = q x) \<and>
   382           (\<forall>t \<in> {0..1::real}. pathstart(h \<circ> Pair t) = pathstart p \<and>
   383                         pathfinish(h \<circ> Pair t) = pathfinish p))"
   384   by (auto simp: homotopic_paths_def homotopic_with pathstart_def pathfinish_def)
   386 proposition homotopic_paths_imp_pathstart:
   387      "homotopic_paths s p q \<Longrightarrow> pathstart p = pathstart q"
   388   by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
   390 proposition homotopic_paths_imp_pathfinish:
   391      "homotopic_paths s p q \<Longrightarrow> pathfinish p = pathfinish q"
   392   by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)
   394 lemma homotopic_paths_imp_path:
   395      "homotopic_paths s p q \<Longrightarrow> path p \<and> path q"
   396   using homotopic_paths_def homotopic_with_imp_continuous path_def by blast
   398 lemma homotopic_paths_imp_subset:
   399      "homotopic_paths s p q \<Longrightarrow> path_image p \<subseteq> s \<and> path_image q \<subseteq> s"
   400   by (simp add: homotopic_paths_def homotopic_with_imp_subset1 homotopic_with_imp_subset2 path_image_def)
   402 proposition homotopic_paths_refl [simp]: "homotopic_paths s p p \<longleftrightarrow> path p \<and> path_image p \<subseteq> s"
   403 by (simp add: homotopic_paths_def homotopic_with_refl path_def path_image_def)
   405 proposition homotopic_paths_sym: "homotopic_paths s p q \<Longrightarrow> homotopic_paths s q p"
   406   by (metis (mono_tags) homotopic_paths_def homotopic_paths_imp_pathfinish homotopic_paths_imp_pathstart homotopic_with_symD)
   408 proposition homotopic_paths_sym_eq: "homotopic_paths s p q \<longleftrightarrow> homotopic_paths s q p"
   409   by (metis homotopic_paths_sym)
   411 proposition homotopic_paths_trans [trans]:
   412      "\<lbrakk>homotopic_paths s p q; homotopic_paths s q r\<rbrakk> \<Longrightarrow> homotopic_paths s p r"
   413   apply (simp add: homotopic_paths_def)
   414   apply (rule homotopic_with_trans, assumption)
   415   by (metis (mono_tags, lifting) homotopic_with_imp_property homotopic_with_mono)
   417 proposition homotopic_paths_eq:
   418      "\<lbrakk>path p; path_image p \<subseteq> s; \<And>t. t \<in> {0..1} \<Longrightarrow> p t = q t\<rbrakk> \<Longrightarrow> homotopic_paths s p q"
   419   apply (simp add: homotopic_paths_def)
   420   apply (rule homotopic_with_eq)
   421   apply (auto simp: path_def homotopic_with_refl pathstart_def pathfinish_def path_image_def elim: continuous_on_eq)
   422   done
   424 proposition homotopic_paths_reparametrize:
   425   assumes "path p"
   426       and pips: "path_image p \<subseteq> s"
   427       and contf: "continuous_on {0..1} f"
   428       and f01:"f ` {0..1} \<subseteq> {0..1}"
   429       and [simp]: "f(0) = 0" "f(1) = 1"
   430       and q: "\<And>t. t \<in> {0..1} \<Longrightarrow> q(t) = p(f t)"
   431     shows "homotopic_paths s p q"
   432 proof -
   433   have contp: "continuous_on {0..1} p"
   434     by (metis \<open>path p\<close> path_def)
   435   then have "continuous_on {0..1} (p \<circ> f)"
   436     using contf continuous_on_compose continuous_on_subset f01 by blast
   437   then have "path q"
   438     by (simp add: path_def) (metis q continuous_on_cong)
   439   have piqs: "path_image q \<subseteq> s"
   440     by (metis (no_types, hide_lams) pips f01 image_subset_iff path_image_def q)
   441   have fb0: "\<And>a b. \<lbrakk>0 \<le> a; a \<le> 1; 0 \<le> b; b \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> (1 - a) * f b + a * b"
   442     using f01 by force
   443   have fb1: "\<lbrakk>0 \<le> a; a \<le> 1; 0 \<le> b; b \<le> 1\<rbrakk> \<Longrightarrow> (1 - a) * f b + a * b \<le> 1" for a b
   444     using f01 [THEN subsetD, of "f b"] by (simp add: convex_bound_le)
   445   have "homotopic_paths s q p"
   446   proof (rule homotopic_paths_trans)
   447     show "homotopic_paths s q (p \<circ> f)"
   448       using q by (force intro: homotopic_paths_eq [OF  \<open>path q\<close> piqs])
   449   next
   450     show "homotopic_paths s (p \<circ> f) p"
   451       apply (simp add: homotopic_paths_def homotopic_with_def)
   452       apply (rule_tac x="p \<circ> (\<lambda>y. (1 - (fst y)) *\<^sub>R ((f \<circ> snd) y) + (fst y) *\<^sub>R snd y)"  in exI)
   453       apply (rule conjI contf continuous_intros continuous_on_subset [OF contp] | simp)+
   454       using pips [unfolded path_image_def]
   455       apply (auto simp: fb0 fb1 pathstart_def pathfinish_def)
   456       done
   457   qed
   458   then show ?thesis
   459     by (simp add: homotopic_paths_sym)
   460 qed
   462 lemma homotopic_paths_subset: "\<lbrakk>homotopic_paths s p q; s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_paths t p q"
   463   using homotopic_paths_def homotopic_with_subset_right by blast
   466 text\<open> A slightly ad-hoc but useful lemma in constructing homotopies.\<close>
   467 lemma homotopic_join_lemma:
   468   fixes q :: "[real,real] \<Rightarrow> 'a::topological_space"
   469   assumes p: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. p (fst y) (snd y))"
   470       and q: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. q (fst y) (snd y))"
   471       and pf: "\<And>t. t \<in> {0..1} \<Longrightarrow> pathfinish(p t) = pathstart(q t)"
   472     shows "continuous_on ({0..1} \<times> {0..1}) (\<lambda>y. (p(fst y) +++ q(fst y)) (snd y))"
   473 proof -
   474   have 1: "(\<lambda>y. p (fst y) (2 * snd y)) = (\<lambda>y. p (fst y) (snd y)) \<circ> (\<lambda>y. (fst y, 2 * snd y))"
   475     by (rule ext) (simp)
   476   have 2: "(\<lambda>y. q (fst y) (2 * snd y - 1)) = (\<lambda>y. q (fst y) (snd y)) \<circ> (\<lambda>y. (fst y, 2 * snd y - 1))"
   477     by (rule ext) (simp)
   478   show ?thesis
   479     apply (simp add: joinpaths_def)
   480     apply (rule continuous_on_cases_le)
   481     apply (simp_all only: 1 2)
   482     apply (rule continuous_intros continuous_on_subset [OF p] continuous_on_subset [OF q] | force)+
   483     using pf
   484     apply (auto simp: mult.commute pathstart_def pathfinish_def)
   485     done
   486 qed
   488 text\<open> Congruence properties of homotopy w.r.t. path-combining operations.\<close>
   490 lemma homotopic_paths_reversepath_D:
   491       assumes "homotopic_paths s p q"
   492       shows   "homotopic_paths s (reversepath p) (reversepath q)"
   493   using assms
   494   apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
   495   apply (rule_tac x="h \<circ> (\<lambda>x. (fst x, 1 - snd x))" in exI)
   496   apply (rule conjI continuous_intros)+
   497   apply (auto simp: reversepath_def pathstart_def pathfinish_def elim!: continuous_on_subset)
   498   done
   500 proposition homotopic_paths_reversepath:
   501      "homotopic_paths s (reversepath p) (reversepath q) \<longleftrightarrow> homotopic_paths s p q"
   502   using homotopic_paths_reversepath_D by force
   505 proposition homotopic_paths_join:
   506     "\<lbrakk>homotopic_paths s p p'; homotopic_paths s q q'; pathfinish p = pathstart q\<rbrakk> \<Longrightarrow> homotopic_paths s (p +++ q) (p' +++ q')"
   507   apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
   508   apply (rename_tac k1 k2)
   509   apply (rule_tac x="(\<lambda>y. ((k1 \<circ> Pair (fst y)) +++ (k2 \<circ> Pair (fst y))) (snd y))" in exI)
   510   apply (rule conjI continuous_intros homotopic_join_lemma)+
   511   apply (auto simp: joinpaths_def pathstart_def pathfinish_def path_image_def)
   512   done
   514 proposition homotopic_paths_continuous_image:
   515     "\<lbrakk>homotopic_paths s f g; continuous_on s h; h ` s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_paths t (h \<circ> f) (h \<circ> g)"
   516   unfolding homotopic_paths_def
   517   apply (rule homotopic_with_compose_continuous_left [of _ _ _ s])
   518   apply (auto simp: pathstart_def pathfinish_def elim!: homotopic_with_mono)
   519   done
   522 subsection\<open>Group properties for homotopy of paths\<close>
   524 text%important\<open>So taking equivalence classes under homotopy would give the fundamental group\<close>
   526 proposition homotopic_paths_rid:
   527     "\<lbrakk>path p; path_image p \<subseteq> s\<rbrakk> \<Longrightarrow> homotopic_paths s (p +++ linepath (pathfinish p) (pathfinish p)) p"
   528   apply (subst homotopic_paths_sym)
   529   apply (rule homotopic_paths_reparametrize [where f = "\<lambda>t. if  t \<le> 1 / 2 then 2 *\<^sub>R t else 1"])
   530   apply (simp_all del: le_divide_eq_numeral1)
   531   apply (subst split_01)
   532   apply (rule continuous_on_cases continuous_intros | force simp: pathfinish_def joinpaths_def)+
   533   done
   535 proposition homotopic_paths_lid:
   536    "\<lbrakk>path p; path_image p \<subseteq> s\<rbrakk> \<Longrightarrow> homotopic_paths s (linepath (pathstart p) (pathstart p) +++ p) p"
   537   using homotopic_paths_rid [of "reversepath p" s]
   538   by (metis homotopic_paths_reversepath path_image_reversepath path_reversepath pathfinish_linepath
   539         pathfinish_reversepath reversepath_joinpaths reversepath_linepath)
   541 proposition homotopic_paths_assoc:
   542    "\<lbrakk>path p; path_image p \<subseteq> s; path q; path_image q \<subseteq> s; path r; path_image r \<subseteq> s; pathfinish p = pathstart q;
   543      pathfinish q = pathstart r\<rbrakk>
   544     \<Longrightarrow> homotopic_paths s (p +++ (q +++ r)) ((p +++ q) +++ r)"
   545   apply (subst homotopic_paths_sym)
   546   apply (rule homotopic_paths_reparametrize
   547            [where f = "\<lambda>t. if  t \<le> 1 / 2 then inverse 2 *\<^sub>R t
   548                            else if  t \<le> 3 / 4 then t - (1 / 4)
   549                            else 2 *\<^sub>R t - 1"])
   550   apply (simp_all del: le_divide_eq_numeral1)
   551   apply (simp add: subset_path_image_join)
   552   apply (rule continuous_on_cases_1 continuous_intros)+
   553   apply (auto simp: joinpaths_def)
   554   done
   556 proposition homotopic_paths_rinv:
   557   assumes "path p" "path_image p \<subseteq> s"
   558     shows "homotopic_paths s (p +++ reversepath p) (linepath (pathstart p) (pathstart p))"
   559 proof -
   560   have "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. (subpath 0 (fst x) p +++ reversepath (subpath 0 (fst x) p)) (snd x))"
   561     using assms
   562     apply (simp add: joinpaths_def subpath_def reversepath_def path_def del: le_divide_eq_numeral1)
   563     apply (rule continuous_on_cases_le)
   564     apply (rule_tac [2] continuous_on_compose [of _ _ p, unfolded o_def])
   565     apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
   566     apply (auto intro!: continuous_intros simp del: eq_divide_eq_numeral1)
   567     apply (force elim!: continuous_on_subset simp add: mult_le_one)+
   568     done
   569   then show ?thesis
   570     using assms
   571     apply (subst homotopic_paths_sym_eq)
   572     unfolding homotopic_paths_def homotopic_with_def
   573     apply (rule_tac x="(\<lambda>y. (subpath 0 (fst y) p +++ reversepath(subpath 0 (fst y) p)) (snd y))" in exI)
   574     apply (simp add: path_defs joinpaths_def subpath_def reversepath_def)
   575     apply (force simp: mult_le_one)
   576     done
   577 qed
   579 proposition homotopic_paths_linv:
   580   assumes "path p" "path_image p \<subseteq> s"
   581     shows "homotopic_paths s (reversepath p +++ p) (linepath (pathfinish p) (pathfinish p))"
   582   using homotopic_paths_rinv [of "reversepath p" s] assms by simp
   585 subsection\<open>Homotopy of loops without requiring preservation of endpoints\<close>
   587 definition%important homotopic_loops :: "'a::topological_space set \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> bool"  where
   588  "homotopic_loops s p q \<equiv>
   589      homotopic_with (\<lambda>r. pathfinish r = pathstart r) {0..1} s p q"
   591 lemma homotopic_loops:
   592    "homotopic_loops s p q \<longleftrightarrow>
   593       (\<exists>h. continuous_on ({0..1::real} \<times> {0..1}) h \<and>
   594           image h ({0..1} \<times> {0..1}) \<subseteq> s \<and>
   595           (\<forall>x \<in> {0..1}. h(0,x) = p x) \<and>
   596           (\<forall>x \<in> {0..1}. h(1,x) = q x) \<and>
   597           (\<forall>t \<in> {0..1}. pathfinish(h \<circ> Pair t) = pathstart(h \<circ> Pair t)))"
   598   by (simp add: homotopic_loops_def pathstart_def pathfinish_def homotopic_with)
   600 proposition homotopic_loops_imp_loop:
   601      "homotopic_loops s p q \<Longrightarrow> pathfinish p = pathstart p \<and> pathfinish q = pathstart q"
   602 using homotopic_with_imp_property homotopic_loops_def by blast
   604 proposition homotopic_loops_imp_path:
   605      "homotopic_loops s p q \<Longrightarrow> path p \<and> path q"
   606   unfolding homotopic_loops_def path_def
   607   using homotopic_with_imp_continuous by blast
   609 proposition homotopic_loops_imp_subset:
   610      "homotopic_loops s p q \<Longrightarrow> path_image p \<subseteq> s \<and> path_image q \<subseteq> s"
   611   unfolding homotopic_loops_def path_image_def
   612   by (metis homotopic_with_imp_subset1 homotopic_with_imp_subset2)
   614 proposition homotopic_loops_refl:
   615      "homotopic_loops s p p \<longleftrightarrow>
   616       path p \<and> path_image p \<subseteq> s \<and> pathfinish p = pathstart p"
   617   by (simp add: homotopic_loops_def homotopic_with_refl path_image_def path_def)
   619 proposition homotopic_loops_sym: "homotopic_loops s p q \<Longrightarrow> homotopic_loops s q p"
   620   by (simp add: homotopic_loops_def homotopic_with_sym)
   622 proposition homotopic_loops_sym_eq: "homotopic_loops s p q \<longleftrightarrow> homotopic_loops s q p"
   623   by (metis homotopic_loops_sym)
   625 proposition homotopic_loops_trans:
   626    "\<lbrakk>homotopic_loops s p q; homotopic_loops s q r\<rbrakk> \<Longrightarrow> homotopic_loops s p r"
   627   unfolding homotopic_loops_def by (blast intro: homotopic_with_trans)
   629 proposition homotopic_loops_subset:
   630    "\<lbrakk>homotopic_loops s p q; s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_loops t p q"
   631   by (simp add: homotopic_loops_def homotopic_with_subset_right)
   633 proposition homotopic_loops_eq:
   634    "\<lbrakk>path p; path_image p \<subseteq> s; pathfinish p = pathstart p; \<And>t. t \<in> {0..1} \<Longrightarrow> p(t) = q(t)\<rbrakk>
   635           \<Longrightarrow> homotopic_loops s p q"
   636   unfolding homotopic_loops_def
   637   apply (rule homotopic_with_eq)
   638   apply (rule homotopic_with_refl [where f = p, THEN iffD2])
   639   apply (simp_all add: path_image_def path_def pathstart_def pathfinish_def)
   640   done
   642 proposition homotopic_loops_continuous_image:
   643    "\<lbrakk>homotopic_loops s f g; continuous_on s h; h ` s \<subseteq> t\<rbrakk> \<Longrightarrow> homotopic_loops t (h \<circ> f) (h \<circ> g)"
   644   unfolding homotopic_loops_def
   645   apply (rule homotopic_with_compose_continuous_left)
   646   apply (erule homotopic_with_mono)
   647   by (simp add: pathfinish_def pathstart_def)
   650 subsection\<open>Relations between the two variants of homotopy\<close>
   652 proposition homotopic_paths_imp_homotopic_loops:
   653     "\<lbrakk>homotopic_paths s p q; pathfinish p = pathstart p; pathfinish q = pathstart p\<rbrakk> \<Longrightarrow> homotopic_loops s p q"
   654   by (auto simp: homotopic_paths_def homotopic_loops_def intro: homotopic_with_mono)
   656 proposition homotopic_loops_imp_homotopic_paths_null:
   657   assumes "homotopic_loops s p (linepath a a)"
   658     shows "homotopic_paths s p (linepath (pathstart p) (pathstart p))"
   659 proof -
   660   have "path p" by (metis assms homotopic_loops_imp_path)
   661   have ploop: "pathfinish p = pathstart p" by (metis assms homotopic_loops_imp_loop)
   662   have pip: "path_image p \<subseteq> s" by (metis assms homotopic_loops_imp_subset)
   663   obtain h where conth: "continuous_on ({0..1::real} \<times> {0..1}) h"
   664              and hs: "h ` ({0..1} \<times> {0..1}) \<subseteq> s"
   665              and [simp]: "\<And>x. x \<in> {0..1} \<Longrightarrow> h(0,x) = p x"
   666              and [simp]: "\<And>x. x \<in> {0..1} \<Longrightarrow> h(1,x) = a"
   667              and ends: "\<And>t. t \<in> {0..1} \<Longrightarrow> pathfinish (h \<circ> Pair t) = pathstart (h \<circ> Pair t)"
   668     using assms by (auto simp: homotopic_loops homotopic_with)
   669   have conth0: "path (\<lambda>u. h (u, 0))"
   670     unfolding path_def
   671     apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
   672     apply (force intro: continuous_intros continuous_on_subset [OF conth])+
   673     done
   674   have pih0: "path_image (\<lambda>u. h (u, 0)) \<subseteq> s"
   675     using hs by (force simp: path_image_def)
   676   have c1: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. h (fst x * snd x, 0))"
   677     apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
   678     apply (force simp: mult_le_one intro: continuous_intros continuous_on_subset [OF conth])+
   679     done
   680   have c2: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. h (fst x - fst x * snd x, 0))"
   681     apply (rule continuous_on_compose [of _ _ h, unfolded o_def])
   682     apply (force simp: mult_left_le mult_le_one intro: continuous_intros continuous_on_subset [OF conth])+
   683     apply (rule continuous_on_subset [OF conth])
   684     apply (auto simp: algebra_simps add_increasing2 mult_left_le)
   685     done
   686   have [simp]: "\<And>t. \<lbrakk>0 \<le> t \<and> t \<le> 1\<rbrakk> \<Longrightarrow> h (t, 1) = h (t, 0)"
   687     using ends by (simp add: pathfinish_def pathstart_def)
   688   have adhoc_le: "c * 4 \<le> 1 + c * (d * 4)" if "\<not> d * 4 \<le> 3" "0 \<le> c" "c \<le> 1" for c d::real
   689   proof -
   690     have "c * 3 \<le> c * (d * 4)" using that less_eq_real_def by auto
   691     with \<open>c \<le> 1\<close> show ?thesis by fastforce
   692   qed
   693   have *: "\<And>p x. (path p \<and> path(reversepath p)) \<and>
   694                   (path_image p \<subseteq> s \<and> path_image(reversepath p) \<subseteq> s) \<and>
   695                   (pathfinish p = pathstart(linepath a a +++ reversepath p) \<and>
   696                    pathstart(reversepath p) = a) \<and> pathstart p = x
   697                   \<Longrightarrow> homotopic_paths s (p +++ linepath a a +++ reversepath p) (linepath x x)"
   698     by (metis homotopic_paths_lid homotopic_paths_join
   699               homotopic_paths_trans homotopic_paths_sym homotopic_paths_rinv)
   700   have 1: "homotopic_paths s p (p +++ linepath (pathfinish p) (pathfinish p))"
   701     using \<open>path p\<close> homotopic_paths_rid homotopic_paths_sym pip by blast
   702   moreover have "homotopic_paths s (p +++ linepath (pathfinish p) (pathfinish p))
   703                                    (linepath (pathstart p) (pathstart p) +++ p +++ linepath (pathfinish p) (pathfinish p))"
   704     apply (rule homotopic_paths_sym)
   705     using homotopic_paths_lid [of "p +++ linepath (pathfinish p) (pathfinish p)" s]
   706     by (metis 1 homotopic_paths_imp_path homotopic_paths_imp_pathstart homotopic_paths_imp_subset)
   707   moreover have "homotopic_paths s (linepath (pathstart p) (pathstart p) +++ p +++ linepath (pathfinish p) (pathfinish p))
   708                                    ((\<lambda>u. h (u, 0)) +++ linepath a a +++ reversepath (\<lambda>u. h (u, 0)))"
   709     apply (simp add: homotopic_paths_def homotopic_with_def)
   710     apply (rule_tac x="\<lambda>y. (subpath 0 (fst y) (\<lambda>u. h (u, 0)) +++ (\<lambda>u. h (Pair (fst y) u)) +++ subpath (fst y) 0 (\<lambda>u. h (u, 0))) (snd y)" in exI)
   711     apply (simp add: subpath_reversepath)
   712     apply (intro conjI homotopic_join_lemma)
   713     using ploop
   714     apply (simp_all add: path_defs joinpaths_def o_def subpath_def conth c1 c2)
   715     apply (force simp: algebra_simps mult_le_one mult_left_le intro: hs [THEN subsetD] adhoc_le)
   716     done
   717   moreover have "homotopic_paths s ((\<lambda>u. h (u, 0)) +++ linepath a a +++ reversepath (\<lambda>u. h (u, 0)))
   718                                    (linepath (pathstart p) (pathstart p))"
   719     apply (rule *)
   720     apply (simp add: pih0 pathstart_def pathfinish_def conth0)
   721     apply (simp add: reversepath_def joinpaths_def)
   722     done
   723   ultimately show ?thesis
   724     by (blast intro: homotopic_paths_trans)
   725 qed
   727 proposition homotopic_loops_conjugate:
   728   fixes s :: "'a::real_normed_vector set"
   729   assumes "path p" "path q" and pip: "path_image p \<subseteq> s" and piq: "path_image q \<subseteq> s"
   730       and papp: "pathfinish p = pathstart q" and qloop: "pathfinish q = pathstart q"
   731     shows "homotopic_loops s (p +++ q +++ reversepath p) q"
   732 proof -
   733   have contp: "continuous_on {0..1} p"  using \<open>path p\<close> [unfolded path_def] by blast
   734   have contq: "continuous_on {0..1} q"  using \<open>path q\<close> [unfolded path_def] by blast
   735   have c1: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. p ((1 - fst x) * snd x + fst x))"
   736     apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
   737     apply (force simp: mult_le_one intro!: continuous_intros)
   738     apply (rule continuous_on_subset [OF contp])
   739     apply (auto simp: algebra_simps add_increasing2 mult_right_le_one_le sum_le_prod1)
   740     done
   741   have c2: "continuous_on ({0..1} \<times> {0..1}) (\<lambda>x. p ((fst x - 1) * snd x + 1))"
   742     apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
   743     apply (force simp: mult_le_one intro!: continuous_intros)
   744     apply (rule continuous_on_subset [OF contp])
   745     apply (auto simp: algebra_simps add_increasing2 mult_left_le_one_le)
   746     done
   747   have ps1: "\<And>a b. \<lbrakk>b * 2 \<le> 1; 0 \<le> b; 0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> p ((1 - a) * (2 * b) + a) \<in> s"
   748     using sum_le_prod1
   749     by (force simp: algebra_simps add_increasing2 mult_left_le intro: pip [unfolded path_image_def, THEN subsetD])
   750   have ps2: "\<And>a b. \<lbrakk>\<not> 4 * b \<le> 3; b \<le> 1; 0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> p ((a - 1) * (4 * b - 3) + 1) \<in> s"
   751     apply (rule pip [unfolded path_image_def, THEN subsetD])
   752     apply (rule image_eqI, blast)
   753     apply (simp add: algebra_simps)
   754     by (metis add_mono_thms_linordered_semiring(1) affine_ineq linear mult.commute mult.left_neutral mult_right_mono not_le
   755               add.commute zero_le_numeral)
   756   have qs: "\<And>a b. \<lbrakk>4 * b \<le> 3; \<not> b * 2 \<le> 1\<rbrakk> \<Longrightarrow> q (4 * b - 2) \<in> s"
   757     using path_image_def piq by fastforce
   758   have "homotopic_loops s (p +++ q +++ reversepath p)
   759                           (linepath (pathstart q) (pathstart q) +++ q +++ linepath (pathstart q) (pathstart q))"
   760     apply (simp add: homotopic_loops_def homotopic_with_def)
   761     apply (rule_tac x="(\<lambda>y. (subpath (fst y) 1 p +++ q +++ subpath 1 (fst y) p) (snd y))" in exI)
   762     apply (simp add: subpath_refl subpath_reversepath)
   763     apply (intro conjI homotopic_join_lemma)
   764     using papp qloop
   765     apply (simp_all add: path_defs joinpaths_def o_def subpath_def c1 c2)
   766     apply (force simp: contq intro: continuous_on_compose [of _ _ q, unfolded o_def] continuous_on_id continuous_on_snd)
   767     apply (auto simp: ps1 ps2 qs)
   768     done
   769   moreover have "homotopic_loops s (linepath (pathstart q) (pathstart q) +++ q +++ linepath (pathstart q) (pathstart q)) q"
   770   proof -
   771     have "homotopic_paths s (linepath (pathfinish q) (pathfinish q) +++ q) q"
   772       using \<open>path q\<close> homotopic_paths_lid qloop piq by auto
   773     hence 1: "\<And>f. homotopic_paths s f q \<or> \<not> homotopic_paths s f (linepath (pathfinish q) (pathfinish q) +++ q)"
   774       using homotopic_paths_trans by blast
   775     hence "homotopic_paths s (linepath (pathfinish q) (pathfinish q) +++ q +++ linepath (pathfinish q) (pathfinish q)) q"
   776     proof -
   777       have "homotopic_paths s (q +++ linepath (pathfinish q) (pathfinish q)) q"
   778         by (simp add: \<open>path q\<close> homotopic_paths_rid piq)
   779       thus ?thesis
   780         by (metis (no_types) 1 \<open>path q\<close> homotopic_paths_join homotopic_paths_rinv homotopic_paths_sym
   781                   homotopic_paths_trans qloop pathfinish_linepath piq)
   782     qed
   783     thus ?thesis
   784       by (metis (no_types) qloop homotopic_loops_sym homotopic_paths_imp_homotopic_loops homotopic_paths_imp_pathfinish homotopic_paths_sym)
   785   qed
   786   ultimately show ?thesis
   787     by (blast intro: homotopic_loops_trans)
   788 qed
   790 lemma homotopic_paths_loop_parts:
   791   assumes loops: "homotopic_loops S (p +++ reversepath q) (linepath a a)" and "path q"
   792   shows "homotopic_paths S p q"
   793 proof -
   794   have paths: "homotopic_paths S (p +++ reversepath q) (linepath (pathstart p) (pathstart p))"
   795     using homotopic_loops_imp_homotopic_paths_null [OF loops] by simp
   796   then have "path p"
   797     using \<open>path q\<close> homotopic_loops_imp_path loops path_join path_join_path_ends path_reversepath by blast
   798   show ?thesis
   799   proof (cases "pathfinish p = pathfinish q")
   800     case True
   801     have pipq: "path_image p \<subseteq> S" "path_image q \<subseteq> S"
   802       by (metis Un_subset_iff paths \<open>path p\<close> \<open>path q\<close> homotopic_loops_imp_subset homotopic_paths_imp_path loops
   803            path_image_join path_image_reversepath path_imp_reversepath path_join_eq)+
   804     have "homotopic_paths S p (p +++ (linepath (pathfinish p) (pathfinish p)))"
   805       using \<open>path p\<close> \<open>path_image p \<subseteq> S\<close> homotopic_paths_rid homotopic_paths_sym by blast
   806     moreover have "homotopic_paths S (p +++ (linepath (pathfinish p) (pathfinish p))) (p +++ (reversepath q +++ q))"
   807       by (simp add: True \<open>path p\<close> \<open>path q\<close> pipq homotopic_paths_join homotopic_paths_linv homotopic_paths_sym)
   808     moreover have "homotopic_paths S (p +++ (reversepath q +++ q)) ((p +++ reversepath q) +++ q)"
   809       by (simp add: True \<open>path p\<close> \<open>path q\<close> homotopic_paths_assoc pipq)
   810     moreover have "homotopic_paths S ((p +++ reversepath q) +++ q) (linepath (pathstart p) (pathstart p) +++ q)"
   811       by (simp add: \<open>path q\<close> homotopic_paths_join paths pipq)
   812     moreover then have "homotopic_paths S (linepath (pathstart p) (pathstart p) +++ q) q"
   813       by (metis \<open>path q\<close> homotopic_paths_imp_path homotopic_paths_lid linepath_trivial path_join_path_ends pathfinish_def pipq(2))
   814     ultimately show ?thesis
   815       using homotopic_paths_trans by metis
   816   next
   817     case False
   818     then show ?thesis
   819       using \<open>path q\<close> homotopic_loops_imp_path loops path_join_path_ends by fastforce
   820   qed
   821 qed
   824 subsection%unimportant\<open>Homotopy of "nearby" function, paths and loops\<close>
   826 lemma homotopic_with_linear:
   827   fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
   828   assumes contf: "continuous_on s f"
   829       and contg:"continuous_on s g"
   830       and sub: "\<And>x. x \<in> s \<Longrightarrow> closed_segment (f x) (g x) \<subseteq> t"
   831     shows "homotopic_with (\<lambda>z. True) s t f g"
   832   apply (simp add: homotopic_with_def)
   833   apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R f(snd y) + (fst y) *\<^sub>R g(snd y))" in exI)
   834   apply (intro conjI)
   835   apply (rule subset_refl continuous_intros continuous_on_subset [OF contf] continuous_on_compose2 [where g=f]
   836                                             continuous_on_subset [OF contg] continuous_on_compose2 [where g=g]| simp)+
   837   using sub closed_segment_def apply fastforce+
   838   done
   840 lemma homotopic_paths_linear:
   841   fixes g h :: "real \<Rightarrow> 'a::real_normed_vector"
   842   assumes "path g" "path h" "pathstart h = pathstart g" "pathfinish h = pathfinish g"
   843           "\<And>t. t \<in> {0..1} \<Longrightarrow> closed_segment (g t) (h t) \<subseteq> s"
   844     shows "homotopic_paths s g h"
   845   using assms
   846   unfolding path_def
   847   apply (simp add: closed_segment_def pathstart_def pathfinish_def homotopic_paths_def homotopic_with_def)
   848   apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R (g \<circ> snd) y + (fst y) *\<^sub>R (h \<circ> snd) y)" in exI)
   849   apply (intro conjI subsetI continuous_intros; force)
   850   done
   852 lemma homotopic_loops_linear:
   853   fixes g h :: "real \<Rightarrow> 'a::real_normed_vector"
   854   assumes "path g" "path h" "pathfinish g = pathstart g" "pathfinish h = pathstart h"
   855           "\<And>t x. t \<in> {0..1} \<Longrightarrow> closed_segment (g t) (h t) \<subseteq> s"
   856     shows "homotopic_loops s g h"
   857   using assms
   858   unfolding path_def
   859   apply (simp add: pathstart_def pathfinish_def homotopic_loops_def homotopic_with_def)
   860   apply (rule_tac x="\<lambda>y. ((1 - (fst y)) *\<^sub>R g(snd y) + (fst y) *\<^sub>R h(snd y))" in exI)
   861   apply (auto intro!: continuous_intros intro: continuous_on_compose2 [where g=g] continuous_on_compose2 [where g=h])
   862   apply (force simp: closed_segment_def)
   863   done
   865 lemma homotopic_paths_nearby_explicit:
   866   assumes "path g" "path h" "pathstart h = pathstart g" "pathfinish h = pathfinish g"
   867       and no: "\<And>t x. \<lbrakk>t \<in> {0..1}; x \<notin> s\<rbrakk> \<Longrightarrow> norm(h t - g t) < norm(g t - x)"
   868     shows "homotopic_paths s g h"
   869   apply (rule homotopic_paths_linear [OF assms(1-4)])
   870   by (metis no segment_bound(1) subsetI norm_minus_commute not_le)
   872 lemma homotopic_loops_nearby_explicit:
   873   assumes "path g" "path h" "pathfinish g = pathstart g" "pathfinish h = pathstart h"
   874       and no: "\<And>t x. \<lbrakk>t \<in> {0..1}; x \<notin> s\<rbrakk> \<Longrightarrow> norm(h t - g t) < norm(g t - x)"
   875     shows "homotopic_loops s g h"
   876   apply (rule homotopic_loops_linear [OF assms(1-4)])
   877   by (metis no segment_bound(1) subsetI norm_minus_commute not_le)
   879 lemma homotopic_nearby_paths:
   880   fixes g h :: "real \<Rightarrow> 'a::euclidean_space"
   881   assumes "path g" "open s" "path_image g \<subseteq> s"
   882     shows "\<exists>e. 0 < e \<and>
   883                (\<forall>h. path h \<and>
   884                     pathstart h = pathstart g \<and> pathfinish h = pathfinish g \<and>
   885                     (\<forall>t \<in> {0..1}. norm(h t - g t) < e) \<longrightarrow> homotopic_paths s g h)"
   886 proof -
   887   obtain e where "e > 0" and e: "\<And>x y. x \<in> path_image g \<Longrightarrow> y \<in> - s \<Longrightarrow> e \<le> dist x y"
   888     using separate_compact_closed [of "path_image g" "-s"] assms by force
   889   show ?thesis
   890     apply (intro exI conjI)
   891     using e [unfolded dist_norm]
   892     apply (auto simp: intro!: homotopic_paths_nearby_explicit assms  \<open>e > 0\<close>)
   893     by (metis atLeastAtMost_iff imageI le_less_trans not_le path_image_def)
   894 qed
   896 lemma homotopic_nearby_loops:
   897   fixes g h :: "real \<Rightarrow> 'a::euclidean_space"
   898   assumes "path g" "open s" "path_image g \<subseteq> s" "pathfinish g = pathstart g"
   899     shows "\<exists>e. 0 < e \<and>
   900                (\<forall>h. path h \<and> pathfinish h = pathstart h \<and>
   901                     (\<forall>t \<in> {0..1}. norm(h t - g t) < e) \<longrightarrow> homotopic_loops s g h)"
   902 proof -
   903   obtain e where "e > 0" and e: "\<And>x y. x \<in> path_image g \<Longrightarrow> y \<in> - s \<Longrightarrow> e \<le> dist x y"
   904     using separate_compact_closed [of "path_image g" "-s"] assms by force
   905   show ?thesis
   906     apply (intro exI conjI)
   907     using e [unfolded dist_norm]
   908     apply (auto simp: intro!: homotopic_loops_nearby_explicit assms  \<open>e > 0\<close>)
   909     by (metis atLeastAtMost_iff imageI le_less_trans not_le path_image_def)
   910 qed
   913 subsection\<open> Homotopy and subpaths\<close>
   915 lemma homotopic_join_subpaths1:
   916   assumes "path g" and pag: "path_image g \<subseteq> s"
   917       and u: "u \<in> {0..1}" and v: "v \<in> {0..1}" and w: "w \<in> {0..1}" "u \<le> v" "v \<le> w"
   918     shows "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
   919 proof -
   920   have 1: "t * 2 \<le> 1 \<Longrightarrow> u + t * (v * 2) \<le> v + t * (u * 2)" for t
   921     using affine_ineq \<open>u \<le> v\<close> by fastforce
   922   have 2: "t * 2 > 1 \<Longrightarrow> u + (2*t - 1) * v \<le> v + (2*t - 1) * w" for t
   923     by (metis add_mono_thms_linordered_semiring(1) diff_gt_0_iff_gt less_eq_real_def mult.commute mult_right_mono \<open>u \<le> v\<close> \<open>v \<le> w\<close>)
   924   have t2: "\<And>t::real. t*2 = 1 \<Longrightarrow> t = 1/2" by auto
   925   show ?thesis
   926     apply (rule homotopic_paths_subset [OF _ pag])
   927     using assms
   928     apply (cases "w = u")
   929     using homotopic_paths_rinv [of "subpath u v g" "path_image g"]
   930     apply (force simp: closed_segment_eq_real_ivl image_mono path_image_def subpath_refl)
   931       apply (rule homotopic_paths_sym)
   932       apply (rule homotopic_paths_reparametrize
   933              [where f = "\<lambda>t. if  t \<le> 1 / 2
   934                              then inverse((w - u)) *\<^sub>R (2 * (v - u)) *\<^sub>R t
   935                              else inverse((w - u)) *\<^sub>R ((v - u) + (w - v) *\<^sub>R (2 *\<^sub>R t - 1))"])
   936       using \<open>path g\<close> path_subpath u w apply blast
   937       using \<open>path g\<close> path_image_subpath_subset u w(1) apply blast
   938       apply simp_all
   939       apply (subst split_01)
   940       apply (rule continuous_on_cases continuous_intros | force simp: pathfinish_def joinpaths_def)+
   941       apply (simp_all add: field_simps not_le)
   942       apply (force dest!: t2)
   943       apply (force simp: algebra_simps mult_left_mono affine_ineq dest!: 1 2)
   944       apply (simp add: joinpaths_def subpath_def)
   945       apply (force simp: algebra_simps)
   946       done
   947 qed
   949 lemma homotopic_join_subpaths2:
   950   assumes "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
   951     shows "homotopic_paths s (subpath w v g +++ subpath v u g) (subpath w u g)"
   952 by (metis assms homotopic_paths_reversepath_D pathfinish_subpath pathstart_subpath reversepath_joinpaths reversepath_subpath)
   954 lemma homotopic_join_subpaths3:
   955   assumes hom: "homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
   956       and "path g" and pag: "path_image g \<subseteq> s"
   957       and u: "u \<in> {0..1}" and v: "v \<in> {0..1}" and w: "w \<in> {0..1}"
   958     shows "homotopic_paths s (subpath v w g +++ subpath w u g) (subpath v u g)"
   959 proof -
   960   have "homotopic_paths s (subpath u w g +++ subpath w v g) ((subpath u v g +++ subpath v w g) +++ subpath w v g)"
   961     apply (rule homotopic_paths_join)
   962     using hom homotopic_paths_sym_eq apply blast
   963     apply (metis \<open>path g\<close> homotopic_paths_eq pag path_image_subpath_subset path_subpath subset_trans v w, simp)
   964     done
   965   also have "homotopic_paths s ((subpath u v g +++ subpath v w g) +++ subpath w v g) (subpath u v g +++ subpath v w g +++ subpath w v g)"
   966     apply (rule homotopic_paths_sym [OF homotopic_paths_assoc])
   967     using assms by (simp_all add: path_image_subpath_subset [THEN order_trans])
   968   also have "homotopic_paths s (subpath u v g +++ subpath v w g +++ subpath w v g)
   969                                (subpath u v g +++ linepath (pathfinish (subpath u v g)) (pathfinish (subpath u v g)))"
   970     apply (rule homotopic_paths_join)
   971     apply (metis \<open>path g\<close> homotopic_paths_eq order.trans pag path_image_subpath_subset path_subpath u v)
   972     apply (metis (no_types, lifting) \<open>path g\<close> homotopic_paths_linv order_trans pag path_image_subpath_subset path_subpath pathfinish_subpath reversepath_subpath v w)
   973     apply simp
   974     done
   975   also have "homotopic_paths s (subpath u v g +++ linepath (pathfinish (subpath u v g)) (pathfinish (subpath u v g))) (subpath u v g)"
   976     apply (rule homotopic_paths_rid)
   977     using \<open>path g\<close> path_subpath u v apply blast
   978     apply (meson \<open>path g\<close> order.trans pag path_image_subpath_subset u v)
   979     done
   980   finally have "homotopic_paths s (subpath u w g +++ subpath w v g) (subpath u v g)" .
   981   then show ?thesis
   982     using homotopic_join_subpaths2 by blast
   983 qed
   985 proposition homotopic_join_subpaths:
   986    "\<lbrakk>path g; path_image g \<subseteq> s; u \<in> {0..1}; v \<in> {0..1}; w \<in> {0..1}\<rbrakk>
   987     \<Longrightarrow> homotopic_paths s (subpath u v g +++ subpath v w g) (subpath u w g)"
   988   apply (rule le_cases3 [of u v w])
   989 using homotopic_join_subpaths1 homotopic_join_subpaths2 homotopic_join_subpaths3 by metis+
   991 text\<open>Relating homotopy of trivial loops to path-connectedness.\<close>
   993 lemma path_component_imp_homotopic_points:
   994     "path_component S a b \<Longrightarrow> homotopic_loops S (linepath a a) (linepath b b)"
   995 apply (simp add: path_component_def homotopic_loops_def homotopic_with_def
   996                  pathstart_def pathfinish_def path_image_def path_def, clarify)
   997 apply (rule_tac x="g \<circ> fst" in exI)
   998 apply (intro conjI continuous_intros continuous_on_compose)+
   999 apply (auto elim!: continuous_on_subset)
  1000 done
  1002 lemma homotopic_loops_imp_path_component_value:
  1003    "\<lbrakk>homotopic_loops S p q; 0 \<le> t; t \<le> 1\<rbrakk>
  1004         \<Longrightarrow> path_component S (p t) (q t)"
  1005 apply (simp add: path_component_def homotopic_loops_def homotopic_with_def
  1006                  pathstart_def pathfinish_def path_image_def path_def, clarify)
  1007 apply (rule_tac x="h \<circ> (\<lambda>u. (u, t))" in exI)
  1008 apply (intro conjI continuous_intros continuous_on_compose)+
  1009 apply (auto elim!: continuous_on_subset)
  1010 done
  1012 lemma homotopic_points_eq_path_component:
  1013    "homotopic_loops S (linepath a a) (linepath b b) \<longleftrightarrow>
  1014         path_component S a b"
  1015 by (auto simp: path_component_imp_homotopic_points
  1016          dest: homotopic_loops_imp_path_component_value [where t=1])
  1018 lemma path_connected_eq_homotopic_points:
  1019     "path_connected S \<longleftrightarrow>
  1020       (\<forall>a b. a \<in> S \<and> b \<in> S \<longrightarrow> homotopic_loops S (linepath a a) (linepath b b))"
  1021 by (auto simp: path_connected_def path_component_def homotopic_points_eq_path_component)
  1024 subsection\<open>Simply connected sets\<close>
  1026 text%important\<open>defined as "all loops are homotopic (as loops)\<close>
  1028 definition%important simply_connected where
  1029   "simply_connected S \<equiv>
  1030         \<forall>p q. path p \<and> pathfinish p = pathstart p \<and> path_image p \<subseteq> S \<and>
  1031               path q \<and> pathfinish q = pathstart q \<and> path_image q \<subseteq> S
  1032               \<longrightarrow> homotopic_loops S p q"
  1034 lemma simply_connected_empty [iff]: "simply_connected {}"
  1035   by (simp add: simply_connected_def)
  1037 lemma simply_connected_imp_path_connected:
  1038   fixes S :: "_::real_normed_vector set"
  1039   shows "simply_connected S \<Longrightarrow> path_connected S"
  1040 by (simp add: simply_connected_def path_connected_eq_homotopic_points)
  1042 lemma simply_connected_imp_connected:
  1043   fixes S :: "_::real_normed_vector set"
  1044   shows "simply_connected S \<Longrightarrow> connected S"
  1045 by (simp add: path_connected_imp_connected simply_connected_imp_path_connected)
  1047 lemma simply_connected_eq_contractible_loop_any:
  1048   fixes S :: "_::real_normed_vector set"
  1049   shows "simply_connected S \<longleftrightarrow>
  1050             (\<forall>p a. path p \<and> path_image p \<subseteq> S \<and>
  1051                   pathfinish p = pathstart p \<and> a \<in> S
  1052                   \<longrightarrow> homotopic_loops S p (linepath a a))"
  1053 apply (simp add: simply_connected_def)
  1054 apply (rule iffI, force, clarify)
  1055 apply (rule_tac q = "linepath (pathstart p) (pathstart p)" in homotopic_loops_trans)
  1056 apply (fastforce simp add:)
  1057 using homotopic_loops_sym apply blast
  1058 done
  1060 lemma simply_connected_eq_contractible_loop_some:
  1061   fixes S :: "_::real_normed_vector set"
  1062   shows "simply_connected S \<longleftrightarrow>
  1063                 path_connected S \<and>
  1064                 (\<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
  1065                     \<longrightarrow> (\<exists>a. a \<in> S \<and> homotopic_loops S p (linepath a a)))"
  1066 apply (rule iffI)
  1067  apply (fastforce simp: simply_connected_imp_path_connected simply_connected_eq_contractible_loop_any)
  1068 apply (clarsimp simp add: simply_connected_eq_contractible_loop_any)
  1069 apply (drule_tac x=p in spec)
  1070 using homotopic_loops_trans path_connected_eq_homotopic_points
  1071   apply blast
  1072 done
  1074 lemma simply_connected_eq_contractible_loop_all:
  1075   fixes S :: "_::real_normed_vector set"
  1076   shows "simply_connected S \<longleftrightarrow>
  1077          S = {} \<or>
  1078          (\<exists>a \<in> S. \<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
  1079                 \<longrightarrow> homotopic_loops S p (linepath a a))"
  1080         (is "?lhs = ?rhs")
  1081 proof (cases "S = {}")
  1082   case True then show ?thesis by force
  1083 next
  1084   case False
  1085   then obtain a where "a \<in> S" by blast
  1086   show ?thesis
  1087   proof
  1088     assume "simply_connected S"
  1089     then show ?rhs
  1090       using \<open>a \<in> S\<close> \<open>simply_connected S\<close> simply_connected_eq_contractible_loop_any
  1091       by blast
  1092   next
  1093     assume ?rhs
  1094     then show "simply_connected S"
  1095       apply (simp add: simply_connected_eq_contractible_loop_any False)
  1096       by (meson homotopic_loops_refl homotopic_loops_sym homotopic_loops_trans
  1097              path_component_imp_homotopic_points path_component_refl)
  1098   qed
  1099 qed
  1101 lemma simply_connected_eq_contractible_path:
  1102   fixes S :: "_::real_normed_vector set"
  1103   shows "simply_connected S \<longleftrightarrow>
  1104            path_connected S \<and>
  1105            (\<forall>p. path p \<and> path_image p \<subseteq> S \<and> pathfinish p = pathstart p
  1106             \<longrightarrow> homotopic_paths S p (linepath (pathstart p) (pathstart p)))"
  1107 apply (rule iffI)
  1108  apply (simp add: simply_connected_imp_path_connected)
  1109  apply (metis simply_connected_eq_contractible_loop_some homotopic_loops_imp_homotopic_paths_null)
  1110 by (meson homotopic_paths_imp_homotopic_loops pathfinish_linepath pathstart_in_path_image
  1111          simply_connected_eq_contractible_loop_some subset_iff)
  1113 lemma simply_connected_eq_homotopic_paths:
  1114   fixes S :: "_::real_normed_vector set"
  1115   shows "simply_connected S \<longleftrightarrow>
  1116           path_connected S \<and>
  1117           (\<forall>p q. path p \<and> path_image p \<subseteq> S \<and>
  1118                 path q \<and> path_image q \<subseteq> S \<and>
  1119                 pathstart q = pathstart p \<and> pathfinish q = pathfinish p
  1120                 \<longrightarrow> homotopic_paths S p q)"
  1121          (is "?lhs = ?rhs")
  1122 proof
  1123   assume ?lhs
  1124   then have pc: "path_connected S"
  1125         and *:  "\<And>p. \<lbrakk>path p; path_image p \<subseteq> S;
  1126                        pathfinish p = pathstart p\<rbrakk>
  1127                       \<Longrightarrow> homotopic_paths S p (linepath (pathstart p) (pathstart p))"
  1128     by (auto simp: simply_connected_eq_contractible_path)
  1129   have "homotopic_paths S p q"
  1130         if "path p" "path_image p \<subseteq> S" "path q"
  1131            "path_image q \<subseteq> S" "pathstart q = pathstart p"
  1132            "pathfinish q = pathfinish p" for p q
  1133   proof -
  1134     have "homotopic_paths S p (p +++ linepath (pathfinish p) (pathfinish p))"
  1135       by (simp add: homotopic_paths_rid homotopic_paths_sym that)
  1136     also have "homotopic_paths S (p +++ linepath (pathfinish p) (pathfinish p))
  1137                                  (p +++ reversepath q +++ q)"
  1138       using that
  1139       by (metis homotopic_paths_join homotopic_paths_linv homotopic_paths_refl homotopic_paths_sym_eq pathstart_linepath)
  1140     also have "homotopic_paths S (p +++ reversepath q +++ q)
  1141                                  ((p +++ reversepath q) +++ q)"
  1142       by (simp add: that homotopic_paths_assoc)
  1143     also have "homotopic_paths S ((p +++ reversepath q) +++ q)
  1144                                  (linepath (pathstart q) (pathstart q) +++ q)"
  1145       using * [of "p +++ reversepath q"] that
  1146       by (simp add: homotopic_paths_join path_image_join)
  1147     also have "homotopic_paths S (linepath (pathstart q) (pathstart q) +++ q) q"
  1148       using that homotopic_paths_lid by blast
  1149     finally show ?thesis .
  1150   qed
  1151   then show ?rhs
  1152     by (blast intro: pc *)
  1153 next
  1154   assume ?rhs
  1155   then show ?lhs
  1156     by (force simp: simply_connected_eq_contractible_path)
  1157 qed
  1159 proposition simply_connected_Times:
  1160   fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
  1161   assumes S: "simply_connected S" and T: "simply_connected T"
  1162     shows "simply_connected(S \<times> T)"
  1163 proof -
  1164   have "homotopic_loops (S \<times> T) p (linepath (a, b) (a, b))"
  1165        if "path p" "path_image p \<subseteq> S \<times> T" "p 1 = p 0" "a \<in> S" "b \<in> T"
  1166        for p a b
  1167   proof -
  1168     have "path (fst \<circ> p)"
  1169       apply (rule Path_Connected.path_continuous_image [OF \<open>path p\<close>])
  1170       apply (rule continuous_intros)+
  1171       done
  1172     moreover have "path_image (fst \<circ> p) \<subseteq> S"
  1173       using that apply (simp add: path_image_def) by force
  1174     ultimately have p1: "homotopic_loops S (fst \<circ> p) (linepath a a)"
  1175       using S that
  1176       apply (simp add: simply_connected_eq_contractible_loop_any)
  1177       apply (drule_tac x="fst \<circ> p" in spec)
  1178       apply (drule_tac x=a in spec)
  1179       apply (auto simp: pathstart_def pathfinish_def)
  1180       done
  1181     have "path (snd \<circ> p)"
  1182       apply (rule Path_Connected.path_continuous_image [OF \<open>path p\<close>])
  1183       apply (rule continuous_intros)+
  1184       done
  1185     moreover have "path_image (snd \<circ> p) \<subseteq> T"
  1186       using that apply (simp add: path_image_def) by force
  1187     ultimately have p2: "homotopic_loops T (snd \<circ> p) (linepath b b)"
  1188       using T that
  1189       apply (simp add: simply_connected_eq_contractible_loop_any)
  1190       apply (drule_tac x="snd \<circ> p" in spec)
  1191       apply (drule_tac x=b in spec)
  1192       apply (auto simp: pathstart_def pathfinish_def)
  1193       done
  1194     show ?thesis
  1195       using p1 p2
  1196       apply (simp add: homotopic_loops, clarify)
  1197       apply (rename_tac h k)
  1198       apply (rule_tac x="\<lambda>z. Pair (h z) (k z)" in exI)
  1199       apply (intro conjI continuous_intros | assumption)+
  1200       apply (auto simp: pathstart_def pathfinish_def)
  1201       done
  1202   qed
  1203   with assms show ?thesis
  1204     by (simp add: simply_connected_eq_contractible_loop_any pathfinish_def pathstart_def)
  1205 qed
  1208 subsection\<open>Contractible sets\<close>
  1210 definition%important contractible where
  1211  "contractible S \<equiv> \<exists>a. homotopic_with (\<lambda>x. True) S S id (\<lambda>x. a)"
  1213 proposition contractible_imp_simply_connected:
  1214   fixes S :: "_::real_normed_vector set"
  1215   assumes "contractible S" shows "simply_connected S"
  1216 proof (cases "S = {}")
  1217   case True then show ?thesis by force
  1218 next
  1219   case False
  1220   obtain a where a: "homotopic_with (\<lambda>x. True) S S id (\<lambda>x. a)"
  1221     using assms by (force simp: contractible_def)
  1222   then have "a \<in> S"
  1223     by (metis False homotopic_constant_maps homotopic_with_symD homotopic_with_trans path_component_mem(2))
  1224   show ?thesis
  1225     apply (simp add: simply_connected_eq_contractible_loop_all False)
  1226     apply (rule bexI [OF _ \<open>a \<in> S\<close>])
  1227     using a apply (simp add: homotopic_loops_def homotopic_with_def path_def path_image_def pathfinish_def pathstart_def, clarify)
  1228     apply (rule_tac x="(h \<circ> (\<lambda>y. (fst y, (p \<circ> snd) y)))" in exI)
  1229     apply (intro conjI continuous_on_compose continuous_intros)
  1230     apply (erule continuous_on_subset | force)+
  1231     done
  1232 qed
  1234 corollary contractible_imp_connected:
  1235   fixes S :: "_::real_normed_vector set"
  1236   shows "contractible S \<Longrightarrow> connected S"
  1237 by (simp add: contractible_imp_simply_connected simply_connected_imp_connected)
  1239 lemma contractible_imp_path_connected:
  1240   fixes S :: "_::real_normed_vector set"
  1241   shows "contractible S \<Longrightarrow> path_connected S"
  1242 by (simp add: contractible_imp_simply_connected simply_connected_imp_path_connected)
  1244 lemma nullhomotopic_through_contractible:
  1245   fixes S :: "_::topological_space set"
  1246   assumes f: "continuous_on S f" "f ` S \<subseteq> T"
  1247       and g: "continuous_on T g" "g ` T \<subseteq> U"
  1248       and T: "contractible T"
  1249     obtains c where "homotopic_with (\<lambda>h. True) S U (g \<circ> f) (\<lambda>x. c)"
  1250 proof -
  1251   obtain b where b: "homotopic_with (\<lambda>x. True) T T id (\<lambda>x. b)"
  1252     using assms by (force simp: contractible_def)
  1253   have "homotopic_with (\<lambda>f. True) T U (g \<circ> id) (g \<circ> (\<lambda>x. b))"
  1254     by (rule homotopic_compose_continuous_left [OF b g])
  1255   then have "homotopic_with (\<lambda>f. True) S U (g \<circ> id \<circ> f) (g \<circ> (\<lambda>x. b) \<circ> f)"
  1256     by (rule homotopic_compose_continuous_right [OF _ f])
  1257   then show ?thesis
  1258     by (simp add: comp_def that)
  1259 qed
  1261 lemma nullhomotopic_into_contractible:
  1262   assumes f: "continuous_on S f" "f ` S \<subseteq> T"
  1263       and T: "contractible T"
  1264     obtains c where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. c)"
  1265 apply (rule nullhomotopic_through_contractible [OF f, of id T])
  1266 using assms
  1267 apply (auto simp: continuous_on_id)
  1268 done
  1270 lemma nullhomotopic_from_contractible:
  1271   assumes f: "continuous_on S f" "f ` S \<subseteq> T"
  1272       and S: "contractible S"
  1273     obtains c where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. c)"
  1274 apply (rule nullhomotopic_through_contractible [OF continuous_on_id _ f S, of S])
  1275 using assms
  1276 apply (auto simp: comp_def)
  1277 done
  1279 lemma homotopic_through_contractible:
  1280   fixes S :: "_::real_normed_vector set"
  1281   assumes "continuous_on S f1" "f1 ` S \<subseteq> T"
  1282           "continuous_on T g1" "g1 ` T \<subseteq> U"
  1283           "continuous_on S f2" "f2 ` S \<subseteq> T"
  1284           "continuous_on T g2" "g2 ` T \<subseteq> U"
  1285           "contractible T" "path_connected U"
  1286    shows "homotopic_with (\<lambda>h. True) S U (g1 \<circ> f1) (g2 \<circ> f2)"
  1287 proof -
  1288   obtain c1 where c1: "homotopic_with (\<lambda>h. True) S U (g1 \<circ> f1) (\<lambda>x. c1)"
  1289     apply (rule nullhomotopic_through_contractible [of S f1 T g1 U])
  1290     using assms apply auto
  1291     done
  1292   obtain c2 where c2: "homotopic_with (\<lambda>h. True) S U (g2 \<circ> f2) (\<lambda>x. c2)"
  1293     apply (rule nullhomotopic_through_contractible [of S f2 T g2 U])
  1294     using assms apply auto
  1295     done
  1296   have *: "S = {} \<or> (\<exists>t. path_connected t \<and> t \<subseteq> U \<and> c2 \<in> t \<and> c1 \<in> t)"
  1297   proof (cases "S = {}")
  1298     case True then show ?thesis by force
  1299   next
  1300     case False
  1301     with c1 c2 have "c1 \<in> U" "c2 \<in> U"
  1302       using homotopic_with_imp_subset2 all_not_in_conv image_subset_iff by blast+
  1303     with \<open>path_connected U\<close> show ?thesis by blast
  1304   qed
  1305   show ?thesis
  1306     apply (rule homotopic_with_trans [OF c1])
  1307     apply (rule homotopic_with_symD)
  1308     apply (rule homotopic_with_trans [OF c2])
  1309     apply (simp add: path_component homotopic_constant_maps *)
  1310     done
  1311 qed
  1313 lemma homotopic_into_contractible:
  1314   fixes S :: "'a::real_normed_vector set" and T:: "'b::real_normed_vector set"
  1315   assumes f: "continuous_on S f" "f ` S \<subseteq> T"
  1316       and g: "continuous_on S g" "g ` S \<subseteq> T"
  1317       and T: "contractible T"
  1318     shows "homotopic_with (\<lambda>h. True) S T f g"
  1319 using homotopic_through_contractible [of S f T id T g id]
  1320 by (simp add: assms contractible_imp_path_connected continuous_on_id)
  1322 lemma homotopic_from_contractible:
  1323   fixes S :: "'a::real_normed_vector set" and T:: "'b::real_normed_vector set"
  1324   assumes f: "continuous_on S f" "f ` S \<subseteq> T"
  1325       and g: "continuous_on S g" "g ` S \<subseteq> T"
  1326       and "contractible S" "path_connected T"
  1327     shows "homotopic_with (\<lambda>h. True) S T f g"
  1328 using homotopic_through_contractible [of S id S f T id g]
  1329 by (simp add: assms contractible_imp_path_connected continuous_on_id)
  1331 lemma starlike_imp_contractible_gen:
  1332   fixes S :: "'a::real_normed_vector set"
  1333   assumes S: "starlike S"
  1334       and P: "\<And>a T. \<lbrakk>a \<in> S; 0 \<le> T; T \<le> 1\<rbrakk> \<Longrightarrow> P(\<lambda>x. (1 - T) *\<^sub>R x + T *\<^sub>R a)"
  1335     obtains a where "homotopic_with P S S (\<lambda>x. x) (\<lambda>x. a)"
  1336 proof -
  1337   obtain a where "a \<in> S" and a: "\<And>x. x \<in> S \<Longrightarrow> closed_segment a x \<subseteq> S"
  1338     using S by (auto simp: starlike_def)
  1339   have "(\<lambda>y. (1 - fst y) *\<^sub>R snd y + fst y *\<^sub>R a) ` ({0..1} \<times> S) \<subseteq> S"
  1340     apply clarify
  1341     apply (erule a [unfolded closed_segment_def, THEN subsetD], simp)
  1342     apply (metis add_diff_cancel_right' diff_ge_0_iff_ge le_add_diff_inverse pth_c(1))
  1343     done
  1344   then show ?thesis
  1345     apply (rule_tac a=a in that)
  1346     using \<open>a \<in> S\<close>
  1347     apply (simp add: homotopic_with_def)
  1348     apply (rule_tac x="\<lambda>y. (1 - (fst y)) *\<^sub>R snd y + (fst y) *\<^sub>R a" in exI)
  1349     apply (intro conjI ballI continuous_on_compose continuous_intros)
  1350     apply (simp_all add: P)
  1351     done
  1352 qed
  1354 lemma starlike_imp_contractible:
  1355   fixes S :: "'a::real_normed_vector set"
  1356   shows "starlike S \<Longrightarrow> contractible S"
  1357 using starlike_imp_contractible_gen contractible_def by (fastforce simp: id_def)
  1359 lemma contractible_UNIV [simp]: "contractible (UNIV :: 'a::real_normed_vector set)"
  1360   by (simp add: starlike_imp_contractible)
  1362 lemma starlike_imp_simply_connected:
  1363   fixes S :: "'a::real_normed_vector set"
  1364   shows "starlike S \<Longrightarrow> simply_connected S"
  1365 by (simp add: contractible_imp_simply_connected starlike_imp_contractible)
  1367 lemma convex_imp_simply_connected:
  1368   fixes S :: "'a::real_normed_vector set"
  1369   shows "convex S \<Longrightarrow> simply_connected S"
  1370 using convex_imp_starlike starlike_imp_simply_connected by blast
  1372 lemma starlike_imp_path_connected:
  1373   fixes S :: "'a::real_normed_vector set"
  1374   shows "starlike S \<Longrightarrow> path_connected S"
  1375 by (simp add: simply_connected_imp_path_connected starlike_imp_simply_connected)
  1377 lemma starlike_imp_connected:
  1378   fixes S :: "'a::real_normed_vector set"
  1379   shows "starlike S \<Longrightarrow> connected S"
  1380 by (simp add: path_connected_imp_connected starlike_imp_path_connected)
  1382 lemma is_interval_simply_connected_1:
  1383   fixes S :: "real set"
  1384   shows "is_interval S \<longleftrightarrow> simply_connected S"
  1385 using convex_imp_simply_connected is_interval_convex_1 is_interval_path_connected_1 simply_connected_imp_path_connected by auto
  1387 lemma contractible_empty [simp]: "contractible {}"
  1388   by (simp add: contractible_def homotopic_with)
  1390 lemma contractible_convex_tweak_boundary_points:
  1391   fixes S :: "'a::euclidean_space set"
  1392   assumes "convex S" and TS: "rel_interior S \<subseteq> T" "T \<subseteq> closure S"
  1393   shows "contractible T"
  1394 proof (cases "S = {}")
  1395   case True
  1396   with assms show ?thesis
  1397     by (simp add: subsetCE)
  1398 next
  1399   case False
  1400   show ?thesis
  1401     apply (rule starlike_imp_contractible)
  1402     apply (rule starlike_convex_tweak_boundary_points [OF \<open>convex S\<close> False TS])
  1403     done
  1404 qed
  1406 lemma convex_imp_contractible:
  1407   fixes S :: "'a::real_normed_vector set"
  1408   shows "convex S \<Longrightarrow> contractible S"
  1409   using contractible_empty convex_imp_starlike starlike_imp_contractible by blast
  1411 lemma contractible_sing [simp]:
  1412   fixes a :: "'a::real_normed_vector"
  1413   shows "contractible {a}"
  1414 by (rule convex_imp_contractible [OF convex_singleton])
  1416 lemma is_interval_contractible_1:
  1417   fixes S :: "real set"
  1418   shows  "is_interval S \<longleftrightarrow> contractible S"
  1419 using contractible_imp_simply_connected convex_imp_contractible is_interval_convex_1
  1420       is_interval_simply_connected_1 by auto
  1422 lemma contractible_Times:
  1423   fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
  1424   assumes S: "contractible S" and T: "contractible T"
  1425   shows "contractible (S \<times> T)"
  1426 proof -
  1427   obtain a h where conth: "continuous_on ({0..1} \<times> S) h"
  1428              and hsub: "h ` ({0..1} \<times> S) \<subseteq> S"
  1429              and [simp]: "\<And>x. x \<in> S \<Longrightarrow> h (0, x) = x"
  1430              and [simp]: "\<And>x. x \<in> S \<Longrightarrow>  h (1::real, x) = a"
  1431     using S by (auto simp: contractible_def homotopic_with)
  1432   obtain b k where contk: "continuous_on ({0..1} \<times> T) k"
  1433              and ksub: "k ` ({0..1} \<times> T) \<subseteq> T"
  1434              and [simp]: "\<And>x. x \<in> T \<Longrightarrow> k (0, x) = x"
  1435              and [simp]: "\<And>x. x \<in> T \<Longrightarrow>  k (1::real, x) = b"
  1436     using T by (auto simp: contractible_def homotopic_with)
  1437   show ?thesis
  1438     apply (simp add: contractible_def homotopic_with)
  1439     apply (rule exI [where x=a])
  1440     apply (rule exI [where x=b])
  1441     apply (rule exI [where x = "\<lambda>z. (h (fst z, fst(snd z)), k (fst z, snd(snd z)))"])
  1442     apply (intro conjI ballI continuous_intros continuous_on_compose2 [OF conth] continuous_on_compose2 [OF contk])
  1443     using hsub ksub
  1444     apply auto
  1445     done
  1446 qed
  1448 lemma homotopy_dominated_contractibility:
  1449   fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
  1450   assumes S: "contractible S"
  1451       and f: "continuous_on S f" "image f S \<subseteq> T"
  1452       and g: "continuous_on T g" "image g T \<subseteq> S"
  1453       and hom: "homotopic_with (\<lambda>x. True) T T (f \<circ> g) id"
  1454     shows "contractible T"
  1455 proof -
  1456   obtain b where "homotopic_with (\<lambda>h. True) S T f (\<lambda>x. b)"
  1457     using nullhomotopic_from_contractible [OF f S] .
  1458   then have homg: "homotopic_with (\<lambda>x. True) T T ((\<lambda>x. b) \<circ> g) (f \<circ> g)"
  1459     by (rule homotopic_with_compose_continuous_right [OF homotopic_with_symD g])
  1460   show ?thesis
  1461     apply (simp add: contractible_def)
  1462     apply (rule exI [where x = b])
  1463     apply (rule homotopic_with_symD)
  1464     apply (rule homotopic_with_trans [OF _ hom])
  1465     using homg apply (simp add: o_def)
  1466     done
  1467 qed
  1470 subsection\<open>Local versions of topological properties in general\<close>
  1472 definition%important locally :: "('a::topological_space set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool"
  1473 where
  1474  "locally P S \<equiv>
  1475         \<forall>w x. openin (top_of_set S) w \<and> x \<in> w
  1476               \<longrightarrow> (\<exists>u v. openin (top_of_set S) u \<and> P v \<and>
  1477                         x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w)"
  1479 lemma locallyI:
  1480   assumes "\<And>w x. \<lbrakk>openin (top_of_set S) w; x \<in> w\<rbrakk>
  1481                   \<Longrightarrow> \<exists>u v. openin (top_of_set S) u \<and> P v \<and>
  1482                         x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w"
  1483     shows "locally P S"
  1484 using assms by (force simp: locally_def)
  1486 lemma locallyE:
  1487   assumes "locally P S" "openin (top_of_set S) w" "x \<in> w"
  1488   obtains u v where "openin (top_of_set S) u"
  1489                     "P v" "x \<in> u" "u \<subseteq> v" "v \<subseteq> w"
  1490   using assms unfolding locally_def by meson
  1492 lemma locally_mono:
  1493   assumes "locally P S" "\<And>t. P t \<Longrightarrow> Q t"
  1494     shows "locally Q S"
  1495 by (metis assms locally_def)
  1497 lemma locally_open_subset:
  1498   assumes "locally P S" "openin (top_of_set S) t"
  1499     shows "locally P t"
  1500 using assms
  1501 apply (simp add: locally_def)
  1502 apply (erule all_forward)+
  1503 apply (rule impI)
  1504 apply (erule impCE)
  1505  using openin_trans apply blast
  1506 apply (erule ex_forward)
  1507 by (metis (no_types, hide_lams) Int_absorb1 Int_lower1 Int_subset_iff openin_open openin_subtopology_Int_subset)
  1509 lemma locally_diff_closed:
  1510     "\<lbrakk>locally P S; closedin (top_of_set S) t\<rbrakk> \<Longrightarrow> locally P (S - t)"
  1511   using locally_open_subset closedin_def by fastforce
  1513 lemma locally_empty [iff]: "locally P {}"
  1514   by (simp add: locally_def openin_subtopology)
  1516 lemma locally_singleton [iff]:
  1517   fixes a :: "'a::metric_space"
  1518   shows "locally P {a} \<longleftrightarrow> P {a}"
  1519 apply (simp add: locally_def openin_euclidean_subtopology_iff subset_singleton_iff conj_disj_distribR cong: conj_cong)
  1520 using zero_less_one by blast
  1522 lemma locally_iff:
  1523     "locally P S \<longleftrightarrow>
  1524      (\<forall>T x. open T \<and> x \<in> S \<inter> T \<longrightarrow> (\<exists>U. open U \<and> (\<exists>v. P v \<and> x \<in> S \<inter> U \<and> S \<inter> U \<subseteq> v \<and> v \<subseteq> S \<inter> T)))"
  1525 apply (simp add: le_inf_iff locally_def openin_open, safe)
  1526 apply (metis IntE IntI le_inf_iff)
  1527 apply (metis IntI Int_subset_iff)
  1528 done
  1530 lemma locally_Int:
  1531   assumes S: "locally P S" and t: "locally P t"
  1532       and P: "\<And>S t. P S \<and> P t \<Longrightarrow> P(S \<inter> t)"
  1533     shows "locally P (S \<inter> t)"
  1534 using S t unfolding locally_iff
  1535 apply clarify
  1536 apply (drule_tac x=T in spec)+
  1537 apply (drule_tac x=x in spec)+
  1538 apply clarsimp
  1539 apply (rename_tac U1 U2 V1 V2)
  1540 apply (rule_tac x="U1 \<inter> U2" in exI)
  1541 apply (simp add: open_Int)
  1542 apply (rule_tac x="V1 \<inter> V2" in exI)
  1543 apply (auto intro: P)
  1544 done
  1546 lemma locally_Times:
  1547   fixes S :: "('a::metric_space) set" and T :: "('b::metric_space) set"
  1548   assumes PS: "locally P S" and QT: "locally Q T" and R: "\<And>S T. P S \<and> Q T \<Longrightarrow> R(S \<times> T)"
  1549   shows "locally R (S \<times> T)"
  1550     unfolding locally_def
  1551 proof (clarify)
  1552   fix W x y
  1553   assume W: "openin (top_of_set (S \<times> T)) W" and xy: "(x, y) \<in> W"
  1554   then obtain U V where "openin (top_of_set S) U" "x \<in> U"
  1555                         "openin (top_of_set T) V" "y \<in> V" "U \<times> V \<subseteq> W"
  1556     using Times_in_interior_subtopology by metis
  1557   then obtain U1 U2 V1 V2
  1558          where opeS: "openin (top_of_set S) U1 \<and> P U2 \<and> x \<in> U1 \<and> U1 \<subseteq> U2 \<and> U2 \<subseteq> U"
  1559            and opeT: "openin (top_of_set T) V1 \<and> Q V2 \<and> y \<in> V1 \<and> V1 \<subseteq> V2 \<and> V2 \<subseteq> V"
  1560     by (meson PS QT locallyE)
  1561   with \<open>U \<times> V \<subseteq> W\<close> show "\<exists>u v. openin (top_of_set (S \<times> T)) u \<and> R v \<and> (x,y) \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> W"
  1562     apply (rule_tac x="U1 \<times> V1" in exI)
  1563     apply (rule_tac x="U2 \<times> V2" in exI)
  1564     apply (auto simp: openin_Times R)
  1565     done
  1566 qed
  1569 proposition homeomorphism_locally_imp:
  1570   fixes S :: "'a::metric_space set" and t :: "'b::t2_space set"
  1571   assumes S: "locally P S" and hom: "homeomorphism S t f g"
  1572       and Q: "\<And>S S'. \<lbrakk>P S; homeomorphism S S' f g\<rbrakk> \<Longrightarrow> Q S'"
  1573     shows "locally Q t"
  1574 proof (clarsimp simp: locally_def)
  1575   fix W y
  1576   assume "y \<in> W" and "openin (top_of_set t) W"
  1577   then obtain T where T: "open T" "W = t \<inter> T"
  1578     by (force simp: openin_open)
  1579   then have "W \<subseteq> t" by auto
  1580   have f: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x" "f ` S = t" "continuous_on S f"
  1581    and g: "\<And>y. y \<in> t \<Longrightarrow> f(g y) = y" "g ` t = S" "continuous_on t g"
  1582     using hom by (auto simp: homeomorphism_def)
  1583   have gw: "g ` W = S \<inter> f -` W"
  1584     using \<open>W \<subseteq> t\<close>
  1585     apply auto
  1586     using \<open>g ` t = S\<close> \<open>W \<subseteq> t\<close> apply blast
  1587     using g \<open>W \<subseteq> t\<close> apply auto[1]
  1588     by (simp add: f rev_image_eqI)
  1589   have \<circ>: "openin (top_of_set S) (g ` W)"
  1590   proof -
  1591     have "continuous_on S f"
  1592       using f(3) by blast
  1593     then show "openin (top_of_set S) (g ` W)"
  1594       by (simp add: gw Collect_conj_eq \<open>openin (top_of_set t) W\<close> continuous_on_open f(2))
  1595   qed
  1596   then obtain u v
  1597     where osu: "openin (top_of_set S) u" and uv: "P v" "g y \<in> u" "u \<subseteq> v" "v \<subseteq> g ` W"
  1598     using S [unfolded locally_def, rule_format, of "g ` W" "g y"] \<open>y \<in> W\<close> by force
  1599   have "v \<subseteq> S" using uv by (simp add: gw)
  1600   have fv: "f ` v = t \<inter> {x. g x \<in> v}"
  1601     using \<open>f ` S = t\<close> f \<open>v \<subseteq> S\<close> by auto
  1602   have "f ` v \<subseteq> W"
  1603     using uv using Int_lower2 gw image_subsetI mem_Collect_eq subset_iff by auto
  1604   have contvf: "continuous_on v f"
  1605     using \<open>v \<subseteq> S\<close> continuous_on_subset f(3) by blast
  1606   have contvg: "continuous_on (f ` v) g"
  1607     using \<open>f ` v \<subseteq> W\<close> \<open>W \<subseteq> t\<close> continuous_on_subset [OF g(3)] by blast
  1608   have homv: "homeomorphism v (f ` v) f g"
  1609     using \<open>v \<subseteq> S\<close> \<open>W \<subseteq> t\<close> f
  1610     apply (simp add: homeomorphism_def contvf contvg, auto)
  1611     by (metis f(1) rev_image_eqI rev_subsetD)
  1612   have 1: "openin (top_of_set t) (t \<inter> g -` u)"
  1613     apply (rule continuous_on_open [THEN iffD1, rule_format])
  1614     apply (rule \<open>continuous_on t g\<close>)
  1615     using \<open>g ` t = S\<close> apply (simp add: osu)
  1616     done
  1617   have 2: "\<exists>V. Q V \<and> y \<in> (t \<inter> g -` u) \<and> (t \<inter> g -` u) \<subseteq> V \<and> V \<subseteq> W"
  1618     apply (rule_tac x="f ` v" in exI)
  1619     apply (intro conjI Q [OF \<open>P v\<close> homv])
  1620     using \<open>W \<subseteq> t\<close> \<open>y \<in> W\<close>  \<open>f ` v \<subseteq> W\<close>  uv  apply (auto simp: fv)
  1621     done
  1622   show "\<exists>U. openin (top_of_set t) U \<and> (\<exists>v. Q v \<and> y \<in> U \<and> U \<subseteq> v \<and> v \<subseteq> W)"
  1623     by (meson 1 2)
  1624 qed
  1626 lemma homeomorphism_locally:
  1627   fixes f:: "'a::metric_space \<Rightarrow> 'b::metric_space"
  1628   assumes hom: "homeomorphism S t f g"
  1629       and eq: "\<And>S t. homeomorphism S t f g \<Longrightarrow> (P S \<longleftrightarrow> Q t)"
  1630     shows "locally P S \<longleftrightarrow> locally Q t"
  1631 apply (rule iffI)
  1632 apply (erule homeomorphism_locally_imp [OF _ hom])
  1633 apply (simp add: eq)
  1634 apply (erule homeomorphism_locally_imp)
  1635 using eq homeomorphism_sym homeomorphism_symD [OF hom] apply blast+
  1636 done
  1638 lemma homeomorphic_locally:
  1639   fixes S:: "'a::metric_space set" and T:: "'b::metric_space set"
  1640   assumes hom: "S homeomorphic T"
  1641           and iff: "\<And>X Y. X homeomorphic Y \<Longrightarrow> (P X \<longleftrightarrow> Q Y)"
  1642     shows "locally P S \<longleftrightarrow> locally Q T"
  1643 proof -
  1644   obtain f g where hom: "homeomorphism S T f g"
  1645     using assms by (force simp: homeomorphic_def)
  1646   then show ?thesis
  1647     using homeomorphic_def local.iff
  1648     by (blast intro!: homeomorphism_locally)
  1649 qed
  1651 lemma homeomorphic_local_compactness:
  1652   fixes S:: "'a::metric_space set" and T:: "'b::metric_space set"
  1653   shows "S homeomorphic T \<Longrightarrow> locally compact S \<longleftrightarrow> locally compact T"
  1654 by (simp add: homeomorphic_compactness homeomorphic_locally)
  1656 lemma locally_translation:
  1657   fixes P :: "'a :: real_normed_vector set \<Rightarrow> bool"
  1658   shows
  1659    "(\<And>S. P (image (\<lambda>x. a + x) S) \<longleftrightarrow> P S)
  1660         \<Longrightarrow> locally P (image (\<lambda>x. a + x) S) \<longleftrightarrow> locally P S"
  1661 apply (rule homeomorphism_locally [OF homeomorphism_translation])
  1662 apply (simp add: homeomorphism_def)
  1663 by metis
  1665 lemma locally_injective_linear_image:
  1666   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
  1667   assumes f: "linear f" "inj f" and iff: "\<And>S. P (f ` S) \<longleftrightarrow> Q S"
  1668     shows "locally P (f ` S) \<longleftrightarrow> locally Q S"
  1669 apply (rule linear_homeomorphism_image [OF f])
  1670 apply (rule_tac f=g and g = f in homeomorphism_locally, assumption)
  1671 by (metis iff homeomorphism_def)
  1673 lemma locally_open_map_image:
  1674   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
  1675   assumes P: "locally P S"
  1676       and f: "continuous_on S f"
  1677       and oo: "\<And>t. openin (top_of_set S) t
  1678                    \<Longrightarrow> openin (top_of_set (f ` S)) (f ` t)"
  1679       and Q: "\<And>t. \<lbrakk>t \<subseteq> S; P t\<rbrakk> \<Longrightarrow> Q(f ` t)"
  1680     shows "locally Q (f ` S)"
  1681 proof (clarsimp simp add: locally_def)
  1682   fix W y
  1683   assume oiw: "openin (top_of_set (f ` S)) W" and "y \<in> W"
  1684   then have "W \<subseteq> f ` S" by (simp add: openin_euclidean_subtopology_iff)
  1685   have oivf: "openin (top_of_set S) (S \<inter> f -` W)"
  1686     by (rule continuous_on_open [THEN iffD1, rule_format, OF f oiw])
  1687   then obtain x where "x \<in> S" "f x = y"
  1688     using \<open>W \<subseteq> f ` S\<close> \<open>y \<in> W\<close> by blast
  1689   then obtain U V
  1690     where "openin (top_of_set S) U" "P V" "x \<in> U" "U \<subseteq> V" "V \<subseteq> S \<inter> f -` W"
  1691     using P [unfolded locally_def, rule_format, of "(S \<inter> f -` W)" x] oivf \<open>y \<in> W\<close>
  1692     by auto
  1693   then show "\<exists>X. openin (top_of_set (f ` S)) X \<and> (\<exists>Y. Q Y \<and> y \<in> X \<and> X \<subseteq> Y \<and> Y \<subseteq> W)"
  1694     apply (rule_tac x="f ` U" in exI)
  1695     apply (rule conjI, blast intro!: oo)
  1696     apply (rule_tac x="f ` V" in exI)
  1697     apply (force simp: \<open>f x = y\<close> rev_image_eqI intro: Q)
  1698     done
  1699 qed
  1702 subsection\<open>An induction principle for connected sets\<close>
  1704 proposition connected_induction:
  1705   assumes "connected S"
  1706       and opD: "\<And>T a. \<lbrakk>openin (top_of_set S) T; a \<in> T\<rbrakk> \<Longrightarrow> \<exists>z. z \<in> T \<and> P z"
  1707       and opI: "\<And>a. a \<in> S
  1708              \<Longrightarrow> \<exists>T. openin (top_of_set S) T \<and> a \<in> T \<and>
  1709                      (\<forall>x \<in> T. \<forall>y \<in> T. P x \<and> P y \<and> Q x \<longrightarrow> Q y)"
  1710       and etc: "a \<in> S" "b \<in> S" "P a" "P b" "Q a"
  1711     shows "Q b"
  1712 proof -
  1713   have 1: "openin (top_of_set S)
  1714              {b. \<exists>T. openin (top_of_set S) T \<and>
  1715                      b \<in> T \<and> (\<forall>x\<in>T. P x \<longrightarrow> Q x)}"
  1716     apply (subst openin_subopen, clarify)
  1717     apply (rule_tac x=T in exI, auto)
  1718     done
  1719   have 2: "openin (top_of_set S)
  1720              {b. \<exists>T. openin (top_of_set S) T \<and>
  1721                      b \<in> T \<and> (\<forall>x\<in>T. P x \<longrightarrow> \<not> Q x)}"
  1722     apply (subst openin_subopen, clarify)
  1723     apply (rule_tac x=T in exI, auto)
  1724     done
  1725   show ?thesis
  1726     using \<open>connected S\<close>
  1727     apply (simp only: connected_openin HOL.not_ex HOL.de_Morgan_conj)
  1728     apply (elim disjE allE)
  1729          apply (blast intro: 1)
  1730         apply (blast intro: 2, simp_all)
  1731        apply clarify apply (metis opI)
  1732       using opD apply (blast intro: etc elim: dest:)
  1733      using opI etc apply meson+
  1734     done
  1735 qed
  1737 lemma connected_equivalence_relation_gen:
  1738   assumes "connected S"
  1739       and etc: "a \<in> S" "b \<in> S" "P a" "P b"
  1740       and trans: "\<And>x y z. \<lbrakk>R x y; R y z\<rbrakk> \<Longrightarrow> R x z"
  1741       and opD: "\<And>T a. \<lbrakk>openin (top_of_set S) T; a \<in> T\<rbrakk> \<Longrightarrow> \<exists>z. z \<in> T \<and> P z"
  1742       and opI: "\<And>a. a \<in> S
  1743              \<Longrightarrow> \<exists>T. openin (top_of_set S) T \<and> a \<in> T \<and>
  1744                      (\<forall>x \<in> T. \<forall>y \<in> T. P x \<and> P y \<longrightarrow> R x y)"
  1745     shows "R a b"
  1746 proof -
  1747   have "\<And>a b c. \<lbrakk>a \<in> S; P a; b \<in> S; c \<in> S; P b; P c; R a b\<rbrakk> \<Longrightarrow> R a c"
  1748     apply (rule connected_induction [OF \<open>connected S\<close> opD], simp_all)
  1749     by (meson trans opI)
  1750   then show ?thesis by (metis etc opI)
  1751 qed
  1753 lemma connected_induction_simple:
  1754   assumes "connected S"
  1755       and etc: "a \<in> S" "b \<in> S" "P a"
  1756       and opI: "\<And>a. a \<in> S
  1757              \<Longrightarrow> \<exists>T. openin (top_of_set S) T \<and> a \<in> T \<and>
  1758                      (\<forall>x \<in> T. \<forall>y \<in> T. P x \<longrightarrow> P y)"
  1759     shows "P b"
  1760 apply (rule connected_induction [OF \<open>connected S\<close> _, where P = "\<lambda>x. True"], blast)
  1761 apply (frule opI)
  1762 using etc apply simp_all
  1763 done
  1765 lemma connected_equivalence_relation:
  1766   assumes "connected S"
  1767       and etc: "a \<in> S" "b \<in> S"
  1768       and sym: "\<And>x y. \<lbrakk>R x y; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> R y x"
  1769       and trans: "\<And>x y z. \<lbrakk>R x y; R y z; x \<in> S; y \<in> S; z \<in> S\<rbrakk> \<Longrightarrow> R x z"
  1770       and opI: "\<And>a. a \<in> S \<Longrightarrow> \<exists>T. openin (top_of_set S) T \<and> a \<in> T \<and> (\<forall>x \<in> T. R a x)"
  1771     shows "R a b"
  1772 proof -
  1773   have "\<And>a b c. \<lbrakk>a \<in> S; b \<in> S; c \<in> S; R a b\<rbrakk> \<Longrightarrow> R a c"
  1774     apply (rule connected_induction_simple [OF \<open>connected S\<close>], simp_all)
  1775     by (meson local.sym local.trans opI openin_imp_subset subsetCE)
  1776   then show ?thesis by (metis etc opI)
  1777 qed
  1779 lemma locally_constant_imp_constant:
  1780   assumes "connected S"
  1781       and opI: "\<And>a. a \<in> S
  1782              \<Longrightarrow> \<exists>T. openin (top_of_set S) T \<and> a \<in> T \<and> (\<forall>x \<in> T. f x = f a)"
  1783     shows "f constant_on S"
  1784 proof -
  1785   have "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> f x = f y"
  1786     apply (rule connected_equivalence_relation [OF \<open>connected S\<close>], simp_all)
  1787     by (metis opI)
  1788   then show ?thesis
  1789     by (metis constant_on_def)
  1790 qed
  1792 lemma locally_constant:
  1793      "connected S \<Longrightarrow> locally (\<lambda>U. f constant_on U) S \<longleftrightarrow> f constant_on S"
  1794 apply (simp add: locally_def)
  1795 apply (rule iffI)
  1796  apply (rule locally_constant_imp_constant, assumption)
  1797  apply (metis (mono_tags, hide_lams) constant_on_def constant_on_subset openin_subtopology_self)
  1798 by (meson constant_on_subset openin_imp_subset order_refl)
  1801 subsection\<open>Basic properties of local compactness\<close>
  1803 proposition locally_compact:
  1804   fixes s :: "'a :: metric_space set"
  1805   shows
  1806     "locally compact s \<longleftrightarrow>
  1807      (\<forall>x \<in> s. \<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
  1808                     openin (top_of_set s) u \<and> compact v)"
  1809      (is "?lhs = ?rhs")
  1810 proof
  1811   assume ?lhs
  1812   then show ?rhs
  1813     apply clarify
  1814     apply (erule_tac w = "s \<inter> ball x 1" in locallyE)
  1815     by auto
  1816 next
  1817   assume r [rule_format]: ?rhs
  1818   have *: "\<exists>u v.
  1819               openin (top_of_set s) u \<and>
  1820               compact v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<inter> T"
  1821           if "open T" "x \<in> s" "x \<in> T" for x T
  1822   proof -
  1823     obtain u v where uv: "x \<in> u" "u \<subseteq> v" "v \<subseteq> s" "compact v" "openin (top_of_set s) u"
  1824       using r [OF \<open>x \<in> s\<close>] by auto
  1825     obtain e where "e>0" and e: "cball x e \<subseteq> T"
  1826       using open_contains_cball \<open>open T\<close> \<open>x \<in> T\<close> by blast
  1827     show ?thesis
  1828       apply (rule_tac x="(s \<inter> ball x e) \<inter> u" in exI)
  1829       apply (rule_tac x="cball x e \<inter> v" in exI)
  1830       using that \<open>e > 0\<close> e uv
  1831       apply auto
  1832       done
  1833   qed
  1834   show ?lhs
  1835     apply (rule locallyI)
  1836     apply (subst (asm) openin_open)
  1837     apply (blast intro: *)
  1838     done
  1839 qed
  1841 lemma locally_compactE:
  1842   fixes s :: "'a :: metric_space set"
  1843   assumes "locally compact s"
  1844   obtains u v where "\<And>x. x \<in> s \<Longrightarrow> x \<in> u x \<and> u x \<subseteq> v x \<and> v x \<subseteq> s \<and>
  1845                              openin (top_of_set s) (u x) \<and> compact (v x)"
  1846 using assms
  1847 unfolding locally_compact by metis
  1849 lemma locally_compact_alt:
  1850   fixes s :: "'a :: heine_borel set"
  1851   shows "locally compact s \<longleftrightarrow>
  1852          (\<forall>x \<in> s. \<exists>u. x \<in> u \<and>
  1853                     openin (top_of_set s) u \<and> compact(closure u) \<and> closure u \<subseteq> s)"
  1854 apply (simp add: locally_compact)
  1855 apply (intro ball_cong ex_cong refl iffI)
  1856 apply (metis bounded_subset closure_eq closure_mono compact_eq_bounded_closed dual_order.trans)
  1857 by (meson closure_subset compact_closure)
  1859 lemma locally_compact_Int_cball:
  1860   fixes s :: "'a :: heine_borel set"
  1861   shows "locally compact s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>e. 0 < e \<and> closed(cball x e \<inter> s))"
  1862         (is "?lhs = ?rhs")
  1863 proof
  1864   assume ?lhs
  1865   then show ?rhs
  1866     apply (simp add: locally_compact openin_contains_cball)
  1867     apply (clarify | assumption | drule bspec)+
  1868     by (metis (no_types, lifting)  compact_cball compact_imp_closed compact_Int inf.absorb_iff2 inf.orderE inf_sup_aci(2))
  1869 next
  1870   assume ?rhs
  1871   then show ?lhs
  1872     apply (simp add: locally_compact openin_contains_cball)
  1873     apply (clarify | assumption | drule bspec)+
  1874     apply (rule_tac x="ball x e \<inter> s" in exI, simp)
  1875     apply (rule_tac x="cball x e \<inter> s" in exI)
  1876     using compact_eq_bounded_closed
  1877     apply auto
  1878     apply (metis open_ball le_infI1 mem_ball open_contains_cball_eq)
  1879     done
  1880 qed
  1882 lemma locally_compact_compact:
  1883   fixes s :: "'a :: heine_borel set"
  1884   shows "locally compact s \<longleftrightarrow>
  1885          (\<forall>k. k \<subseteq> s \<and> compact k
  1886               \<longrightarrow> (\<exists>u v. k \<subseteq> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
  1887                          openin (top_of_set s) u \<and> compact v))"
  1888         (is "?lhs = ?rhs")
  1889 proof
  1890   assume ?lhs
  1891   then obtain u v where
  1892     uv: "\<And>x. x \<in> s \<Longrightarrow> x \<in> u x \<and> u x \<subseteq> v x \<and> v x \<subseteq> s \<and>
  1893                              openin (top_of_set s) (u x) \<and> compact (v x)"
  1894     by (metis locally_compactE)
  1895   have *: "\<exists>u v. k \<subseteq> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and> openin (top_of_set s) u \<and> compact v"
  1896           if "k \<subseteq> s" "compact k" for k
  1897   proof -
  1898     have "\<And>C. (\<forall>c\<in>C. openin (top_of_set k) c) \<and> k \<subseteq> \<Union>C \<Longrightarrow>
  1899                     \<exists>D\<subseteq>C. finite D \<and> k \<subseteq> \<Union>D"
  1900       using that by (simp add: compact_eq_openin_cover)
  1901     moreover have "\<forall>c \<in> (\<lambda>x. k \<inter> u x) ` k. openin (top_of_set k) c"
  1902       using that by clarify (metis subsetD inf.absorb_iff2 openin_subset openin_subtopology_Int_subset topspace_euclidean_subtopology uv)
  1903     moreover have "k \<subseteq> \<Union>((\<lambda>x. k \<inter> u x) ` k)"
  1904       using that by clarsimp (meson subsetCE uv)
  1905     ultimately obtain D where "D \<subseteq> (\<lambda>x. k \<inter> u x) ` k" "finite D" "k \<subseteq> \<Union>D"
  1906       by metis
  1907     then obtain T where T: "T \<subseteq> k" "finite T" "k \<subseteq> \<Union>((\<lambda>x. k \<inter> u x) ` T)"
  1908       by (metis finite_subset_image)
  1909     have Tuv: "\<Union>(u ` T) \<subseteq> \<Union>(v ` T)"
  1910       using T that by (force simp: dest!: uv)
  1911     show ?thesis
  1912       apply (rule_tac x="\<Union>(u ` T)" in exI)
  1913       apply (rule_tac x="\<Union>(v ` T)" in exI)
  1914       apply (simp add: Tuv)
  1915       using T that
  1916       apply (auto simp: dest!: uv)
  1917       done
  1918   qed
  1919   show ?rhs
  1920     by (blast intro: *)
  1921 next
  1922   assume ?rhs
  1923   then show ?lhs
  1924     apply (clarsimp simp add: locally_compact)
  1925     apply (drule_tac x="{x}" in spec, simp)
  1926     done
  1927 qed
  1929 lemma open_imp_locally_compact:
  1930   fixes s :: "'a :: heine_borel set"
  1931   assumes "open s"
  1932     shows "locally compact s"
  1933 proof -
  1934   have *: "\<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and> openin (top_of_set s) u \<and> compact v"
  1935           if "x \<in> s" for x
  1936   proof -
  1937     obtain e where "e>0" and e: "cball x e \<subseteq> s"
  1938       using open_contains_cball assms \<open>x \<in> s\<close> by blast
  1939     have ope: "openin (top_of_set s) (ball x e)"
  1940       by (meson e open_ball ball_subset_cball dual_order.trans open_subset)
  1941     show ?thesis
  1942       apply (rule_tac x="ball x e" in exI)
  1943       apply (rule_tac x="cball x e" in exI)
  1944       using \<open>e > 0\<close> e apply (auto simp: ope)
  1945       done
  1946   qed
  1947   show ?thesis
  1948     unfolding locally_compact
  1949     by (blast intro: *)
  1950 qed
  1952 lemma closed_imp_locally_compact:
  1953   fixes s :: "'a :: heine_borel set"
  1954   assumes "closed s"
  1955     shows "locally compact s"
  1956 proof -
  1957   have *: "\<exists>u v. x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> s \<and>
  1958                  openin (top_of_set s) u \<and> compact v"
  1959           if "x \<in> s" for x
  1960   proof -
  1961     show ?thesis
  1962       apply (rule_tac x = "s \<inter> ball x 1" in exI)
  1963       apply (rule_tac x = "s \<inter> cball x 1" in exI)
  1964       using \<open>x \<in> s\<close> assms apply auto
  1965       done
  1966   qed
  1967   show ?thesis
  1968     unfolding locally_compact
  1969     by (blast intro: *)
  1970 qed
  1972 lemma locally_compact_UNIV: "locally compact (UNIV :: 'a :: heine_borel set)"
  1973   by (simp add: closed_imp_locally_compact)
  1975 lemma locally_compact_Int:
  1976   fixes s :: "'a :: t2_space set"
  1977   shows "\<lbrakk>locally compact s; locally compact t\<rbrakk> \<Longrightarrow> locally compact (s \<inter> t)"
  1978 by (simp add: compact_Int locally_Int)
  1980 lemma locally_compact_closedin:
  1981   fixes s :: "'a :: heine_borel set"
  1982   shows "\<lbrakk>closedin (top_of_set s) t; locally compact s\<rbrakk>
  1983         \<Longrightarrow> locally compact t"
  1984 unfolding closedin_closed
  1985 using closed_imp_locally_compact locally_compact_Int by blast
  1987 lemma locally_compact_delete:
  1988      fixes s :: "'a :: t1_space set"
  1989      shows "locally compact s \<Longrightarrow> locally compact (s - {a})"
  1990   by (auto simp: openin_delete locally_open_subset)
  1992 lemma locally_closed:
  1993   fixes s :: "'a :: heine_borel set"
  1994   shows "locally closed s \<longleftrightarrow> locally compact s"
  1995         (is "?lhs = ?rhs")
  1996 proof
  1997   assume ?lhs
  1998   then show ?rhs
  1999     apply (simp only: locally_def)
  2000     apply (erule all_forward imp_forward asm_rl exE)+
  2001     apply (rule_tac x = "u \<inter> ball x 1" in exI)
  2002     apply (rule_tac x = "v \<inter> cball x 1" in exI)
  2003     apply (force intro: openin_trans)
  2004     done
  2005 next
  2006   assume ?rhs then show ?lhs
  2007     using compact_eq_bounded_closed locally_mono by blast
  2008 qed
  2010 lemma locally_compact_openin_Un:
  2011   fixes S :: "'a::euclidean_space set"
  2012   assumes LCS: "locally compact S" and LCT:"locally compact T"
  2013       and opS: "openin (top_of_set (S \<union> T)) S"
  2014       and opT: "openin (top_of_set (S \<union> T)) T"
  2015     shows "locally compact (S \<union> T)"
  2016 proof -
  2017   have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> S" for x
  2018   proof -
  2019     obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
  2020       using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
  2021     moreover obtain e2 where "e2 > 0" and e2: "cball x e2 \<inter> (S \<union> T) \<subseteq> S"
  2022       by (meson \<open>x \<in> S\<close> opS openin_contains_cball)
  2023     then have "cball x e2 \<inter> (S \<union> T) = cball x e2 \<inter> S"
  2024       by force
  2025     ultimately show ?thesis
  2026       apply (rule_tac x="min e1 e2" in exI)
  2027       apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int)
  2028       by (metis closed_Int closed_cball inf_left_commute)
  2029   qed
  2030   moreover have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> T" for x
  2031   proof -
  2032     obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> T)"
  2033       using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
  2034     moreover obtain e2 where "e2 > 0" and e2: "cball x e2 \<inter> (S \<union> T) \<subseteq> T"
  2035       by (meson \<open>x \<in> T\<close> opT openin_contains_cball)
  2036     then have "cball x e2 \<inter> (S \<union> T) = cball x e2 \<inter> T"
  2037       by force
  2038     ultimately show ?thesis
  2039       apply (rule_tac x="min e1 e2" in exI)
  2040       apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int)
  2041       by (metis closed_Int closed_cball inf_left_commute)
  2042   qed
  2043   ultimately show ?thesis
  2044     by (force simp: locally_compact_Int_cball)
  2045 qed
  2047 lemma locally_compact_closedin_Un:
  2048   fixes S :: "'a::euclidean_space set"
  2049   assumes LCS: "locally compact S" and LCT:"locally compact T"
  2050       and clS: "closedin (top_of_set (S \<union> T)) S"
  2051       and clT: "closedin (top_of_set (S \<union> T)) T"
  2052     shows "locally compact (S \<union> T)"
  2053 proof -
  2054   have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if "x \<in> S" "x \<in> T" for x
  2055   proof -
  2056     obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
  2057       using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
  2058     moreover
  2059     obtain e2 where "e2 > 0" and e2: "closed (cball x e2 \<inter> T)"
  2060       using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
  2061     ultimately show ?thesis
  2062       apply (rule_tac x="min e1 e2" in exI)
  2063       apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
  2064       by (metis closed_Int closed_Un closed_cball inf_left_commute)
  2065   qed
  2066   moreover
  2067   have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if x: "x \<in> S" "x \<notin> T" for x
  2068   proof -
  2069     obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> S)"
  2070       using LCS \<open>x \<in> S\<close> unfolding locally_compact_Int_cball by blast
  2071     moreover
  2072     obtain e2 where "e2>0" and "cball x e2 \<inter> (S \<union> T) \<subseteq> S - T"
  2073       using clT x by (fastforce simp: openin_contains_cball closedin_def)
  2074     then have "closed (cball x e2 \<inter> T)"
  2075     proof -
  2076       have "{} = T - (T - cball x e2)"
  2077         using Diff_subset Int_Diff \<open>cball x e2 \<inter> (S \<union> T) \<subseteq> S - T\<close> by auto
  2078       then show ?thesis
  2079         by (simp add: Diff_Diff_Int inf_commute)
  2080     qed
  2081     ultimately show ?thesis
  2082       apply (rule_tac x="min e1 e2" in exI)
  2083       apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
  2084       by (metis closed_Int closed_Un closed_cball inf_left_commute)
  2085   qed
  2086   moreover
  2087   have "\<exists>e>0. closed (cball x e \<inter> (S \<union> T))" if x: "x \<notin> S" "x \<in> T" for x
  2088   proof -
  2089     obtain e1 where "e1 > 0" and e1: "closed (cball x e1 \<inter> T)"
  2090       using LCT \<open>x \<in> T\<close> unfolding locally_compact_Int_cball by blast
  2091     moreover
  2092     obtain e2 where "e2>0" and "cball x e2 \<inter> (S \<union> T) \<subseteq> S \<union> T - S"
  2093       using clS x by (fastforce simp: openin_contains_cball closedin_def)
  2094     then have "closed (cball x e2 \<inter> S)"
  2095       by (metis Diff_disjoint Int_empty_right closed_empty inf.left_commute inf.orderE inf_sup_absorb)
  2096     ultimately show ?thesis
  2097       apply (rule_tac x="min e1 e2" in exI)
  2098       apply (auto simp: cball_min_Int \<open>e2 > 0\<close> inf_assoc closed_Int Int_Un_distrib)
  2099       by (metis closed_Int closed_Un closed_cball inf_left_commute)
  2100   qed
  2101   ultimately show ?thesis
  2102     by (auto simp: locally_compact_Int_cball)
  2103 qed
  2105 lemma locally_compact_Times:
  2106   fixes S :: "'a::euclidean_space set" and T :: "'b::euclidean_space set"
  2107   shows "\<lbrakk>locally compact S; locally compact T\<rbrakk> \<Longrightarrow> locally compact (S \<times> T)"
  2108   by (auto simp: compact_Times locally_Times)
  2110 lemma locally_compact_compact_subopen:
  2111   fixes S :: "'a :: heine_borel set"
  2112   shows
  2113    "locally compact S \<longleftrightarrow>
  2114     (\<forall>K T. K \<subseteq> S \<and> compact K \<and> open T \<and> K \<subseteq> T
  2115           \<longrightarrow> (\<exists>U V. K \<subseteq> U \<and> U \<subseteq> V \<and> U \<subseteq> T \<and> V \<subseteq> S \<and>
  2116                      openin (top_of_set S) U \<and> compact V))"
  2117    (is "?lhs = ?rhs")
  2118 proof
  2119   assume L: ?lhs
  2120   show ?rhs
  2121   proof clarify
  2122     fix K :: "'a set" and T :: "'a set"
  2123     assume "K \<subseteq> S" and "compact K" and "open T" and "K \<subseteq> T"
  2124     obtain U V where "K \<subseteq> U" "U \<subseteq> V" "V \<subseteq> S" "compact V"
  2125                  and ope: "openin (top_of_set S) U"
  2126       using L unfolding locally_compact_compact by (meson \<open>K \<subseteq> S\<close> \<open>compact K\<close>)
  2127     show "\<exists>U V. K \<subseteq> U \<and> U \<subseteq> V \<and> U \<subseteq> T \<and> V \<subseteq> S \<and>
  2128                 openin (top_of_set S) U \<and> compact V"
  2129     proof (intro exI conjI)
  2130       show "K \<subseteq> U \<inter> T"
  2131         by (simp add: \<open>K \<subseteq> T\<close> \<open>K \<subseteq> U\<close>)
  2132       show "U \<inter> T \<subseteq> closure(U \<inter> T)"
  2133         by (rule closure_subset)
  2134       show "closure (U \<inter> T) \<subseteq> S"
  2135         by (metis \<open>U \<subseteq> V\<close> \<open>V \<subseteq> S\<close> \<open>compact V\<close> closure_closed closure_mono compact_imp_closed inf.cobounded1 subset_trans)
  2136       show "openin (top_of_set S) (U \<inter> T)"
  2137         by (simp add: \<open>open T\<close> ope openin_Int_open)
  2138       show "compact (closure (U \<inter> T))"
  2139         by (meson Int_lower1 \<open>U \<subseteq> V\<close> \<open>compact V\<close> bounded_subset compact_closure compact_eq_bounded_closed)
  2140     qed auto
  2141   qed
  2142 next
  2143   assume ?rhs then show ?lhs
  2144     unfolding locally_compact_compact
  2145     by (metis open_openin openin_topspace subtopology_superset top.extremum topspace_euclidean_subtopology)
  2146 qed
  2149 subsection\<open>Sura-Bura's results about compact components of sets\<close>
  2151 proposition Sura_Bura_compact:
  2152   fixes S :: "'a::euclidean_space set"
  2153   assumes "compact S" and C: "C \<in> components S"
  2154   shows "C = \<Inter>{T. C \<subseteq> T \<and> openin (top_of_set S) T \<and>
  2155                            closedin (top_of_set S) T}"
  2156          (is "C = \<Inter>?\<T>")
  2157 proof
  2158   obtain x where x: "C = connected_component_set S x" and "x \<in> S"
  2159     using C by (auto simp: components_def)
  2160   have "C \<subseteq> S"
  2161     by (simp add: C in_components_subset)
  2162   have "\<Inter>?\<T> \<subseteq> connected_component_set S x"
  2163   proof (rule connected_component_maximal)
  2164     have "x \<in> C"
  2165       by (simp add: \<open>x \<in> S\<close> x)
  2166     then show "x \<in> \<Inter>?\<T>"
  2167       by blast
  2168     have clo: "closed (\<Inter>?\<T>)"
  2169       by (simp add: \<open>compact S\<close> closed_Inter closedin_compact_eq compact_imp_closed)
  2170     have False
  2171       if K1: "closedin (top_of_set (\<Inter>?\<T>)) K1" and
  2172          K2: "closedin (top_of_set (\<Inter>?\<T>)) K2" and
  2173          K12_Int: "K1 \<inter> K2 = {}" and K12_Un: "K1 \<union> K2 = \<Inter>?\<T>" and "K1 \<noteq> {}" "K2 \<noteq> {}"
  2174        for K1 K2
  2175     proof -
  2176       have "closed K1" "closed K2"
  2177         using closedin_closed_trans clo K1 K2 by blast+
  2178       then obtain V1 V2 where "open V1" "open V2" "K1 \<subseteq> V1" "K2 \<subseteq> V2" and V12: "V1 \<inter> V2 = {}"
  2179         using separation_normal \<open>K1 \<inter> K2 = {}\<close> by metis
  2180       have SV12_ne: "(S - (V1 \<union> V2)) \<inter> (\<Inter>?\<T>) \<noteq> {}"
  2181       proof (rule compact_imp_fip)
  2182         show "compact (S - (V1 \<union> V2))"
  2183           by (simp add: \<open>open V1\<close> \<open>open V2\<close> \<open>compact S\<close> compact_diff open_Un)
  2184         show clo\<T>: "closed T" if "T \<in> ?\<T>" for T
  2185           using that \<open>compact S\<close>
  2186           by (force intro: closedin_closed_trans simp add: compact_imp_closed)
  2187         show "(S - (V1 \<union> V2)) \<inter> \<Inter>\<F> \<noteq> {}" if "finite \<F>" and \<F>: "\<F> \<subseteq> ?\<T>" for \<F>
  2188         proof
  2189           assume djo: "(S - (V1 \<union> V2)) \<inter> \<Inter>\<F> = {}"
  2190           obtain D where opeD: "openin (top_of_set S) D"
  2191                    and cloD: "closedin (top_of_set S) D"
  2192                    and "C \<subseteq> D" and DV12: "D \<subseteq> V1 \<union> V2"
  2193           proof (cases "\<F> = {}")
  2194             case True
  2195             with \<open>C \<subseteq> S\<close> djo that show ?thesis
  2196               by force
  2197           next
  2198             case False show ?thesis
  2199             proof
  2200               show ope: "openin (top_of_set S) (\<Inter>\<F>)"
  2201                 using openin_Inter \<open>finite \<F>\<close> False \<F> by blast
  2202               then show "closedin (top_of_set S) (\<Inter>\<F>)"
  2203                 by (meson clo\<T> \<F> closed_Inter closed_subset openin_imp_subset subset_eq)
  2204               show "C \<subseteq> \<Inter>\<F>"
  2205                 using \<F> by auto
  2206               show "\<Inter>\<F> \<subseteq> V1 \<union> V2"
  2207                 using ope djo openin_imp_subset by fastforce
  2208             qed
  2209           qed
  2210           have "connected C"
  2211             by (simp add: x)
  2212           have "closed D"
  2213             using \<open>compact S\<close> cloD closedin_closed_trans compact_imp_closed by blast
  2214           have cloV1: "closedin (top_of_set D) (D \<inter> closure V1)"
  2215             and cloV2: "closedin (top_of_set D) (D \<inter> closure V2)"
  2216             by (simp_all add: closedin_closed_Int)
  2217           moreover have "D \<inter> closure V1 = D \<inter> V1" "D \<inter> closure V2 = D \<inter> V2"
  2218             apply safe
  2219             using \<open>D \<subseteq> V1 \<union> V2\<close> \<open>open V1\<close> \<open>open V2\<close> V12
  2220                apply (simp_all add: closure_subset [THEN subsetD] closure_iff_nhds_not_empty, blast+)
  2221             done
  2222           ultimately have cloDV1: "closedin (top_of_set D) (D \<inter> V1)"
  2223                       and cloDV2:  "closedin (top_of_set D) (D \<inter> V2)"
  2224             by metis+
  2225           then obtain U1 U2 where "closed U1" "closed U2"
  2226                and D1: "D \<inter> V1 = D \<inter> U1" and D2: "D \<inter> V2 = D \<inter> U2"
  2227             by (auto simp: closedin_closed)
  2228           have "D \<inter> U1 \<inter> C \<noteq> {}"
  2229           proof
  2230             assume "D \<inter> U1 \<inter> C = {}"
  2231             then have *: "C \<subseteq> D \<inter> V2"
  2232               using D1 DV12 \<open>C \<subseteq> D\<close> by auto
  2233             have "\<Inter>?\<T> \<subseteq> D \<inter> V2"
  2234               apply (rule Inter_lower)
  2235               using * apply simp
  2236               by (meson cloDV2 \<open>open V2\<close> cloD closedin_trans le_inf_iff opeD openin_Int_open)
  2237             then show False
  2238               using K1 V12 \<open>K1 \<noteq> {}\<close> \<open>K1 \<subseteq> V1\<close> closedin_imp_subset by blast
  2239           qed
  2240           moreover have "D \<inter> U2 \<inter> C \<noteq> {}"
  2241           proof
  2242             assume "D \<inter> U2 \<inter> C = {}"
  2243             then have *: "C \<subseteq> D \<inter> V1"
  2244               using D2 DV12 \<open>C \<subseteq> D\<close> by auto
  2245             have "\<Inter>?\<T> \<subseteq> D \<inter> V1"
  2246               apply (rule Inter_lower)
  2247               using * apply simp
  2248               by (meson cloDV1 \<open>open V1\<close> cloD closedin_trans le_inf_iff opeD openin_Int_open)
  2249             then show False
  2250               using K2 V12 \<open>K2 \<noteq> {}\<close> \<open>K2 \<subseteq> V2\<close> closedin_imp_subset by blast
  2251           qed
  2252           ultimately show False
  2253             using \<open>connected C\<close> unfolding connected_closed
  2254             apply (simp only: not_ex)
  2255             apply (drule_tac x="D \<inter> U1" in spec)
  2256             apply (drule_tac x="D \<inter> U2" in spec)
  2257             using \<open>C \<subseteq> D\<close> D1 D2 V12 DV12 \<open>closed U1\<close> \<open>closed U2\<close> \<open>closed D\<close>
  2258             by blast
  2259         qed
  2260       qed
  2261       show False
  2262         by (metis (full_types) DiffE UnE Un_upper2 SV12_ne \<open>K1 \<subseteq> V1\<close> \<open>K2 \<subseteq> V2\<close> disjoint_iff_not_equal subsetCE sup_ge1 K12_Un)
  2263     qed
  2264     then show "connected (\<Inter>?\<T>)"
  2265       by (auto simp: connected_closedin_eq)
  2266     show "\<Inter>?\<T> \<subseteq> S"
  2267       by (fastforce simp: C in_components_subset)
  2268   qed
  2269   with x show "\<Inter>?\<T> \<subseteq> C" by simp
  2270 qed auto
  2273 corollary Sura_Bura_clopen_subset:
  2274   fixes S :: "'a::euclidean_space set"
  2275   assumes S: "locally compact S" and C: "C \<in> components S" and "compact C"
  2276       and U: "open U" "C \<subseteq> U"
  2277   obtains K where "openin (top_of_set S) K" "compact K" "C \<subseteq> K" "K \<subseteq> U"
  2278 proof (rule ccontr)
  2279   assume "\<not> thesis"
  2280   with that have neg: "\<nexists>K. openin (top_of_set S) K \<and> compact K \<and> C \<subseteq> K \<and> K \<subseteq> U"
  2281     by metis
  2282   obtain V K where "C \<subseteq> V" "V \<subseteq> U" "V \<subseteq> K" "K \<subseteq> S" "compact K"
  2283                and opeSV: "openin (top_of_set S) V"
  2284     using S U \<open>compact C\<close>
  2285     apply (simp add: locally_compact_compact_subopen)
  2286     by (meson C in_components_subset)
  2287   let ?\<T> = "{T. C \<subseteq> T \<and> openin (top_of_set K) T \<and> compact T \<and> T \<subseteq> K}"
  2288   have CK: "C \<in> components K"
  2289     by (meson C \<open>C \<subseteq> V\<close> \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> components_intermediate_subset subset_trans)
  2290   with \<open>compact K\<close>
  2291   have "C = \<Inter>{T. C \<subseteq> T \<and> openin (top_of_set K) T \<and> closedin (top_of_set K) T}"
  2292     by (simp add: Sura_Bura_compact)
  2293   then have Ceq: "C = \<Inter>?\<T>"
  2294     by (simp add: closedin_compact_eq \<open>compact K\<close>)
  2295   obtain W where "open W" and W: "V = S \<inter> W"
  2296     using opeSV by (auto simp: openin_open)
  2297   have "-(U \<inter> W) \<inter> \<Inter>?\<T> \<noteq> {}"
  2298   proof (rule closed_imp_fip_compact)
  2299     show "- (U \<inter> W) \<inter> \<Inter>\<F> \<noteq> {}"
  2300       if "finite \<F>" and \<F>: "\<F> \<subseteq> ?\<T>" for \<F>
  2301     proof (cases "\<F> = {}")
  2302       case True
  2303       have False if "U = UNIV" "W = UNIV"
  2304       proof -
  2305         have "V = S"
  2306           by (simp add: W \<open>W = UNIV\<close>)
  2307         with neg show False
  2308           using \<open>C \<subseteq> V\<close> \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> \<open>V \<subseteq> U\<close> \<open>compact K\<close> by auto
  2309       qed
  2310       with True show ?thesis
  2311         by auto
  2312     next
  2313       case False
  2314       show ?thesis
  2315       proof
  2316         assume "- (U \<inter> W) \<inter> \<Inter>\<F> = {}"
  2317         then have FUW: "\<Inter>\<F> \<subseteq> U \<inter> W"
  2318           by blast
  2319         have "C \<subseteq> \<Inter>\<F>"
  2320           using \<F> by auto
  2321         moreover have "compact (\<Inter>\<F>)"
  2322           by (metis (no_types, lifting) compact_Inter False mem_Collect_eq subsetCE \<F>)
  2323         moreover have "\<Inter>\<F> \<subseteq> K"
  2324           using False that(2) by fastforce
  2325         moreover have opeKF: "openin (top_of_set K) (\<Inter>\<F>)"
  2326           using False \<F> \<open>finite \<F>\<close> by blast
  2327         then have opeVF: "openin (top_of_set V) (\<Inter>\<F>)"
  2328           using W \<open>K \<subseteq> S\<close> \<open>V \<subseteq> K\<close> opeKF \<open>\<Inter>\<F> \<subseteq> K\<close> FUW openin_subset_trans by fastforce
  2329         then have "openin (top_of_set S) (\<Inter>\<F>)"
  2330           by (metis opeSV openin_trans)
  2331         moreover have "\<Inter>\<F> \<subseteq> U"
  2332           by (meson \<open>V \<subseteq> U\<close> opeVF dual_order.trans openin_imp_subset)
  2333         ultimately show False
  2334           using neg by blast
  2335       qed
  2336     qed
  2337   qed (use \<open>open W\<close> \<open>open U\<close> in auto)
  2338   with W Ceq \<open>C \<subseteq> V\<close> \<open>C \<subseteq> U\<close> show False
  2339     by auto
  2340 qed
  2343 corollary Sura_Bura_clopen_subset_alt:
  2344   fixes S :: "'a::euclidean_space set"
  2345   assumes S: "locally compact S" and C: "C \<in> components S" and "compact C"
  2346       and opeSU: "openin (top_of_set S) U" and "C \<subseteq> U"
  2347   obtains K where "openin (top_of_set S) K" "compact K" "C \<subseteq> K" "K \<subseteq> U"
  2348 proof -
  2349   obtain V where "open V" "U = S \<inter> V"
  2350     using opeSU by (auto simp: openin_open)
  2351   with \<open>C \<subseteq> U\<close> have "C \<subseteq> V"
  2352     by auto
  2353   then show ?thesis
  2354     using Sura_Bura_clopen_subset [OF S C \<open>compact C\<close> \<open>open V\<close>]
  2355     by (metis \<open>U = S \<inter> V\<close> inf.bounded_iff openin_imp_subset that)
  2356 qed
  2358 corollary Sura_Bura:
  2359   fixes S :: "'a::euclidean_space set"
  2360   assumes "locally compact S" "C \<in> components S" "compact C"
  2361   shows "C = \<Inter> {K. C \<subseteq> K \<and> compact K \<and> openin (top_of_set S) K}"
  2362          (is "C = ?rhs")
  2363 proof
  2364   show "?rhs \<subseteq> C"
  2365   proof (clarsimp, rule ccontr)
  2366     fix x
  2367     assume *: "\<forall>X. C \<subseteq> X \<and> compact X \<and> openin (top_of_set S) X \<longrightarrow> x \<in> X"
  2368       and "x \<notin> C"
  2369     obtain U V where "open U" "open V" "{x} \<subseteq> U" "C \<subseteq> V" "U \<inter> V = {}"
  2370       using separation_normal [of "{x}" C]
  2371       by (metis Int_empty_left \<open>x \<notin> C\<close> \<open>compact C\<close> closed_empty closed_insert compact_imp_closed insert_disjoint(1))
  2372     have "x \<notin> V"
  2373       using \<open>U \<inter> V = {}\<close> \<open>{x} \<subseteq> U\<close> by blast
  2374     then show False
  2375       by (meson "*" Sura_Bura_clopen_subset \<open>C \<subseteq> V\<close> \<open>open V\<close> assms(1) assms(2) assms(3) subsetCE)
  2376   qed
  2377 qed blast
  2380 subsection\<open>Special cases of local connectedness and path connectedness\<close>
  2382 lemma locally_connected_1:
  2383   assumes
  2384     "\<And>v x. \<lbrakk>openin (top_of_set S) v; x \<in> v\<rbrakk>
  2385               \<Longrightarrow> \<exists>u. openin (top_of_set S) u \<and>
  2386                       connected u \<and> x \<in> u \<and> u \<subseteq> v"
  2387    shows "locally connected S"
  2388 apply (clarsimp simp add: locally_def)
  2389 apply (drule assms; blast)
  2390 done
  2392 lemma locally_connected_2:
  2393   assumes "locally connected S"
  2394           "openin (top_of_set S) t"
  2395           "x \<in> t"
  2396    shows "openin (top_of_set S) (connected_component_set t x)"
  2397 proof -
  2398   { fix y :: 'a
  2399     let ?SS = "top_of_set S"
  2400     assume 1: "openin ?SS t"
  2401               "\<forall>w x. openin ?SS w \<and> x \<in> w \<longrightarrow> (\<exists>u. openin ?SS u \<and> (\<exists>v. connected v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w))"
  2402     and "connected_component t x y"
  2403     then have "y \<in> t" and y: "y \<in> connected_component_set t x"
  2404       using connected_component_subset by blast+
  2405     obtain F where
  2406       "\<forall>x y. (\<exists>w. openin ?SS w \<and> (\<exists>u. connected u \<and> x \<in> w \<and> w \<subseteq> u \<and> u \<subseteq> y)) = (openin ?SS (F x y) \<and> (\<exists>u. connected u \<and> x \<in> F x y \<and> F x y \<subseteq> u \<and> u \<subseteq> y))"
  2407       by moura
  2408     then obtain G where
  2409        "\<forall>a A. (\<exists>U. openin ?SS U \<and> (\<exists>V. connected V \<and> a \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> A)) = (openin ?SS (F a A) \<and> connected (G a A) \<and> a \<in> F a A \<and> F a A \<subseteq> G a A \<and> G a A \<subseteq> A)"
  2410       by moura
  2411     then have *: "openin ?SS (F y t) \<and> connected (G y t) \<and> y \<in> F y t \<and> F y t \<subseteq> G y t \<and> G y t \<subseteq> t"
  2412       using 1 \<open>y \<in> t\<close> by presburger
  2413     have "G y t \<subseteq> connected_component_set t y"
  2414       by (metis (no_types) * connected_component_eq_self connected_component_mono contra_subsetD)
  2415     then have "\<exists>A. openin ?SS A \<and> y \<in> A \<and> A \<subseteq> connected_component_set t x"
  2416       by (metis (no_types) * connected_component_eq dual_order.trans y)
  2417   }
  2418   then show ?thesis
  2419     using assms openin_subopen by (force simp: locally_def)
  2420 qed
  2422 lemma locally_connected_3:
  2423   assumes "\<And>t x. \<lbrakk>openin (top_of_set S) t; x \<in> t\<rbrakk>
  2424               \<Longrightarrow> openin (top_of_set S)
  2425                           (connected_component_set t x)"
  2426           "openin (top_of_set S) v" "x \<in> v"
  2427    shows  "\<exists>u. openin (top_of_set S) u \<and> connected u \<and> x \<in> u \<and> u \<subseteq> v"
  2428 using assms connected_component_subset by fastforce
  2430 lemma locally_connected:
  2431   "locally connected S \<longleftrightarrow>
  2432    (\<forall>v x. openin (top_of_set S) v \<and> x \<in> v
  2433           \<longrightarrow> (\<exists>u. openin (top_of_set S) u \<and> connected u \<and> x \<in> u \<and> u \<subseteq> v))"
  2434 by (metis locally_connected_1 locally_connected_2 locally_connected_3)
  2436 lemma locally_connected_open_connected_component:
  2437   "locally connected S \<longleftrightarrow>
  2438    (\<forall>t x. openin (top_of_set S) t \<and> x \<in> t
  2439           \<longrightarrow> openin (top_of_set S) (connected_component_set t x))"
  2440 by (metis locally_connected_1 locally_connected_2 locally_connected_3)
  2442 lemma locally_path_connected_1:
  2443   assumes
  2444     "\<And>v x. \<lbrakk>openin (top_of_set S) v; x \<in> v\<rbrakk>
  2445               \<Longrightarrow> \<exists>u. openin (top_of_set S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v"
  2446    shows "locally path_connected S"
  2447 apply (clarsimp simp add: locally_def)
  2448 apply (drule assms; blast)
  2449 done
  2451 lemma locally_path_connected_2:
  2452   assumes "locally path_connected S"
  2453           "openin (top_of_set S) t"
  2454           "x \<in> t"
  2455    shows "openin (top_of_set S) (path_component_set t x)"
  2456 proof -
  2457   { fix y :: 'a
  2458     let ?SS = "top_of_set S"
  2459     assume 1: "openin ?SS t"
  2460               "\<forall>w x. openin ?SS w \<and> x \<in> w \<longrightarrow> (\<exists>u. openin ?SS u \<and> (\<exists>v. path_connected v \<and> x \<in> u \<and> u \<subseteq> v \<and> v \<subseteq> w))"
  2461     and "path_component t x y"
  2462     then have "y \<in> t" and y: "y \<in> path_component_set t x"
  2463       using path_component_mem(2) by blast+
  2464     obtain F where
  2465       "\<forall>x y. (\<exists>w. openin ?SS w \<and> (\<exists>u. path_connected u \<and> x \<in> w \<and> w \<subseteq> u \<and> u \<subseteq> y)) = (openin ?SS (F x y) \<and> (\<exists>u. path_connected u \<and> x \<in> F x y \<and> F x y \<subseteq> u \<and> u \<subseteq> y))"
  2466       by moura
  2467     then obtain G where
  2468        "\<forall>a A. (\<exists>U. openin ?SS U \<and> (\<exists>V. path_connected V \<and> a \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> A)) = (openin ?SS (F a A) \<and> path_connected (G a A) \<and> a \<in> F a A \<and> F a A \<subseteq> G a A \<and> G a A \<subseteq> A)"
  2469       by moura
  2470     then have *: "openin ?SS (F y t) \<and> path_connected (G y t) \<and> y \<in> F y t \<and> F y t \<subseteq> G y t \<and> G y t \<subseteq> t"
  2471       using 1 \<open>y \<in> t\<close> by presburger
  2472     have "G y t \<subseteq> path_component_set t y"
  2473       using * path_component_maximal rev_subsetD by blast
  2474     then have "\<exists>A. openin ?SS A \<and> y \<in> A \<and> A \<subseteq> path_component_set t x"
  2475       by (metis "*" \<open>G y t \<subseteq> path_component_set t y\<close> dual_order.trans path_component_eq y)
  2476   }
  2477   then show ?thesis
  2478     using assms openin_subopen by (force simp: locally_def)
  2479 qed
  2481 lemma locally_path_connected_3:
  2482   assumes "\<And>t x. \<lbrakk>openin (top_of_set S) t; x \<in> t\<rbrakk>
  2483               \<Longrightarrow> openin (top_of_set S) (path_component_set t x)"
  2484           "openin (top_of_set S) v" "x \<in> v"
  2485    shows  "\<exists>u. openin (top_of_set S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v"
  2486 proof -
  2487   have "path_component v x x"
  2488     by (meson assms(3) path_component_refl)
  2489   then show ?thesis
  2490     by (metis assms(1) assms(2) assms(3) mem_Collect_eq path_component_subset path_connected_path_component)
  2491 qed
  2493 proposition locally_path_connected:
  2494   "locally path_connected S \<longleftrightarrow>
  2495    (\<forall>v x. openin (top_of_set S) v \<and> x \<in> v
  2496           \<longrightarrow> (\<exists>u. openin (top_of_set S) u \<and> path_connected u \<and> x \<in> u \<and> u \<subseteq> v))"
  2497   by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
  2499 proposition locally_path_connected_open_path_component:
  2500   "locally path_connected S \<longleftrightarrow>
  2501    (\<forall>t x. openin (top_of_set S) t \<and> x \<in> t
  2502           \<longrightarrow> openin (top_of_set S) (path_component_set t x))"
  2503   by (metis locally_path_connected_1 locally_path_connected_2 locally_path_connected_3)
  2505 lemma locally_connected_open_component:
  2506   "locally connected S \<longleftrightarrow>
  2507    (\<forall>t c. openin (top_of_set S) t \<and> c \<in> components t
  2508           \<longrightarrow> openin (top_of_set S) c)"
  2509 by (metis components_iff locally_connected_open_connected_component)
  2511 proposition locally_connected_im_kleinen:
  2512   "locally connected S \<longleftrightarrow>
  2513    (\<forall>v x. openin (top_of_set S) v \<and> x \<in> v
  2514        \<longrightarrow> (\<exists>u. openin (top_of_set S) u \<and>
  2515                 x \<in> u \<and> u \<subseteq> v \<and>
  2516                 (\<forall>y. y \<in> u \<longrightarrow> (\<exists>c. connected c \<and> c \<subseteq> v \<and> x \<in> c \<and> y \<in> c))))"
  2517    (is "?lhs = ?rhs")
  2518 proof
  2519   assume ?lhs
  2520   then show ?rhs
  2521     by (fastforce simp add: locally_connected)
  2522 next
  2523   assume ?rhs
  2524   have *: "\<exists>T. openin (top_of_set S) T \<and> x \<in> T \<and> T \<subseteq> c"
  2525        if "openin (top_of_set S) t" and c: "c \<in> components t" and "x \<in> c" for t c x
  2526   proof -
  2527     from that \<open>?rhs\<close> [rule_format, of t x]
  2528     obtain u where u:
  2529       "openin (top_of_set S) u \<and> x \<in> u \<and> u \<subseteq> t \<and>
  2530        (\<forall>y. y \<in> u \<longrightarrow> (\<exists>c. connected c \<and> c \<subseteq> t \<and> x \<in> c \<and> y \<in> c))"
  2531       using in_components_subset by auto
  2532     obtain F :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a" where
  2533       "\<forall>x y. (\<exists>z. z \<in> x \<and> y = connected_component_set x z) = (F x y \<in> x \<and> y = connected_component_set x (F x y))"
  2534       by moura
  2535     then have F: "F t c \<in> t \<and> c = connected_component_set t (F t c)"
  2536       by (meson components_iff c)
  2537     obtain G :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a" where
  2538         G: "\<forall>x y. (\<exists>z. z \<in> y \<and> z \<notin> x) = (G x y \<in> y \<and> G x y \<notin> x)"
  2539       by moura
  2540      have "G c u \<notin> u \<or> G c u \<in> c"
  2541       using F by (metis (full_types) u connected_componentI connected_component_eq mem_Collect_eq that(3))
  2542     then show ?thesis
  2543       using G u by auto
  2544   qed
  2545   show ?lhs
  2546     apply (clarsimp simp add: locally_connected_open_component)
  2547     apply (subst openin_subopen)
  2548     apply (blast intro: *)
  2549     done
  2550 qed
  2552 proposition locally_path_connected_im_kleinen:
  2553   "locally path_connected S \<longleftrightarrow>
  2554    (\<forall>v x. openin (top_of_set S) v \<and> x \<in> v
  2555        \<longrightarrow> (\<exists>u. openin (top_of_set S) u \<and>
  2556                 x \<in> u \<and> u \<subseteq> v \<and>
  2557                 (\<forall>y. y \<in> u \<longrightarrow> (\<exists>p. path p \<and> path_image p \<subseteq> v \<and>
  2558                                 pathstart p = x \<and> pathfinish p = y))))"
  2559    (is "?lhs = ?rhs")
  2560 proof
  2561   assume ?lhs
  2562   then show ?rhs
  2563     apply (simp add: locally_path_connected path_connected_def)
  2564     apply (erule all_forward ex_forward imp_forward conjE | simp)+
  2565     by (meson dual_order.trans)
  2566 next
  2567   assume ?rhs
  2568   have *: "\<exists>T. openin (top_of_set S) T \<and>
  2569                x \<in> T \<and> T \<subseteq> path_component_set u z"
  2570        if "openin (top_of_set S) u" and "z \<in> u" and c: "path_component u z x" for u z x
  2571   proof -
  2572     have "x \<in> u"
  2573       by (meson c path_component_mem(2))
  2574     with that \<open>?rhs\<close> [rule_format, of u x]
  2575     obtain U where U:
  2576       "openin (top_of_set S) U \<and> x \<in> U \<and> U \<subseteq> u \<and>
  2577        (\<forall>y. y \<in> U \<longrightarrow> (\<exists>p. path p \<and> path_image p \<subseteq> u \<and> pathstart p = x \<and> pathfinish p = y))"
  2578        by blast
  2579     show ?thesis
  2580       apply (rule_tac x=U in exI)
  2581       apply (auto simp: U)
  2582       apply (metis U c path_component_trans path_component_def)
  2583       done
  2584   qed
  2585   show ?lhs
  2586     apply (clarsimp simp add: locally_path_connected_open_path_component)
  2587     apply (subst openin_subopen)
  2588     apply (blast intro: *)
  2589     done
  2590 qed
  2592 lemma locally_path_connected_imp_locally_connected:
  2593   "locally path_connected S \<Longrightarrow> locally connected S"
  2594 using locally_mono path_connected_imp_connected by blast
  2596 lemma locally_connected_components:
  2597   "\<lbrakk>locally connected S; c \<in> components S\<rbrakk> \<Longrightarrow> locally connected c"
  2598 by (meson locally_connected_open_component locally_open_subset openin_subtopology_self)
  2600 lemma locally_path_connected_components:
  2601   "\<lbrakk>locally path_connected S; c \<in> components S\<rbrakk> \<Longrightarrow> locally path_connected c"
  2602 by (meson locally_connected_open_component locally_open_subset locally_path_connected_imp_locally_connected openin_subtopology_self)
  2604 lemma locally_path_connected_connected_component:
  2605   "locally path_connected S \<Longrightarrow> locally path_connected (connected_component_set S x)"
  2606 by (metis components_iff connected_component_eq_empty locally_empty locally_path_connected_components)
  2608 lemma open_imp_locally_path_connected:
  2609   fixes S :: "'a :: real_normed_vector set"
  2610   shows "open S \<Longrightarrow> locally path_connected S"
  2611 apply (rule locally_mono [of convex])
  2612 apply (simp_all add: locally_def openin_open_eq convex_imp_path_connected)
  2613 apply (meson open_ball centre_in_ball convex_ball openE order_trans)
  2614 done
  2616 lemma open_imp_locally_connected:
  2617   fixes S :: "'a :: real_normed_vector set"
  2618   shows "open S \<Longrightarrow> locally connected S"
  2619 by (simp add: locally_path_connected_imp_locally_connected open_imp_locally_path_connected)
  2621 lemma locally_path_connected_UNIV: "locally path_connected (UNIV::'a :: real_normed_vector set)"
  2622   by (simp add: open_imp_locally_path_connected)
  2624 lemma locally_connected_UNIV: "locally connected (UNIV::'a :: real_normed_vector set)"
  2625   by (simp add: open_imp_locally_connected)
  2627 lemma openin_connected_component_locally_connected:
  2628     "locally connected S
  2629      \<Longrightarrow> openin (top_of_set S) (connected_component_set S x)"
  2630 apply (simp add: locally_connected_open_connected_component)
  2631 by (metis connected_component_eq_empty connected_component_subset open_empty open_subset openin_subtopology_self)
  2633 lemma openin_components_locally_connected:
  2634     "\<lbrakk>locally connected S; c \<in> components S\<rbrakk> \<Longrightarrow> openin (top_of_set S) c"
  2635   using locally_connected_open_component openin_subtopology_self by blast
  2637 lemma openin_path_component_locally_path_connected:
  2638   "locally path_connected S
  2639         \<Longrightarrow> openin (top_of_set S) (path_component_set S x)"
  2640 by (metis (no_types) empty_iff locally_path_connected_2 openin_subopen openin_subtopology_self path_component_eq_empty)
  2642 lemma closedin_path_component_locally_path_connected:
  2643     "locally path_connected S
  2644         \<Longrightarrow> closedin (top_of_set S) (path_component_set S x)"
  2645 apply  (simp add: closedin_def path_component_subset complement_path_component_Union)
  2646 apply (rule openin_Union)
  2647 using openin_path_component_locally_path_connected by auto
  2649 lemma convex_imp_locally_path_connected:
  2650   fixes S :: "'a:: real_normed_vector set"
  2651   shows "convex S \<Longrightarrow> locally path_connected S"
  2652 apply (clarsimp simp add: locally_path_connected)
  2653 apply (subst (asm) openin_open)
  2654 apply clarify
  2655 apply (erule (1) openE)
  2656 apply (rule_tac x = "S \<inter> ball x e" in exI)
  2657 apply (force simp: convex_Int convex_imp_path_connected)
  2658 done
  2660 lemma convex_imp_locally_connected:
  2661   fixes S :: "'a:: real_normed_vector set"
  2662   shows "convex S \<Longrightarrow> locally connected S"
  2663   by (simp add: locally_path_connected_imp_locally_connected convex_imp_locally_path_connected)
  2666 subsection\<open>Relations between components and path components\<close>
  2668 lemma path_component_eq_connected_component:
  2669   assumes "locally path_connected S"
  2670     shows "(path_component S x = connected_component S x)"
  2671 proof (cases "x \<in> S")
  2672   case True
  2673   have "openin (top_of_set (connected_component_set S x)) (path_component_set S x)"
  2674     apply (rule openin_subset_trans [of S])
  2675     apply (intro conjI openin_path_component_locally_path_connected [OF assms])
  2676     using path_component_subset_connected_component   apply (auto simp: connected_component_subset)
  2677     done
  2678   moreover have "closedin (top_of_set (connected_component_set S x)) (path_component_set S x)"
  2679     apply (rule closedin_subset_trans [of S])
  2680     apply (intro conjI closedin_path_component_locally_path_connected [OF assms])
  2681     using path_component_subset_connected_component   apply (auto simp: connected_component_subset)
  2682     done
  2683   ultimately have *: "path_component_set S x = connected_component_set S x"
  2684     by (metis connected_connected_component connected_clopen True path_component_eq_empty)
  2685   then show ?thesis
  2686     by blast
  2687 next
  2688   case False then show ?thesis
  2689     by (metis Collect_empty_eq_bot connected_component_eq_empty path_component_eq_empty)
  2690 qed
  2692 lemma path_component_eq_connected_component_set:
  2693      "locally path_connected S \<Longrightarrow> (path_component_set S x = connected_component_set S x)"
  2694 by (simp add: path_component_eq_connected_component)
  2696 lemma locally_path_connected_path_component:
  2697      "locally path_connected S \<Longrightarrow> locally path_connected (path_component_set S x)"
  2698 using locally_path_connected_connected_component path_component_eq_connected_component by fastforce
  2700 lemma open_path_connected_component:
  2701   fixes S :: "'a :: real_normed_vector set"
  2702   shows "open S \<Longrightarrow> path_component S x = connected_component S x"
  2703 by (simp add: path_component_eq_connected_component open_imp_locally_path_connected)
  2705 lemma open_path_connected_component_set:
  2706   fixes S :: "'a :: real_normed_vector set"
  2707   shows "open S \<Longrightarrow> path_component_set S x = connected_component_set S x"
  2708 by (simp add: open_path_connected_component)
  2710 proposition locally_connected_quotient_image:
  2711   assumes lcS: "locally connected S"
  2712       and oo: "\<And>T. T \<subseteq> f ` S
  2713                 \<Longrightarrow> openin (top_of_set S) (S \<inter> f -` T) \<longleftrightarrow>
  2714                     openin (top_of_set (f ` S)) T"
  2715     shows "locally connected (f ` S)"
  2716 proof (clarsimp simp: locally_connected_open_component)
  2717   fix U C
  2718   assume opefSU: "openin (top_of_set (f ` S)) U" and "C \<in> components U"
  2719   then have "C \<subseteq> U" "U \<subseteq> f ` S"
  2720     by (meson in_components_subset openin_imp_subset)+
  2721   then have "openin (top_of_set (f ` S)) C \<longleftrightarrow>
  2722              openin (top_of_set S) (S \<inter> f -` C)"
  2723     by (auto simp: oo)
  2724   moreover have "openin (top_of_set S) (S \<inter> f -` C)"
  2725   proof (subst openin_subopen, clarify)
  2726     fix x
  2727     assume "x \<in> S" "f x \<in> C"
  2728     show "\<exists>T. openin (top_of_set S) T \<and> x \<in> T \<and> T \<subseteq> (S \<inter> f -` C)"
  2729     proof (intro conjI exI)
  2730       show "openin (top_of_set S) (connected_component_set (S \<inter> f -` U) x)"
  2731       proof (rule ccontr)
  2732         assume **: "\<not> openin (top_of_set S) (connected_component_set (S \<inter> f -` U) x)"
  2733         then have "x \<notin> (S \<inter> f -` U)"
  2734           using \<open>U \<subseteq> f ` S\<close> opefSU lcS locally_connected_2 oo by blast
  2735         with ** show False
  2736           by (metis (no_types) connected_component_eq_empty empty_iff openin_subopen)
  2737       qed
  2738     next
  2739       show "x \<in> connected_component_set (S \<inter> f -` U) x"
  2740         using \<open>C \<subseteq> U\<close> \<open>f x \<in> C\<close> \<open>x \<in> S\<close> by auto
  2741     next
  2742       have contf: "continuous_on S f"
  2743         by (simp add: continuous_on_open oo openin_imp_subset)
  2744       then have "continuous_on (connected_component_set (S \<inter> f -` U) x) f"
  2745         apply (rule continuous_on_subset)
  2746         using connected_component_subset apply blast
  2747         done
  2748       then have "connected (f ` connected_component_set (S \<inter> f -` U) x)"
  2749         by (rule connected_continuous_image [OF _ connected_connected_component])
  2750       moreover have "f ` connected_component_set (S \<inter> f -` U) x \<subseteq> U"
  2751         using connected_component_in by blast
  2752       moreover have "C \<inter> f ` connected_component_set (S \<inter> f -` U) x \<noteq> {}"
  2753         using \<open>C \<subseteq> U\<close> \<open>f x \<in> C\<close> \<open>x \<in> S\<close> by fastforce
  2754       ultimately have fC: "f ` (connected_component_set (S \<inter> f -` U) x) \<subseteq> C"
  2755         by (rule components_maximal [OF \<open>C \<in> components U\<close>])
  2756       have cUC: "connected_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` C)"
  2757         using connected_component_subset fC by blast
  2758       have "connected_component_set (S \<inter> f -` U) x \<subseteq> connected_component_set (S \<inter> f -` C) x"
  2759       proof -
  2760         { assume "x \<in> connected_component_set (S \<inter> f -` U) x"
  2761           then have ?thesis
  2762             using cUC connected_component_idemp connected_component_mono by blast }
  2763         then show ?thesis
  2764           using connected_component_eq_empty by auto
  2765       qed
  2766       also have "\<dots> \<subseteq> (S \<inter> f -` C)"
  2767         by (rule connected_component_subset)
  2768       finally show "connected_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` C)" .
  2769     qed
  2770   qed
  2771   ultimately show "openin (top_of_set (f ` S)) C"
  2772     by metis
  2773 qed
  2775 text\<open>The proof resembles that above but is not identical!\<close>
  2776 proposition locally_path_connected_quotient_image:
  2777   assumes lcS: "locally path_connected S"
  2778       and oo: "\<And>T. T \<subseteq> f ` S
  2779                 \<Longrightarrow> openin (top_of_set S) (S \<inter> f -` T) \<longleftrightarrow> openin (top_of_set (f ` S)) T"
  2780     shows "locally path_connected (f ` S)"
  2781 proof (clarsimp simp: locally_path_connected_open_path_component)
  2782   fix U y
  2783   assume opefSU: "openin (top_of_set (f ` S)) U" and "y \<in> U"
  2784   then have "path_component_set U y \<subseteq> U" "U \<subseteq> f ` S"
  2785     by (meson path_component_subset openin_imp_subset)+
  2786   then have "openin (top_of_set (f ` S)) (path_component_set U y) \<longleftrightarrow>
  2787              openin (top_of_set S) (S \<inter> f -` path_component_set U y)"
  2788   proof -
  2789     have "path_component_set U y \<subseteq> f ` S"
  2790       using \<open>U \<subseteq> f ` S\<close> \<open>path_component_set U y \<subseteq> U\<close> by blast
  2791     then show ?thesis
  2792       using oo by blast
  2793   qed
  2794   moreover have "openin (top_of_set S) (S \<inter> f -` path_component_set U y)"
  2795   proof (subst openin_subopen, clarify)
  2796     fix x
  2797     assume "x \<in> S" and Uyfx: "path_component U y (f x)"
  2798     then have "f x \<in> U"
  2799       using path_component_mem by blast
  2800     show "\<exists>T. openin (top_of_set S) T \<and> x \<in> T \<and> T \<subseteq> (S \<inter> f -` path_component_set U y)"
  2801     proof (intro conjI exI)
  2802       show "openin (top_of_set S) (path_component_set (S \<inter> f -` U) x)"
  2803       proof (rule ccontr)
  2804         assume **: "\<not> openin (top_of_set S) (path_component_set (S \<inter> f -` U) x)"
  2805         then have "x \<notin> (S \<inter> f -` U)"
  2806           by (metis (no_types, lifting) \<open>U \<subseteq> f ` S\<close> opefSU lcS oo locally_path_connected_open_path_component)
  2807         then show False
  2808           using ** \<open>path_component_set U y \<subseteq> U\<close>  \<open>x \<in> S\<close> \<open>path_component U y (f x)\<close> by blast
  2809       qed
  2810     next
  2811       show "x \<in> path_component_set (S \<inter> f -` U) x"
  2812         by (simp add: \<open>f x \<in> U\<close> \<open>x \<in> S\<close> path_component_refl)
  2813     next
  2814       have contf: "continuous_on S f"
  2815         by (simp add: continuous_on_open oo openin_imp_subset)
  2816       then have "continuous_on (path_component_set (S \<inter> f -` U) x) f"
  2817         apply (rule continuous_on_subset)
  2818         using path_component_subset apply blast
  2819         done
  2820       then have "path_connected (f ` path_component_set (S \<inter> f -` U) x)"
  2821         by (simp add: path_connected_continuous_image)
  2822       moreover have "f ` path_component_set (S \<inter> f -` U) x \<subseteq> U"
  2823         using path_component_mem by fastforce
  2824       moreover have "f x \<in> f ` path_component_set (S \<inter> f -` U) x"
  2825         by (force simp: \<open>x \<in> S\<close> \<open>f x \<in> U\<close> path_component_refl_eq)
  2826       ultimately have "f ` (path_component_set (S \<inter> f -` U) x) \<subseteq> path_component_set U (f x)"
  2827         by (meson path_component_maximal)
  2828        also have  "\<dots> \<subseteq> path_component_set U y"
  2829         by (simp add: Uyfx path_component_maximal path_component_subset path_component_sym)
  2830       finally have fC: "f ` (path_component_set (S \<inter> f -` U) x) \<subseteq> path_component_set U y" .
  2831       have cUC: "path_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` path_component_set U y)"
  2832         using path_component_subset fC by blast
  2833       have "path_component_set (S \<inter> f -` U) x \<subseteq> path_component_set (S \<inter> f -` path_component_set U y) x"
  2834       proof -
  2835         have "\<And>a. path_component_set (path_component_set (S \<inter> f -` U) x) a \<subseteq> path_component_set (S \<inter> f -` path_component_set U y) a"
  2836           using cUC path_component_mono by blast
  2837         then show ?thesis
  2838           using path_component_path_component by blast
  2839       qed
  2840       also have "\<dots> \<subseteq> (S \<inter> f -` path_component_set U y)"
  2841         by (rule path_component_subset)
  2842       finally show "path_component_set (S \<inter> f -` U) x \<subseteq> (S \<inter> f -` path_component_set U y)" .
  2843     qed
  2844   qed
  2845   ultimately show "openin (top_of_set (f ` S)) (path_component_set U y)"
  2846     by metis
  2847 qed
  2849 subsection%unimportant\<open>Components, continuity, openin, closedin\<close>
  2851 lemma continuous_on_components_gen:
  2852  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
  2853   assumes "\<And>c. c \<in> components S \<Longrightarrow>
  2854               openin (top_of_set S) c \<and> continuous_on c f"
  2855     shows "continuous_on S f"
  2856 proof (clarsimp simp: continuous_openin_preimage_eq)
  2857   fix t :: "'b set"
  2858   assume "open t"
  2859   have *: "S \<inter> f -` t = (\<Union>c \<in> components S. c \<inter> f -` t)"
  2860     by auto
  2861   show "openin (top_of_set S) (S \<inter> f -` t)"
  2862     unfolding * using \<open>open t\<close> assms continuous_openin_preimage_gen openin_trans openin_Union by blast
  2863 qed
  2865 lemma continuous_on_components:
  2866  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
  2867   assumes "locally connected S "
  2868           "\<And>c. c \<in> components S \<Longrightarrow> continuous_on c f"
  2869     shows "continuous_on S f"
  2870 apply (rule continuous_on_components_gen)
  2871 apply (auto simp: assms intro: openin_components_locally_connected)
  2872 done
  2874 lemma continuous_on_components_eq:
  2875     "locally connected S
  2876      \<Longrightarrow> (continuous_on S f \<longleftrightarrow> (\<forall>c \<in> components S. continuous_on c f))"
  2877 by (meson continuous_on_components continuous_on_subset in_components_subset)
  2879 lemma continuous_on_components_open:
  2880  fixes S :: "'a::real_normed_vector set"
  2881   assumes "open S "
  2882           "\<And>c. c \<in> components S \<Longrightarrow> continuous_on c f"
  2883     shows "continuous_on S f"
  2884 using continuous_on_components open_imp_locally_connected assms by blast
  2886 lemma continuous_on_components_open_eq:
  2887   fixes S :: "'a::real_normed_vector set"
  2888   shows "open S \<Longrightarrow> (continuous_on S f \<longleftrightarrow> (\<forall>c \<in> components S. continuous_on c f))"
  2889 using continuous_on_subset in_components_subset
  2890 by (blast intro: continuous_on_components_open)
  2892 lemma closedin_union_complement_components:
  2893   assumes u: "locally connected u"
  2894       and S: "closedin (top_of_set u) S"
  2895       and cuS: "c \<subseteq> components(u - S)"
  2896     shows "closedin (top_of_set u) (S \<union> \<Union>c)"
  2897 proof -
  2898   have di: "(\<And>S t. S \<in> c \<and> t \<in> c' \<Longrightarrow> disjnt S t) \<Longrightarrow> disjnt (\<Union> c) (\<Union> c')" for c'
  2899     by (simp add: disjnt_def) blast
  2900   have "S \<subseteq> u"
  2901     using S closedin_imp_subset by blast
  2902   moreover have "u - S = \<Union>c \<union> \<Union>(components (u - S) - c)"
  2903     by (metis Diff_partition Union_components Union_Un_distrib assms(3))
  2904   moreover have "disjnt (\<Union>c) (\<Union>(components (u - S) - c))"
  2905     apply (rule di)
  2906     by (metis DiffD1 DiffD2 assms(3) components_nonoverlap disjnt_def subsetCE)
  2907   ultimately have eq: "S \<union> \<Union>c = u - (\<Union>(components(u - S) - c))"
  2908     by (auto simp: disjnt_def)
  2909   have *: "openin (top_of_set u) (\<Union>(components (u - S) - c))"
  2910     apply (rule openin_Union)
  2911     apply (rule openin_trans [of "u - S"])
  2912     apply (simp add: u S locally_diff_closed openin_components_locally_connected)
  2913     apply (simp add: openin_diff S)
  2914     done
  2915   have "openin (top_of_set u) (u - (u - \<Union>(components (u - S) - c)))"
  2916     apply (rule openin_diff, simp)
  2917     apply (metis closedin_diff closedin_topspace topspace_euclidean_subtopology *)
  2918     done
  2919   then show ?thesis
  2920     by (force simp: eq closedin_def)
  2921 qed
  2923 lemma closed_union_complement_components:
  2924   fixes S :: "'a::real_normed_vector set"
  2925   assumes S: "closed S" and c: "c \<subseteq> components(- S)"
  2926     shows "closed(S \<union> \<Union> c)"
  2927 proof -
  2928   have "closedin (top_of_set UNIV) (S \<union> \<Union>c)"
  2929     apply (rule closedin_union_complement_components [OF locally_connected_UNIV])
  2930     using S c apply (simp_all add: Compl_eq_Diff_UNIV)
  2931     done
  2932   then show ?thesis by simp
  2933 qed
  2935 lemma closedin_Un_complement_component:
  2936   fixes S :: "'a::real_normed_vector set"
  2937   assumes u: "locally connected u"
  2938       and S: "closedin (top_of_set u) S"
  2939       and c: " c \<in> components(u - S)"
  2940     shows "closedin (top_of_set u) (S \<union> c)"
  2941 proof -
  2942   have "closedin (top_of_set u) (S \<union> \<Union>{c})"
  2943     using c by (blast intro: closedin_union_complement_components [OF u S])
  2944   then show ?thesis
  2945     by simp
  2946 qed
  2948 lemma closed_Un_complement_component:
  2949   fixes S :: "'a::real_normed_vector set"
  2950   assumes S: "closed S" and c: " c \<in> components(-S)"
  2951     shows "closed (S \<union> c)"
  2952   by (metis Compl_eq_Diff_UNIV S c closed_closedin closedin_Un_complement_component
  2953       locally_connected_UNIV subtopology_UNIV)
  2956 subsection\<open>Existence of isometry between subspaces of same dimension\<close>
  2958 lemma isometry_subset_subspace:
  2959   fixes S :: "'a::euclidean_space set"
  2960     and T :: "'b::euclidean_space set"
  2961   assumes S: "subspace S"
  2962       and T: "subspace T"
  2963       and d: "dim S \<le> dim T"
  2964   obtains f where "linear f" "f ` S \<subseteq> T" "\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
  2965 proof -
  2966   obtain B where "B \<subseteq> S" and Borth: "pairwise orthogonal B"
  2967              and B1: "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
  2968              and "independent B" "finite B" "card B = dim S" "span B = S"
  2969     by (metis orthonormal_basis_subspace [OF S] independent_finite)
  2970   obtain C where "C \<subseteq> T" and Corth: "pairwise orthogonal C"
  2971              and C1:"\<And>x. x \<in> C \<Longrightarrow> norm x = 1"
  2972              and "independent C" "finite C" "card C = dim T" "span C = T"
  2973     by (metis orthonormal_basis_subspace [OF T] independent_finite)
  2974   obtain fb where "fb ` B \<subseteq> C" "inj_on fb B"
  2975     by (metis \<open>card B = dim S\<close> \<open>card C = dim T\<close> \<open>finite B\<close> \<open>finite C\<close> card_le_inj d)
  2976   then have pairwise_orth_fb: "pairwise (\<lambda>v j. orthogonal (fb v) (fb j)) B"
  2977     using Corth
  2978     apply (auto simp: pairwise_def orthogonal_clauses)
  2979     by (meson subsetD image_eqI inj_on_def)
  2980   obtain f where "linear f" and ffb: "\<And>x. x \<in> B \<Longrightarrow> f x = fb x"
  2981     using linear_independent_extend \<open>independent B\<close> by fastforce
  2982   have "span (f ` B) \<subseteq> span C"
  2983     by (metis \<open>fb ` B \<subseteq> C\<close> ffb image_cong span_mono)
  2984   then have "f ` S \<subseteq> T"
  2985     unfolding \<open>span B = S\<close> \<open>span C = T\<close> span_linear_image[OF \<open>linear f\<close>] .
  2986   have [simp]: "\<And>x. x \<in> B \<Longrightarrow> norm (fb x) = norm x"
  2987     using B1 C1 \<open>fb ` B \<subseteq> C\<close> by auto
  2988   have "norm (f x) = norm x" if "x \<in> S" for x
  2989   proof -
  2990     interpret linear f by fact
  2991     obtain a where x: "x = (\<Sum>v \<in> B. a v *\<^sub>R v)"
  2992       using \<open>finite B\<close> \<open>span B = S\<close> \<open>x \<in> S\<close> span_finite by fastforce
  2993     have "norm (f x)^2 = norm (\<Sum>v\<in>B. a v *\<^sub>R fb v)^2" by (simp add: sum scale ffb x)
  2994     also have "\<dots> = (\<Sum>v\<in>B. norm ((a v *\<^sub>R fb v))^2)"
  2995       apply (rule norm_sum_Pythagorean [OF \<open>finite B\<close>])
  2996       apply (rule pairwise_ortho_scaleR [OF pairwise_orth_fb])
  2997       done
  2998     also have "\<dots> = norm x ^2"
  2999       by (simp add: x pairwise_ortho_scaleR Borth norm_sum_Pythagorean [OF \<open>finite B\<close>])
  3000     finally show ?thesis
  3001       by (simp add: norm_eq_sqrt_inner)
  3002   qed
  3003   then show ?thesis
  3004     by (rule that [OF \<open>linear f\<close> \<open>f ` S \<subseteq> T\<close>])
  3005 qed
  3007 proposition isometries_subspaces:
  3008   fixes S :: "'a::euclidean_space set"
  3009     and T :: "'b::euclidean_space set"
  3010   assumes S: "subspace S"
  3011       and T: "subspace T"
  3012       and d: "dim S = dim T"
  3013   obtains f g where "linear f" "linear g" "f ` S = T" "g ` T = S"
  3014                     "\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
  3015                     "\<And>x. x \<in> T \<Longrightarrow> norm(g x) = norm x"
  3016                     "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
  3017                     "\<And>x. x \<in> T \<Longrightarrow> f(g x) = x"
  3018 proof -
  3019   obtain B where "B \<subseteq> S" and Borth: "pairwise orthogonal B"
  3020              and B1: "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
  3021              and "independent B" "finite B" "card B = dim S" "span B = S"
  3022     by (metis orthonormal_basis_subspace [OF S] independent_finite)
  3023   obtain C where "C \<subseteq> T" and Corth: "pairwise orthogonal C"
  3024              and C1:"\<And>x. x \<in> C \<Longrightarrow> norm x = 1"
  3025              and "independent C" "finite C" "card C = dim T" "span C = T"
  3026     by (metis orthonormal_basis_subspace [OF T] independent_finite)
  3027   obtain fb where "bij_betw fb B C"
  3028     by (metis \<open>finite B\<close> \<open>finite C\<close> bij_betw_iff_card \<open>card B = dim S\<close> \<open>card C = dim T\<close> d)
  3029   then have pairwise_orth_fb: "pairwise (\<lambda>v j. orthogonal (fb v) (fb j)) B"
  3030     using Corth
  3031     apply (auto simp: pairwise_def orthogonal_clauses bij_betw_def)
  3032     by (meson subsetD image_eqI inj_on_def)
  3033   obtain f where "linear f" and ffb: "\<And>x. x \<in> B \<Longrightarrow> f x = fb x"
  3034     using linear_independent_extend \<open>independent B\<close> by fastforce
  3035   interpret f: linear f by fact
  3036   define gb where "gb \<equiv> inv_into B fb"
  3037   then have pairwise_orth_gb: "pairwise (\<lambda>v j. orthogonal (gb v) (gb j)) C"
  3038     using Borth
  3039     apply (auto simp: pairwise_def orthogonal_clauses bij_betw_def)
  3040     by (metis \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on bij_betw_inv_into_right inv_into_into)
  3041   obtain g where "linear g" and ggb: "\<And>x. x \<in> C \<Longrightarrow> g x = gb x"
  3042     using linear_independent_extend \<open>independent C\<close> by fastforce
  3043   interpret g: linear g by fact
  3044   have "span (f ` B) \<subseteq> span C"
  3045     by (metis \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on eq_iff ffb image_cong)
  3046   then have "f ` S \<subseteq> T"
  3047     unfolding \<open>span B = S\<close> \<open>span C = T\<close>
  3048       span_linear_image[OF \<open>linear f\<close>] .
  3049   have [simp]: "\<And>x. x \<in> B \<Longrightarrow> norm (fb x) = norm x"
  3050     using B1 C1 \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on by fastforce
  3051   have f [simp]: "norm (f x) = norm x" "g (f x) = x" if "x \<in> S" for x
  3052   proof -
  3053     obtain a where x: "x = (\<Sum>v \<in> B. a v *\<^sub>R v)"
  3054       using \<open>finite B\<close> \<open>span B = S\<close> \<open>x \<in> S\<close> span_finite by fastforce
  3055     have "f x = (\<Sum>v \<in> B. f (a v *\<^sub>R v))"
  3056       using linear_sum [OF \<open>linear f\<close>] x by auto
  3057     also have "\<dots> = (\<Sum>v \<in> B. a v *\<^sub>R f v)"
  3058       by (simp add: f.sum f.scale)
  3059     also have "\<dots> = (\<Sum>v \<in> B. a v *\<^sub>R fb v)"
  3060       by (simp add: ffb cong: sum.cong)
  3061     finally have *: "f x = (\<Sum>v\<in>B. a v *\<^sub>R fb v)" .
  3062     then have "(norm (f x))\<^sup>2 = (norm (\<Sum>v\<in>B. a v *\<^sub>R fb v))\<^sup>2" by simp
  3063     also have "\<dots> = (\<Sum>v\<in>B. norm ((a v *\<^sub>R fb v))^2)"
  3064       apply (rule norm_sum_Pythagorean [OF \<open>finite B\<close>])
  3065       apply (rule pairwise_ortho_scaleR [OF pairwise_orth_fb])
  3066       done
  3067     also have "\<dots> = (norm x)\<^sup>2"
  3068       by (simp add: x pairwise_ortho_scaleR Borth norm_sum_Pythagorean [OF \<open>finite B\<close>])
  3069     finally show "norm (f x) = norm x"
  3070       by (simp add: norm_eq_sqrt_inner)
  3071     have "g (f x) = g (\<Sum>v\<in>B. a v *\<^sub>R fb v)" by (simp add: *)
  3072     also have "\<dots> = (\<Sum>v\<in>B. g (a v *\<^sub>R fb v))"
  3073       by (simp add: g.sum g.scale)
  3074     also have "\<dots> = (\<Sum>v\<in>B. a v *\<^sub>R g (fb v))"
  3075       by (simp add: g.scale)
  3076     also have "\<dots> = (\<Sum>v\<in>B. a v *\<^sub>R v)"
  3077       apply (rule sum.cong [OF refl])
  3078       using \<open>bij_betw fb B C\<close> gb_def bij_betwE bij_betw_inv_into_left gb_def ggb by fastforce
  3079     also have "\<dots> = x"
  3080       using x by blast
  3081     finally show "g (f x) = x" .
  3082   qed
  3083   have [simp]: "\<And>x. x \<in> C \<Longrightarrow> norm (gb x) = norm x"
  3084     by (metis B1 C1 \<open>bij_betw fb B C\<close> bij_betw_imp_surj_on gb_def inv_into_into)
  3085   have g [simp]: "f (g x) = x" if "x \<in> T" for x
  3086   proof -
  3087     obtain a where x: "x = (\<Sum>v \<in> C. a v *\<^sub>R v)"
  3088       using \<open>finite C\<close> \<open>span C = T\<close> \<open>x \<in> T\<close> span_finite by fastforce
  3089     have "g x = (\<Sum>v \<in> C. g (a v *\<^sub>R v))"
  3090       by (simp add: x g.sum)
  3091     also have "\<dots> = (\<Sum>v \<in> C. a v *\<^sub>R g v)"
  3092       by (simp add: g.scale)
  3093     also have "\<dots> = (\<Sum>v \<in> C. a v *\<^sub>R gb v)"
  3094       by (simp add: ggb cong: sum.cong)
  3095     finally have "f (g x) = f (\<Sum>v\<in>C. a v *\<^sub>R gb v)" by simp
  3096     also have "\<dots> = (\<Sum>v\<in>C. f (a v *\<^sub>R gb v))"
  3097       by (simp add: f.scale f.sum)
  3098     also have "\<dots> = (\<Sum>v\<in>C. a v *\<^sub>R f (gb v))"
  3099       by (simp add: f.scale f.sum)
  3100     also have "\<dots> = (\<Sum>v\<in>C. a v *\<^sub>R v)"
  3101       using \<open>bij_betw fb B C\<close>
  3102       by (simp add: bij_betw_def gb_def bij_betw_inv_into_right ffb inv_into_into)
  3103     also have "\<dots> = x"
  3104       using x by blast
  3105     finally show "f (g x) = x" .
  3106   qed
  3107   have gim: "g ` T = S"
  3108     by (metis (full_types) S T \<open>f ` S \<subseteq> T\<close> d dim_eq_span dim_image_le f(2) g.linear_axioms
  3109         image_iff linear_subspace_image span_eq_iff subset_iff)
  3110   have fim: "f ` S = T"
  3111     using \<open>g ` T = S\<close> image_iff by fastforce
  3112   have [simp]: "norm (g x) = norm x" if "x \<in> T" for x
  3113     using fim that by auto
  3114   show ?thesis
  3115     apply (rule that [OF \<open>linear f\<close> \<open>linear g\<close>])
  3116     apply (simp_all add: fim gim)
  3117     done
  3118 qed
  3120 corollary isometry_subspaces:
  3121   fixes S :: "'a::euclidean_space set"
  3122     and T :: "'b::euclidean_space set"
  3123   assumes S: "subspace S"
  3124       and T: "subspace T"
  3125       and d: "dim S = dim T"
  3126   obtains f where "linear f" "f ` S = T" "\<And>x. x \<in> S \<Longrightarrow> norm(f x) = norm x"
  3127 using isometries_subspaces [OF assms]
  3128 by metis
  3130 corollary isomorphisms_UNIV_UNIV:
  3131   assumes "DIM('M) = DIM('N)"
  3132   obtains f::"'M::euclidean_space \<Rightarrow>'N::euclidean_space" and g
  3133   where "linear f" "linear g"
  3134                     "\<And>x. norm(f x) = norm x" "\<And>y. norm(g y) = norm y"
  3135                     "\<And>x. g (f x) = x" "\<And>y. f(g y) = y"
  3136   using assms by (auto intro: isometries_subspaces [of "UNIV::'M set" "UNIV::'N set"])
  3138 lemma homeomorphic_subspaces:
  3139   fixes S :: "'a::euclidean_space set"
  3140     and T :: "'b::euclidean_space set"
  3141   assumes S: "subspace S"
  3142       and T: "subspace T"
  3143       and d: "dim S = dim T"
  3144     shows "S homeomorphic T"
  3145 proof -
  3146   obtain f g where "linear f" "linear g" "f ` S = T" "g ` T = S"
  3147                    "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x" "\<And>x. x \<in> T \<Longrightarrow> f(g x) = x"
  3148     by (blast intro: isometries_subspaces [OF assms])
  3149   then show ?thesis
  3150     apply (simp add: homeomorphic_def homeomorphism_def)
  3151     apply (rule_tac x=f in exI)
  3152     apply (rule_tac x=g in exI)
  3153     apply (auto simp: linear_continuous_on linear_conv_bounded_linear)
  3154     done
  3155 qed
  3157 lemma homeomorphic_affine_sets:
  3158   assumes "affine S" "affine T" "aff_dim S = aff_dim T"
  3159     shows "S homeomorphic T"
  3160 proof (cases "S = {} \<or> T = {}")
  3161   case True  with assms aff_dim_empty homeomorphic_empty show ?thesis
  3162     by metis
  3163 next
  3164   case False
  3165   then obtain a b where ab: "a \<in> S" "b \<in> T" by auto
  3166   then have ss: "subspace ((+) (- a) ` S)" "subspace ((+) (- b) ` T)"
  3167     using affine_diffs_subspace assms by blast+
  3168   have dd: "dim ((+) (- a) ` S) = dim ((+) (- b) ` T)"
  3169     using assms ab  by (simp add: aff_dim_eq_dim  [OF hull_inc] image_def)
  3170   have "S homeomorphic ((+) (- a) ` S)"
  3171     by (fact homeomorphic_translation)
  3172   also have "\<dots> homeomorphic ((+) (- b) ` T)"
  3173     by (rule homeomorphic_subspaces [OF ss dd])
  3174   also have "\<dots> homeomorphic T"
  3175     using homeomorphic_translation [of T "- b"] by (simp add: homeomorphic_sym [of T])
  3176   finally show ?thesis .
  3177 qed
  3180 subsection\<open>Retracts, in a general sense, preserve (co)homotopic triviality)\<close>
  3182 locale%important Retracts =
  3183   fixes s h t k
  3184   assumes conth: "continuous_on s h"
  3185       and imh: "h ` s = t"
  3186       and contk: "continuous_on t k"
  3187       and imk: "k ` t \<subseteq> s"
  3188       and idhk: "\<And>y. y \<in> t \<Longrightarrow> h(k y) = y"
  3190 begin
  3192 lemma homotopically_trivial_retraction_gen:
  3193   assumes P: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> t; Q f\<rbrakk> \<Longrightarrow> P(k \<circ> f)"
  3194       and Q: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk> \<Longrightarrow> Q(h \<circ> f)"
  3195       and Qeq: "\<And>h k. (\<And>x. x \<in> u \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
  3196       and hom: "\<And>f g. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f;
  3197                        continuous_on u g; g ` u \<subseteq> s; P g\<rbrakk>
  3198                        \<Longrightarrow> homotopic_with P u s f g"
  3199       and contf: "continuous_on u f" and imf: "f ` u \<subseteq> t" and Qf: "Q f"
  3200       and contg: "continuous_on u g" and img: "g ` u \<subseteq> t" and Qg: "Q g"
  3201     shows "homotopic_with Q u t f g"
  3202 proof -
  3203   have feq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> f)) x = f x" using idhk imf by auto
  3204   have geq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> g)) x = g x" using idhk img by auto
  3205   have "continuous_on u (k \<circ> f)"
  3206     using contf continuous_on_compose continuous_on_subset contk imf by blast
  3207   moreover have "(k \<circ> f) ` u \<subseteq> s"
  3208     using imf imk by fastforce
  3209   moreover have "P (k \<circ> f)"
  3210     by (simp add: P Qf contf imf)
  3211   moreover have "continuous_on u (k \<circ> g)"
  3212     using contg continuous_on_compose continuous_on_subset contk img by blast
  3213   moreover have "(k \<circ> g) ` u \<subseteq> s"
  3214     using img imk by fastforce
  3215   moreover have "P (k \<circ> g)"
  3216     by (simp add: P Qg contg img)
  3217   ultimately have "homotopic_with P u s (k \<circ> f) (k \<circ> g)"
  3218     by (rule hom)
  3219   then have "homotopic_with Q u t (h \<circ> (k \<circ> f)) (h \<circ> (k \<circ> g))"
  3220     apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
  3221     using Q by (auto simp: conth imh)
  3222   then show ?thesis
  3223     apply (rule homotopic_with_eq)
  3224     apply (metis feq)
  3225     apply (metis geq)
  3226     apply (metis Qeq)
  3227     done
  3228 qed
  3230 lemma homotopically_trivial_retraction_null_gen:
  3231   assumes P: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> t; Q f\<rbrakk> \<Longrightarrow> P(k \<circ> f)"
  3232       and Q: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk> \<Longrightarrow> Q(h \<circ> f)"
  3233       and Qeq: "\<And>h k. (\<And>x. x \<in> u \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
  3234       and hom: "\<And>f. \<lbrakk>continuous_on u f; f ` u \<subseteq> s; P f\<rbrakk>
  3235                      \<Longrightarrow> \<exists>c. homotopic_with P u s f (\<lambda>x. c)"
  3236       and contf: "continuous_on u f" and imf:"f ` u \<subseteq> t" and Qf: "Q f"
  3237   obtains c where "homotopic_with Q u t f (\<lambda>x. c)"
  3238 proof -
  3239   have feq: "\<And>x. x \<in> u \<Longrightarrow> (h \<circ> (k \<circ> f)) x = f x" using idhk imf by auto
  3240   have "continuous_on u (k \<circ> f)"
  3241     using contf continuous_on_compose continuous_on_subset contk imf by blast
  3242   moreover have "(k \<circ> f) ` u \<subseteq> s"
  3243     using imf imk by fastforce
  3244   moreover have "P (k \<circ> f)"
  3245     by (simp add: P Qf contf imf)
  3246   ultimately obtain c where "homotopic_with P u s (k \<circ> f) (\<lambda>x. c)"
  3247     by (metis hom)
  3248   then have "homotopic_with Q u t (h \<circ> (k \<circ> f)) (h \<circ> (\<lambda>x. c))"
  3249     apply (rule homotopic_with_compose_continuous_left [OF homotopic_with_mono])
  3250     using Q by (auto simp: conth imh)
  3251   then show ?thesis
  3252     apply (rule_tac c = "h c" in that)
  3253     apply (erule homotopic_with_eq)
  3254     apply (metis feq, simp)
  3255     apply (metis Qeq)
  3256     done
  3257 qed
  3259 lemma cohomotopically_trivial_retraction_gen:
  3260   assumes P: "\<And>f. \<lbrakk>continuous_on t f; f ` t \<subseteq> u; Q f\<rbrakk> \<Longrightarrow> P(f \<circ> h)"
  3261       and Q: "\<And>f. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk> \<Longrightarrow> Q(f \<circ> k)"
  3262       and Qeq: "\<And>h k. (\<And>x. x \<in> t \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
  3263       and hom: "\<And>f g. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f;
  3264                        continuous_on s g; g ` s \<subseteq> u; P g\<rbrakk>
  3265                        \<Longrightarrow> homotopic_with P s u f g"
  3266       and contf: "continuous_on t f" and imf: "f ` t \<subseteq> u" and Qf: "Q f"
  3267       and contg: "continuous_on t g" and img: "g ` t \<subseteq> u" and Qg: "Q g"
  3268     shows "homotopic_with Q t u f g"
  3269 proof -
  3270   have feq: "\<And>x. x \<in> t \<Longrightarrow> (f \<circ> h \<circ> k) x = f x" using idhk imf by auto
  3271   have geq: "\<And>x. x \<in> t \<Longrightarrow> (g \<circ> h \<circ> k) x = g x" using idhk img by auto
  3272   have "continuous_on s (f \<circ> h)"
  3273     using contf conth continuous_on_compose imh by blast
  3274   moreover have "(f \<circ> h) ` s \<subseteq> u"
  3275     using imf imh by fastforce
  3276   moreover have "P (f \<circ> h)"
  3277     by (simp add: P Qf contf imf)
  3278   moreover have "continuous_on s (g \<circ> h)"
  3279     using contg continuous_on_compose continuous_on_subset conth imh by blast
  3280   moreover have "(g \<circ> h) ` s \<subseteq> u"
  3281     using img imh by fastforce
  3282   moreover have "P (g \<circ> h)"
  3283     by (simp add: P Qg contg img)
  3284   ultimately have "homotopic_with P s u (f \<circ> h) (g \<circ> h)"
  3285     by (rule hom)
  3286   then have "homotopic_with Q t u (f \<circ> h \<circ> k) (g \<circ> h \<circ> k)"
  3287     apply (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
  3288     using Q by (auto simp: contk imk)
  3289   then show ?thesis
  3290     apply (rule homotopic_with_eq)
  3291     apply (metis feq)
  3292     apply (metis geq)
  3293     apply (metis Qeq)
  3294     done
  3295 qed
  3297 lemma cohomotopically_trivial_retraction_null_gen:
  3298   assumes P: "\<And>f. \<lbrakk>continuous_on t f; f ` t \<subseteq> u; Q f\<rbrakk> \<Longrightarrow> P(f \<circ> h)"
  3299       and Q: "\<And>f. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk> \<Longrightarrow> Q(f \<circ> k)"
  3300       and Qeq: "\<And>h k. (\<And>x. x \<in> t \<Longrightarrow> h x = k x) \<Longrightarrow> Q h = Q k"
  3301       and hom: "\<And>f g. \<lbrakk>continuous_on s f; f ` s \<subseteq> u; P f\<rbrakk>
  3302                        \<Longrightarrow> \<exists>c. homotopic_with P s u f (\<lambda>x. c)"
  3303       and contf: "continuous_on t f" and imf: "f ` t \<subseteq> u" and Qf: "Q f"
  3304   obtains c where "homotopic_with Q t u f (\<lambda>x. c)"
  3305 proof -
  3306   have feq: "\<And>x. x \<in> t \<Longrightarrow> (f \<circ> h \<circ> k) x = f x" using idhk imf by auto
  3307   have "continuous_on s (f \<circ> h)"
  3308     using contf conth continuous_on_compose imh by blast
  3309   moreover have "(f \<circ> h) ` s \<subseteq> u"
  3310     using imf imh by fastforce
  3311   moreover have "P (f \<circ> h)"
  3312     by (simp add: P Qf contf imf)
  3313   ultimately obtain c where "homotopic_with P s u (f \<circ> h) (\<lambda>x. c)"
  3314     by (metis hom)
  3315   then have "homotopic_with Q t u (f \<circ> h \<circ> k) ((\<lambda>x. c) \<circ> k)"
  3316     apply (rule homotopic_with_compose_continuous_right [OF homotopic_with_mono])
  3317     using Q by (auto simp: contk imk)
  3318   then show ?thesis
  3319     apply (rule_tac c = c in that)
  3320     apply (erule homotopic_with_eq)
  3321     apply (metis feq, simp)
  3322     apply (metis Qeq)
  3323     done
  3324 qed
  3326 end
  3328 lemma simply_connected_retraction_gen:
  3329   shows "\<lbrakk>simply_connected S; continuous_on S h; h ` S = T;
  3330           continuous_on T k; k ` T \<subseteq> S; \<And>y. y \<in> T \<Longrightarrow> h(k y) = y\<rbrakk>
  3331         \<Longrightarrow> simply_connected T"
  3332 apply (simp add: simply_connected_def path_def path_image_def homotopic_loops_def, clarify)
  3333 apply (rule Retracts.homotopically_trivial_retraction_gen
  3334         [of S h _ k _ "\<lambda>p. pathfinish p = pathstart p"  "\<lambda>p. pathfinish p = pathstart p"])
  3335 apply (simp_all add: Retracts_def pathfinish_def pathstart_def)
  3336 done
  3338 lemma homeomorphic_simply_connected:
  3339     "\<lbrakk>S homeomorphic T; simply_connected S\<rbrakk> \<Longrightarrow> simply_connected T"
  3340   by (auto simp: homeomorphic_def homeomorphism_def intro: simply_connected_retraction_gen)
  3342 lemma homeomorphic_simply_connected_eq:
  3343     "S homeomorphic T \<Longrightarrow> (simply_connected S \<longleftrightarrow> simply_connected T)"
  3344   by (metis homeomorphic_simply_connected homeomorphic_sym)
  3347 subsection\<open>Homotopy equivalence\<close>
  3349 definition%important homotopy_eqv :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
  3350              (infix "homotopy'_eqv" 50)
  3351   where "S homotopy_eqv T \<equiv>
  3352         \<exists>f g. continuous_on S f \<and> f ` S \<subseteq> T \<and>
  3353               continuous_on T g \<and> g ` T \<subseteq> S \<and>
  3354               homotopic_with (\<lambda>x. True) S S (g \<circ> f) id \<and>
  3355               homotopic_with (\<lambda>x. True) T T (f \<circ> g) id"
  3357 lemma homeomorphic_imp_homotopy_eqv: "S homeomorphic T \<Longrightarrow> S homotopy_eqv T"
  3358   unfolding homeomorphic_def homotopy_eqv_def homeomorphism_def
  3359   by (fastforce intro!: homotopic_with_equal continuous_on_compose)
  3361 lemma homotopy_eqv_refl: "S homotopy_eqv S"
  3362   by (rule homeomorphic_imp_homotopy_eqv homeomorphic_refl)+
  3364 lemma homotopy_eqv_sym: "S homotopy_eqv T \<longleftrightarrow> T homotopy_eqv S"
  3365   by (auto simp: homotopy_eqv_def)
  3367 lemma homotopy_eqv_trans [trans]:
  3368     fixes S :: "'a::real_normed_vector set" and U :: "'c::real_normed_vector set"
  3369   assumes ST: "S homotopy_eqv T" and TU: "T homotopy_eqv U"
  3370     shows "S homotopy_eqv U"
  3371 proof -
  3372   obtain f1 g1 where f1: "continuous_on S f1" "f1 ` S \<subseteq> T"
  3373                  and g1: "continuous_on T g1" "g1 ` T \<subseteq> S"
  3374                  and hom1: "homotopic_with (\<lambda>x. True) S S (g1 \<circ> f1) id"
  3375                            "homotopic_with (\<lambda>x. True) T T (f1 \<circ> g1) id"
  3376     using ST by (auto simp: homotopy_eqv_def)
  3377   obtain f2 g2 where f2: "continuous_on T f2" "f2 ` T \<subseteq> U"
  3378                  and g2: "continuous_on U g2" "g2 ` U \<subseteq> T"
  3379                  and hom2: "homotopic_with (\<lambda>x. True) T T (g2 \<circ> f2) id"
  3380                            "homotopic_with (\<lambda>x. True) U U (f2 \<circ> g2) id"
  3381     using TU by (auto simp: homotopy_eqv_def)
  3382   have "homotopic_with (\<lambda>f. True) S T (g2 \<circ> f2 \<circ> f1) (id \<circ> f1)"
  3383     by (rule homotopic_with_compose_continuous_right hom2 f1)+
  3384   then have "homotopic_with (\<lambda>f. True) S T (g2 \<circ> (f2 \<circ> f1)) (id \<circ> f1)"
  3385     by (simp add: o_assoc)
  3386   then have "homotopic_with (\<lambda>x. True) S S
  3387          (g1 \<circ> (g2 \<circ> (f2 \<circ> f1))) (g1 \<circ> (id \<circ> f1))"
  3388     by (simp add: g1 homotopic_with_compose_continuous_left)
  3389   moreover have "homotopic_with (\<lambda>x. True) S S (g1 \<circ> id \<circ> f1) id"
  3390     using hom1 by simp
  3391   ultimately have SS: "homotopic_with (\<lambda>x. True) S S (g1 \<circ> g2 \<circ> (f2 \<circ> f1)) id"
  3392     apply (simp add: o_assoc)
  3393     apply (blast intro: homotopic_with_trans)
  3394     done
  3395   have "homotopic_with (\<lambda>f. True) U T (f1 \<circ> g1 \<circ> g2) (id \<circ> g2)"
  3396     by (rule homotopic_with_compose_continuous_right hom1 g2)+
  3397   then have "homotopic_with (\<lambda>f. True) U T (f1 \<circ> (g1 \<circ> g2)) (id \<circ> g2)"
  3398     by (simp add: o_assoc)
  3399   then have "homotopic_with (\<lambda>x. True) U U
  3400          (f2 \<circ> (f1 \<circ> (g1 \<circ> g2))) (f2 \<circ> (id \<circ> g2))"
  3401     by (simp add: f2 homotopic_with_compose_continuous_left)
  3402   moreover have "homotopic_with (\<lambda>x. True) U U (f2 \<circ> id \<circ> g2) id"
  3403     using hom2 by simp
  3404   ultimately have UU: "homotopic_with (\<lambda>x. True) U U (f2 \<circ> f1 \<circ> (g1 \<circ> g2)) id"
  3405     apply (simp add: o_assoc)
  3406     apply (blast intro: homotopic_with_trans)
  3407     done
  3408   show ?thesis
  3409     unfolding homotopy_eqv_def
  3410     apply (rule_tac x = "f2 \<circ> f1" in exI)
  3411     apply (rule_tac x = "g1 \<circ> g2" in exI)
  3412     apply (intro conjI continuous_on_compose SS UU)
  3413     using f1 f2 g1 g2  apply (force simp: elim!: continuous_on_subset)+
  3414     done
  3415 qed
  3417 lemma homotopy_eqv_inj_linear_image:
  3418   fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
  3419   assumes "linear f" "inj f"
  3420     shows "(f ` S) homotopy_eqv S"
  3421 apply (rule homeomorphic_imp_homotopy_eqv)
  3422 using assms homeomorphic_sym linear_homeomorphic_image by auto
  3424 lemma homotopy_eqv_translation:
  3425     fixes S :: "'a::real_normed_vector set"
  3426     shows "(+) a ` S homotopy_eqv S"
  3427   apply (rule homeomorphic_imp_homotopy_eqv)
  3428   using homeomorphic_translation homeomorphic_sym by blast
  3430 lemma homotopy_eqv_homotopic_triviality_imp:
  3431   fixes S :: "'a::real_normed_vector set"
  3432     and T :: "'b::real_normed_vector set"
  3433     and U :: "'c::real_normed_vector set"
  3434   assumes "S homotopy_eqv T"
  3435       and f: "continuous_on U f" "f ` U \<subseteq> T"
  3436       and g: "continuous_on U g" "g ` U \<subseteq> T"
  3437       and homUS: "\<And>f g. \<lbrakk>continuous_on U f; f ` U \<subseteq> S;
  3438                          continuous_on U g; g ` U \<subseteq> S\<rbrakk>
  3439                          \<Longrightarrow> homotopic_with (\<lambda>x. True) U S f g"
  3440     shows "homotopic_with (\<lambda>x. True) U T f g"
  3441 proof -
  3442   obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
  3443                and k: "continuous_on T k" "k ` T \<subseteq> S"
  3444                and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
  3445                         "homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
  3446     using assms by (auto simp: homotopy_eqv_def)
  3447   have "homotopic_with (\<lambda>f. True) U S (k \<circ> f) (k \<circ> g)"
  3448     apply (rule homUS)
  3449     using f g k
  3450     apply (safe intro!: continuous_on_compose h k f elim!: continuous_on_subset)
  3451     apply (force simp: o_def)+
  3452     done
  3453   then have "homotopic_with (\<lambda>x. True) U T (h \<circ> (k \<circ> f)) (h \<circ> (k \<circ> g))"
  3454     apply (rule homotopic_with_compose_continuous_left)
  3455     apply (simp_all add: h)
  3456     done
  3457   moreover have "homotopic_with (\<lambda>x. True) U T (h \<circ> k \<circ> f) (id \<circ> f)"
  3458     apply (rule homotopic_with_compose_continuous_right [where X=T and Y=T])
  3459     apply (auto simp: hom f)
  3460     done
  3461   moreover have "homotopic_with (\<lambda>x. True) U T (h \<circ> k \<circ> g) (id \<circ> g)"
  3462     apply (rule homotopic_with_compose_continuous_right [where X=T and Y=T])
  3463     apply (auto simp: hom g)
  3464     done
  3465   ultimately show "homotopic_with (\<lambda>x. True) U T f g"
  3466     apply (simp add: o_assoc)
  3467     using homotopic_with_trans homotopic_with_sym by blast
  3468 qed
  3470 lemma homotopy_eqv_homotopic_triviality:
  3471   fixes S :: "'a::real_normed_vector set"
  3472     and T :: "'b::real_normed_vector set"
  3473     and U :: "'c::real_normed_vector set"
  3474   assumes "S homotopy_eqv T"
  3475     shows "(\<forall>f g. continuous_on U f \<and> f ` U \<subseteq> S \<and>
  3476                    continuous_on U g \<and> g ` U \<subseteq> S
  3477                    \<longrightarrow> homotopic_with (\<lambda>x. True) U S f g) \<longleftrightarrow>
  3478            (\<forall>f g. continuous_on U f \<and> f ` U \<subseteq> T \<and>
  3479                   continuous_on U g \<and> g ` U \<subseteq> T
  3480                   \<longrightarrow> homotopic_with (\<lambda>x. True) U T f g)"
  3481 apply (rule iffI)
  3482 apply (metis assms homotopy_eqv_homotopic_triviality_imp)
  3483 by (metis (no_types) assms homotopy_eqv_homotopic_triviality_imp homotopy_eqv_sym)
  3485 lemma homotopy_eqv_cohomotopic_triviality_null_imp:
  3486   fixes S :: "'a::real_normed_vector set"
  3487     and T :: "'b::real_normed_vector set"
  3488     and U :: "'c::real_normed_vector set"
  3489   assumes "S homotopy_eqv T"
  3490       and f: "continuous_on T f" "f ` T \<subseteq> U"
  3491       and homSU: "\<And>f. \<lbrakk>continuous_on S f; f ` S \<subseteq> U\<rbrakk>
  3492                       \<Longrightarrow> \<exists>c. homotopic_with (\<lambda>x. True) S U f (\<lambda>x. c)"
  3493   obtains c where "homotopic_with (\<lambda>x. True) T U f (\<lambda>x. c)"
  3494 proof -
  3495   obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
  3496                and k: "continuous_on T k" "k ` T \<subseteq> S"
  3497                and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
  3498                         "homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
  3499     using assms by (auto simp: homotopy_eqv_def)
  3500   obtain c where "homotopic_with (\<lambda>x. True) S U (f \<circ> h) (\<lambda>x. c)"
  3501     apply (rule exE [OF homSU [of "f \<circ> h"]])
  3502     apply (intro continuous_on_compose h)
  3503     using h f  apply (force elim!: continuous_on_subset)+
  3504     done
  3505   then have "homotopic_with (\<lambda>x. True) T U ((f \<circ> h) \<circ> k) ((\<lambda>x. c) \<circ> k)"
  3506     apply (rule homotopic_with_compose_continuous_right [where X=S])
  3507     using k by auto
  3508   moreover have "homotopic_with (\<lambda>x. True) T U (f \<circ> id) (f \<circ> (h \<circ> k))"
  3509     apply (rule homotopic_with_compose_continuous_left [where Y=T])
  3510       apply (simp add: hom homotopic_with_symD)
  3511      using f apply auto
  3512     done
  3513   ultimately show ?thesis
  3514     apply (rule_tac c=c in that)
  3515     apply (simp add: o_def)
  3516     using homotopic_with_trans by blast
  3517 qed
  3519 lemma homotopy_eqv_cohomotopic_triviality_null:
  3520   fixes S :: "'a::real_normed_vector set"
  3521     and T :: "'b::real_normed_vector set"
  3522     and U :: "'c::real_normed_vector set"
  3523   assumes "S homotopy_eqv T"
  3524     shows "(\<forall>f. continuous_on S f \<and> f ` S \<subseteq> U
  3525                 \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) S U f (\<lambda>x. c))) \<longleftrightarrow>
  3526            (\<forall>f. continuous_on T f \<and> f ` T \<subseteq> U
  3527                 \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) T U f (\<lambda>x. c)))"
  3528 apply (rule iffI)
  3529 apply (metis assms homotopy_eqv_cohomotopic_triviality_null_imp)
  3530 by (metis assms homotopy_eqv_cohomotopic_triviality_null_imp homotopy_eqv_sym)
  3532 lemma homotopy_eqv_homotopic_triviality_null_imp:
  3533   fixes S :: "'a::real_normed_vector set"
  3534     and T :: "'b::real_normed_vector set"
  3535     and U :: "'c::real_normed_vector set"
  3536   assumes "S homotopy_eqv T"
  3537       and f: "continuous_on U f" "f ` U \<subseteq> T"
  3538       and homSU: "\<And>f. \<lbrakk>continuous_on U f; f ` U \<subseteq> S\<rbrakk>
  3539                       \<Longrightarrow> \<exists>c. homotopic_with (\<lambda>x. True) U S f (\<lambda>x. c)"
  3540     shows "\<exists>c. homotopic_with (\<lambda>x. True) U T f (\<lambda>x. c)"
  3541 proof -
  3542   obtain h k where h: "continuous_on S h" "h ` S \<subseteq> T"
  3543                and k: "continuous_on T k" "k ` T \<subseteq> S"
  3544                and hom: "homotopic_with (\<lambda>x. True) S S (k \<circ> h) id"
  3545                         "homotopic_with (\<lambda>x. True) T T (h \<circ> k) id"
  3546     using assms by (auto simp: homotopy_eqv_def)
  3547   obtain c::'a where "homotopic_with (\<lambda>x. True) U S (k \<circ> f) (\<lambda>x. c)"
  3548     apply (rule exE [OF homSU [of "k \<circ> f"]])
  3549     apply (intro continuous_on_compose h)
  3550     using k f  apply (force elim!: continuous_on_subset)+
  3551     done
  3552   then have "homotopic_with (\<lambda>x. True) U T (h \<circ> (k \<circ> f)) (h \<circ> (\<lambda>x. c))"
  3553     apply (rule homotopic_with_compose_continuous_left [where Y=S])
  3554     using h by auto
  3555   moreover have "homotopic_with (\<lambda>x. True) U T (id \<circ> f) ((h \<circ> k) \<circ> f)"
  3556     apply (rule homotopic_with_compose_continuous_right [where X=T])
  3557       apply (simp add: hom homotopic_with_symD)
  3558      using f apply auto
  3559     done
  3560   ultimately show ?thesis
  3561     using homotopic_with_trans by (fastforce simp add: o_def)
  3562 qed
  3564 lemma homotopy_eqv_homotopic_triviality_null:
  3565   fixes S :: "'a::real_normed_vector set"
  3566     and T :: "'b::real_normed_vector set"
  3567     and U :: "'c::real_normed_vector set"
  3568   assumes "S homotopy_eqv T"
  3569     shows "(\<forall>f. continuous_on U f \<and> f ` U \<subseteq> S
  3570                   \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) U S f (\<lambda>x. c))) \<longleftrightarrow>
  3571            (\<forall>f. continuous_on U f \<and> f ` U \<subseteq> T
  3572                   \<longrightarrow> (\<exists>c. homotopic_with (\<lambda>x. True) U T f (\<lambda>x. c)))"
  3573 apply (rule iffI)
  3574 apply (metis assms homotopy_eqv_homotopic_triviality_null_imp)
  3575 by (metis assms homotopy_eqv_homotopic_triviality_null_imp homotopy_eqv_sym)
  3577 lemma homotopy_eqv_contractible_sets:
  3578   fixes S :: "'a::real_normed_vector set"
  3579     and T :: "'b::real_normed_vector set"
  3580   assumes "contractible S" "contractible T" "S = {} \<longleftrightarrow> T = {}"
  3581     shows "S homotopy_eqv T"
  3582 proof (cases "S = {}")
  3583   case True with assms show ?thesis
  3584     by (simp add: homeomorphic_imp_homotopy_eqv)
  3585 next
  3586   case False
  3587   with assms obtain a b where "a \<in> S" "b \<in> T"
  3588     by auto
  3589   then show ?thesis
  3590     unfolding homotopy_eqv_def
  3591     apply (rule_tac x="\<lambda>x. b" in exI)
  3592     apply (rule_tac x="\<lambda>x. a" in exI)
  3593     apply (intro assms conjI continuous_on_id' homotopic_into_contractible)
  3594     apply (auto simp: o_def continuous_on_const)
  3595     done
  3596 qed
  3598 lemma homotopy_eqv_empty1 [simp]:
  3599   fixes S :: "'a::real_normed_vector set"
  3600   shows "S homotopy_eqv ({}::'b::real_normed_vector set) \<longleftrightarrow> S = {}"
  3601 apply (rule iffI)
  3602 using homotopy_eqv_def apply fastforce
  3603 by (simp add: homotopy_eqv_contractible_sets)
  3605 lemma homotopy_eqv_empty2 [simp]:
  3606   fixes S :: "'a::real_normed_vector set"
  3607   shows "({}::'b::real_normed_vector set) homotopy_eqv S \<longleftrightarrow> S = {}"
  3608 by (metis homotopy_eqv_empty1 homotopy_eqv_sym)
  3610 lemma homotopy_eqv_contractibility:
  3611   fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
  3612   shows "S homotopy_eqv T \<Longrightarrow> (contractible S \<longleftrightarrow> contractible T)"
  3613 unfolding homotopy_eqv_def
  3614 by (blast intro: homotopy_dominated_contractibility)
  3616 lemma homotopy_eqv_sing:
  3617   fixes S :: "'a::real_normed_vector set" and a :: "'b::real_normed_vector"
  3618   shows "S homotopy_eqv {a} \<longleftrightarrow> S \<noteq> {} \<and> contractible S"
  3619 proof (cases "S = {}")
  3620   case True then show ?thesis
  3621     by simp
  3622 next
  3623   case False then show ?thesis
  3624     by (metis contractible_sing empty_not_insert homotopy_eqv_contractibility homotopy_eqv_contractible_sets)
  3625 qed
  3627 lemma homeomorphic_contractible_eq:
  3628   fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
  3629   shows "S homeomorphic T \<Longrightarrow> (contractible S \<longleftrightarrow> contractible T)"
  3630 by (simp add: homeomorphic_imp_homotopy_eqv homotopy_eqv_contractibility)
  3632 lemma homeomorphic_contractible:
  3633   fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
  3634   shows "\<lbrakk>contractible S; S homeomorphic T\<rbrakk> \<Longrightarrow> contractible T"
  3635   by (metis homeomorphic_contractible_eq)
  3638 subsection%unimportant\<open>Misc other results\<close>
  3640 lemma bounded_connected_Compl_real:
  3641   fixes S :: "real set"
  3642   assumes "bounded S" and conn: "connected(- S)"
  3643     shows "S = {}"
  3644 proof -
  3645   obtain a b where "S \<subseteq> box a b"
  3646     by (meson assms bounded_subset_box_symmetric)
  3647   then have "a \<notin> S" "b \<notin> S"
  3648     by auto
  3649   then have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> x \<in> - S"
  3650     by (meson Compl_iff conn connected_iff_interval)
  3651   then show ?thesis
  3652     using \<open>S \<subseteq> box a b\<close> by auto
  3653 qed
  3655 corollary bounded_path_connected_Compl_real:
  3656   fixes S :: "real set"
  3657   assumes "bounded S" "path_connected(- S)" shows "S = {}"
  3658   by (simp add: assms bounded_connected_Compl_real path_connected_imp_connected)
  3660 lemma bounded_connected_Compl_1:
  3661   fixes S :: "'a::{euclidean_space} set"
  3662   assumes "bounded S" and conn: "connected(- S)" and 1: "DIM('a) = 1"
  3663     shows "S = {}"
  3664 proof -
  3665   have "DIM('a) = DIM(real)"
  3666     by (simp add: "1")
  3667   then obtain f::"'a \<Rightarrow> real" and g
  3668   where "linear f" "\<And>x. norm(f x) = norm x" "\<And>x. g(f x) = x" "\<And>y. f(g y) = y"
  3669     by (rule isomorphisms_UNIV_UNIV) blast
  3670   with \<open>bounded S\<close> have "bounded (f ` S)"
  3671     using bounded_linear_image linear_linear by blast
  3672   have "connected (f ` (-S))"
  3673     using connected_linear_image assms \<open>linear f\<close> by blast
  3674   moreover have "f ` (-S) = - (f ` S)"
  3675     apply (rule bij_image_Compl_eq)
  3676     apply (auto simp: bij_def)
  3677      apply (metis \<open>\<And>x. g (f x) = x\<close> injI)
  3678     by (metis UNIV_I \<open>\<And>y. f (g y) = y\<close> image_iff)
  3679   finally have "connected (- (f ` S))"
  3680     by simp
  3681   then have "f ` S = {}"
  3682     using \<open>bounded (f ` S)\<close> bounded_connected_Compl_real by blast
  3683   then show ?thesis
  3684     by blast
  3685 qed
  3688 subsection%unimportant\<open>Some Uncountable Sets\<close>
  3690 lemma uncountable_closed_segment:
  3691   fixes a :: "'a::real_normed_vector"
  3692   assumes "a \<noteq> b" shows "uncountable (closed_segment a b)"
  3693 unfolding path_image_linepath [symmetric] path_image_def
  3694   using inj_on_linepath [OF assms] uncountable_closed_interval [of 0 1]
  3695         countable_image_inj_on by auto
  3697 lemma uncountable_open_segment:
  3698   fixes a :: "'a::real_normed_vector"
  3699   assumes "a \<noteq> b" shows "uncountable (open_segment a b)"
  3700   by (simp add: assms open_segment_def uncountable_closed_segment uncountable_minus_countable)
  3702 lemma uncountable_convex:
  3703   fixes a :: "'a::real_normed_vector"
  3704   assumes "convex S" "a \<in> S" "b \<in> S" "a \<noteq> b"
  3705     shows "uncountable S"
  3706 proof -
  3707   have "uncountable (closed_segment a b)"
  3708     by (simp add: uncountable_closed_segment assms)
  3709   then show ?thesis
  3710     by (meson assms convex_contains_segment countable_subset)
  3711 qed
  3713 lemma uncountable_ball:
  3714   fixes a :: "'a::euclidean_space"
  3715   assumes "r > 0"
  3716     shows "uncountable (ball a r)"
  3717 proof -
  3718   have "uncountable (open_segment a (a + r *\<^sub>R (SOME i. i \<in> Basis)))"
  3719     by (metis Basis_zero SOME_Basis add_cancel_right_right assms less_le scale_eq_0_iff uncountable_open_segment)
  3720   moreover have "open_segment a (a + r *\<^sub>R (SOME i. i \<in> Basis)) \<subseteq> ball a r"
  3721     using assms by (auto simp: in_segment algebra_simps dist_norm SOME_Basis)
  3722   ultimately show ?thesis
  3723     by (metis countable_subset)
  3724 qed
  3726 lemma ball_minus_countable_nonempty:
  3727   assumes "countable (A :: 'a :: euclidean_space set)" "r > 0"
  3728   shows   "ball z r - A \<noteq> {}"
  3729 proof
  3730   assume *: "ball z r - A = {}"
  3731   have "uncountable (ball z r - A)"
  3732     by (intro uncountable_minus_countable assms uncountable_ball)
  3733   thus False by (subst (asm) *) auto
  3734 qed
  3736 lemma uncountable_cball:
  3737   fixes a :: "'a::euclidean_space"
  3738   assumes "r > 0"
  3739   shows "uncountable (cball a r)"
  3740   using assms countable_subset uncountable_ball by auto
  3742 lemma pairwise_disjnt_countable:
  3743   fixes \<N> :: "nat set set"
  3744   assumes "pairwise disjnt \<N>"
  3745     shows "countable \<N>"
  3746 proof -
  3747   have "inj_on (\<lambda>X. SOME n. n \<in> X) (\<N> - {{}})"
  3748     apply (clarsimp simp add: inj_on_def)
  3749     by (metis assms disjnt_insert2 insert_absorb pairwise_def subsetI subset_empty tfl_some)
  3750   then show ?thesis
  3751     by (metis countable_Diff_eq countable_def)
  3752 qed
  3754 lemma pairwise_disjnt_countable_Union:
  3755     assumes "countable (\<Union>\<N>)" and pwd: "pairwise disjnt \<N>"
  3756     shows "countable \<N>"
  3757 proof -
  3758   obtain f :: "_ \<Rightarrow> nat" where f: "inj_on f (\<Union>\<N>)"
  3759     using assms by blast
  3760   then have "pairwise disjnt (\<Union> X \<in> \<N>. {f ` X})"
  3761     using assms by (force simp: pairwise_def disjnt_inj_on_iff [OF f])
  3762   then have "countable (\<Union> X \<in> \<N>. {f ` X})"
  3763     using pairwise_disjnt_countable by blast
  3764   then show ?thesis
  3765     by (meson pwd countable_image_inj_on disjoint_image f inj_on_image pairwise_disjnt_countable)
  3766 qed
  3768 lemma connected_uncountable:
  3769   fixes S :: "'a::metric_space set"
  3770   assumes "connected S" "a \<in> S" "b \<in> S" "a \<noteq> b" shows "uncountable S"
  3771 proof -
  3772   have "continuous_on S (dist a)"
  3773     by (intro continuous_intros)
  3774   then have "connected (dist a ` S)"
  3775     by (metis connected_continuous_image \<open>connected S\<close>)
  3776   then have "closed_segment 0 (dist a b) \<subseteq> (dist a ` S)"
  3777     by (simp add: assms closed_segment_subset is_interval_connected_1 is_interval_convex)
  3778   then have "uncountable (dist a ` S)"
  3779     by (metis \<open>a \<noteq> b\<close> countable_subset dist_eq_0_iff uncountable_closed_segment)
  3780   then show ?thesis
  3781     by blast
  3782 qed
  3784 lemma path_connected_uncountable:
  3785   fixes S :: "'a::metric_space set"
  3786   assumes "path_connected S" "a \<in> S" "b \<in> S" "a \<noteq> b" shows "uncountable S"
  3787   using path_connected_imp_connected assms connected_uncountable by metis
  3789 lemma connected_finite_iff_sing:
  3790   fixes S :: "'a::metric_space set"
  3791   assumes "connected S"
  3792   shows "finite S \<longleftrightarrow> S = {} \<or> (\<exists>a. S = {a})"  (is "_ = ?rhs")
  3793 proof -
  3794   have "uncountable S" if "\<not> ?rhs"
  3795     using connected_uncountable assms that by blast
  3796   then show ?thesis
  3797     using uncountable_infinite by auto
  3798 qed
  3800 lemma connected_card_eq_iff_nontrivial:
  3801   fixes S :: "'a::metric_space set"
  3802   shows "connected S \<Longrightarrow> uncountable S \<longleftrightarrow> \<not>(\<exists>a. S \<subseteq> {a})"
  3803   apply (auto simp: countable_finite finite_subset)
  3804   by (metis connected_uncountable is_singletonI' is_singleton_the_elem subset_singleton_iff)
  3806 lemma simple_path_image_uncountable:
  3807   fixes g :: "real \<Rightarrow> 'a::metric_space"
  3808   assumes "simple_path g"
  3809   shows "uncountable (path_image g)"
  3810 proof -
  3811   have "g 0 \<in> path_image g" "g (1/2) \<in> path_image g"
  3812     by (simp_all add: path_defs)
  3813   moreover have "g 0 \<noteq> g (1/2)"
  3814     using assms by (fastforce simp add: simple_path_def)
  3815   ultimately show ?thesis
  3816     apply (simp add: assms connected_card_eq_iff_nontrivial connected_simple_path_image)
  3817     by blast
  3818 qed
  3820 lemma arc_image_uncountable:
  3821   fixes g :: "real \<Rightarrow> 'a::metric_space"
  3822   assumes "arc g"
  3823   shows "uncountable (path_image g)"
  3824   by (simp add: arc_imp_simple_path assms simple_path_image_uncountable)
  3827 subsection%unimportant\<open> Some simple positive connection theorems\<close>
  3829 proposition path_connected_convex_diff_countable:
  3830   fixes U :: "'a::euclidean_space set"
  3831   assumes "convex U" "\<not> collinear U" "countable S"
  3832     shows "path_connected(U - S)"
  3833 proof (clarsimp simp add: path_connected_def)
  3834   fix a b
  3835   assume "a \<in> U" "a \<notin> S" "b \<in> U" "b \<notin> S"
  3836   let ?m = "midpoint a b"
  3837   show "\<exists>g. path g \<and> path_image g \<subseteq> U - S \<and> pathstart g = a \<and> pathfinish g = b"
  3838   proof (cases "a = b")
  3839     case True
  3840     then show ?thesis
  3841       by (metis DiffI \<open>a \<in> U\<close> \<open>a \<notin> S\<close> path_component_def path_component_refl)
  3842   next
  3843     case False
  3844     then have "a \<noteq> ?m" "b \<noteq> ?m"
  3845       using midpoint_eq_endpoint by fastforce+
  3846     have "?m \<in> U"
  3847       using \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>convex U\<close> convex_contains_segment by force
  3848     obtain c where "c \<in> U" and nc_abc: "\<not> collinear {a,b,c}"
  3849       by (metis False \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>\<not> collinear U\<close> collinear_triples insert_absorb)
  3850     have ncoll_mca: "\<not> collinear {?m,c,a}"
  3851       by (metis (full_types) \<open>a \<noteq> ?m\<close> collinear_3_trans collinear_midpoint insert_commute nc_abc)
  3852     have ncoll_mcb: "\<not> collinear {?m,c,b}"
  3853       by (metis (full_types) \<open>b \<noteq> ?m\<close> collinear_3_trans collinear_midpoint insert_commute nc_abc)
  3854     have "c \<noteq> ?m"
  3855       by (metis collinear_midpoint insert_commute nc_abc)
  3856     then have "closed_segment ?m c \<subseteq> U"
  3857       by (simp add: \<open>c \<in> U\<close> \<open>?m \<in> U\<close> \<open>convex U\<close> closed_segment_subset)
  3858     then obtain z where z: "z \<in> closed_segment ?m c"
  3859                     and disjS: "(closed_segment a z \<union> closed_segment z b) \<inter> S = {}"
  3860     proof -
  3861       have False if "closed_segment ?m c \<subseteq> {z. (closed_segment a z \<union> closed_segment z b) \<inter> S \<noteq> {}}"
  3862       proof -
  3863         have closb: "closed_segment ?m c \<subseteq>
  3864                  {z \<in> closed_segment ?m c. closed_segment a z \<inter> S \<noteq> {}} \<union> {z \<in> closed_segment ?m c. closed_segment z b \<inter> S \<noteq> {}}"
  3865           using that by blast
  3866         have *: "countable {z \<in> closed_segment ?m c. closed_segment z u \<inter> S \<noteq> {}}"
  3867           if "u \<in> U" "u \<notin> S" and ncoll: "\<not> collinear {?m, c, u}" for u
  3868         proof -
  3869           have **: False if x1: "x1 \<in> closed_segment ?m c" and x2: "x2 \<in> closed_segment ?m c"
  3870                             and "x1 \<noteq> x2" "x1 \<noteq> u"
  3871                             and w: "w \<in> closed_segment x1 u" "w \<in> closed_segment x2 u"
  3872                             and "w \<in> S" for x1 x2 w
  3873           proof -
  3874             have "x1 \<in> affine hull {?m,c}" "x2 \<in> affine hull {?m,c}"
  3875               using segment_as_ball x1 x2 by auto
  3876             then have coll_x1: "collinear {x1, ?m, c}" and coll_x2: "collinear {?m, c, x2}"
  3877               by (simp_all add: affine_hull_3_imp_collinear) (metis affine_hull_3_imp_collinear insert_commute)
  3878             have "\<not> collinear {x1, u, x2}"
  3879             proof
  3880               assume "collinear {x1, u, x2}"
  3881               then have "collinear {?m, c, u}"
  3882                 by (metis (full_types) \<open>c \<noteq> ?m\<close> coll_x1 coll_x2 collinear_3_trans insert_commute ncoll \<open>x1 \<noteq> x2\<close>)
  3883               with ncoll show False ..
  3884             qed
  3885             then have "closed_segment x1 u \<inter> closed_segment u x2 = {u}"
  3886               by (blast intro!: Int_closed_segment)
  3887             then have "w = u"
  3888               using closed_segment_commute w by auto
  3889             show ?thesis
  3890               using \<open>u \<notin> S\<close> \<open>w = u\<close> that(7) by auto
  3891           qed
  3892           then have disj: "disjoint ((\<Union>z\<in>closed_segment ?m c. {closed_segment z u \<inter> S}))"
  3893             by (fastforce simp: pairwise_def disjnt_def)
  3894           have cou: "countable ((\<Union>z \<in> closed_segment ?m c. {closed_segment z u \<inter> S}) - {{}})"
  3895             apply (rule pairwise_disjnt_countable_Union [OF _ pairwise_subset [OF disj]])
  3896              apply (rule countable_subset [OF _ \<open>countable S\<close>], auto)
  3897             done
  3898           define f where "f \<equiv> \<lambda>X. (THE z. z \<in> closed_segment ?m c \<and> X = closed_segment z u \<inter> S)"
  3899           show ?thesis
  3900           proof (rule countable_subset [OF _ countable_image [OF cou, where f=f]], clarify)
  3901             fix x
  3902             assume x: "x \<in> closed_segment ?m c" "closed_segment x u \<inter> S \<noteq> {}"
  3903             show "x \<in> f ` ((\<Union>z\<in>closed_segment ?m c. {closed_segment z u \<inter> S}) - {{}})"
  3904             proof (rule_tac x="closed_segment x u \<inter> S" in image_eqI)
  3905               show "x = f (closed_segment x u \<inter> S)"
  3906                 unfolding f_def
  3907                 apply (rule the_equality [symmetric])
  3908                 using x  apply (auto simp: dest: **)
  3909                 done
  3910             qed (use x in auto)
  3911           qed
  3912         qed
  3913         have "uncountable (closed_segment ?m c)"
  3914           by (metis \<open>c \<noteq> ?m\<close> uncountable_closed_segment)
  3915         then show False
  3916           using closb * [OF \<open>a \<in> U\<close> \<open>a \<notin> S\<close> ncoll_mca] * [OF \<open>b \<in> U\<close> \<open>b \<notin> S\<close> ncoll_mcb]
  3917           apply (simp add: closed_segment_commute)
  3918           by (simp add: countable_subset)
  3919       qed
  3920       then show ?thesis
  3921         by (force intro: that)
  3922     qed
  3923     show ?thesis
  3924     proof (intro exI conjI)
  3925       have "path_image (linepath a z +++ linepath z b) \<subseteq> U"
  3926         by (metis \<open>a \<in> U\<close> \<open>b \<in> U\<close> \<open>closed_segment ?m c \<subseteq> U\<close> z \<open>convex U\<close> closed_segment_subset contra_subsetD path_image_linepath subset_path_image_join)
  3927       with disjS show "path_image (linepath a z +++ linepath z b) \<subseteq> U - S"
  3928         by (force simp: path_image_join)
  3929     qed auto
  3930   qed
  3931 qed
  3934 corollary connected_convex_diff_countable:
  3935   fixes U :: "'a::euclidean_space set"
  3936   assumes "convex U" "\<not> collinear U" "countable S"
  3937   shows "connected(U - S)"
  3938   by (simp add: assms path_connected_convex_diff_countable path_connected_imp_connected)
  3940 lemma path_connected_punctured_convex:
  3941   assumes "convex S" and aff: "aff_dim S \<noteq> 1"
  3942     shows "path_connected(S - {a})"
  3943 proof -
  3944   consider "aff_dim S = -1" | "aff_dim S = 0" | "aff_dim S \<ge> 2"
  3945     using assms aff_dim_geq [of S] by linarith
  3946   then show ?thesis
  3947   proof cases
  3948     assume "aff_dim S = -1"
  3949     then show ?thesis
  3950       by (metis aff_dim_empty empty_Diff path_connected_empty)
  3951   next
  3952     assume "aff_dim S = 0"
  3953     then show ?thesis
  3954       by (metis aff_dim_eq_0 Diff_cancel Diff_empty Diff_insert0 convex_empty convex_imp_path_connected path_connected_singleton singletonD)
  3955   next
  3956     assume ge2: "aff_dim S \<ge> 2"
  3957     then have "\<not> collinear S"
  3958     proof (clarsimp simp add: collinear_affine_hull)
  3959       fix u v
  3960       assume "S \<subseteq> affine hull {u, v}"
  3961       then have "aff_dim S \<le> aff_dim {u, v}"
  3962         by (metis (no_types) aff_dim_affine_hull aff_dim_subset)
  3963       with ge2 show False
  3964         by (metis (no_types) aff_dim_2 antisym aff not_numeral_le_zero one_le_numeral order_trans)
  3965     qed
  3966     then show ?thesis
  3967       apply (rule path_connected_convex_diff_countable [OF \<open>convex S\<close>])
  3968       by simp
  3969   qed
  3970 qed
  3972 lemma connected_punctured_convex:
  3973   shows "\<lbrakk>convex S; aff_dim S \<noteq> 1\<rbrakk> \<Longrightarrow> connected(S - {a})"
  3974   using path_connected_imp_connected path_connected_punctured_convex by blast
  3976 lemma path_connected_complement_countable:
  3977   fixes S :: "'a::euclidean_space set"
  3978   assumes "2 \<le> DIM('a)" "countable S"
  3979   shows "path_connected(- S)"
  3980 proof -
  3981   have "path_connected(UNIV - S)"
  3982     apply (rule path_connected_convex_diff_countable)
  3983     using assms by (auto simp: collinear_aff_dim [of "UNIV :: 'a set"])
  3984   then show ?thesis
  3985     by (simp add: Compl_eq_Diff_UNIV)
  3986 qed
  3988 proposition path_connected_openin_diff_countable:
  3989   fixes S :: "'a::euclidean_space set"
  3990   assumes "connected S" and ope: "openin (top_of_set (affine hull S)) S"
  3991       and "\<not> collinear S" "countable T"
  3992     shows "path_connected(S - T)"
  3993 proof (clarsimp simp add: path_connected_component)
  3994   fix x y
  3995   assume xy: "x \<in> S" "x \<notin> T" "y \<in> S" "y \<notin> T"
  3996   show "path_component (S - T) x y"
  3997   proof (rule connected_equivalence_relation_gen [OF \<open>connected S\<close>, where P = "\<lambda>x. x \<notin> T"])
  3998     show "\<exists>z. z \<in> U \<and> z \<notin> T" if opeU: "openin (top_of_set S) U" and "x \<in> U" for U x
  3999     proof -
  4000       have "openin (top_of_set (affine hull S)) U"
  4001         using opeU ope openin_trans by blast
  4002       with \<open>x \<in> U\<close> obtain r where Usub: "U \<subseteq> affine hull S" and "r > 0"
  4003                               and subU: "ball x r \<inter> affine hull S \<subseteq> U"
  4004         by (auto simp: openin_contains_ball)
  4005       with \<open>x \<in> U\<close> have x: "x \<in> ball x r \<inter> affine hull S"
  4006         by auto
  4007       have "\<not> S \<subseteq> {x}"
  4008         using \<open>\<not> collinear S\<close>  collinear_subset by blast
  4009       then obtain x' where "x' \<noteq> x" "x' \<in> S"
  4010         by blast
  4011       obtain y where y: "y \<noteq> x" "y \<in> ball x r \<inter> affine hull S"
  4012       proof
  4013         show "x + (r / 2 / norm(x' - x)) *\<^sub>R (x' - x) \<noteq> x"
  4014           using \<open>x' \<noteq> x\<close> \<open>r > 0\<close> by auto
  4015         show "x + (r / 2 / norm (x' - x)) *\<^sub>R (x' - x) \<in> ball x r \<inter> affine hull S"
  4016           using \<open>x' \<noteq> x\<close> \<open>r > 0\<close> \<open>x' \<in> S\<close> x
  4017           by (simp add: dist_norm mem_affine_3_minus hull_inc)
  4018       qed
  4019       have "convex (ball x r \<inter> affine hull S)"
  4020         by (simp add: affine_imp_convex convex_Int)
  4021       with x y subU have "uncountable U"
  4022         by (meson countable_subset uncountable_convex)
  4023       then have "\<not> U \<subseteq> T"
  4024         using \<open>countable T\<close> countable_subset by blast
  4025       then show ?thesis by blast
  4026     qed
  4027     show "\<exists>U. openin (top_of_set S) U \<and> x \<in> U \<and>
  4028               (\<forall>x\<in>U. \<forall>y\<in>U. x \<notin> T \<and> y \<notin> T \<longrightarrow> path_component (S - T) x y)"
  4029           if "x \<in> S" for x
  4030     proof -
  4031       obtain r where Ssub: "S \<subseteq> affine hull S" and "r > 0"
  4032                  and subS: "ball x r \<inter> affine hull S \<subseteq> S"
  4033         using ope \<open>x \<in> S\<close> by (auto simp: openin_contains_ball)
  4034       then have conv: "convex (ball x r \<inter> affine hull S)"
  4035         by (simp add: affine_imp_convex convex_Int)
  4036       have "\<not> aff_dim (affine hull S) \<le> 1"
  4037         using \<open>\<not> collinear S\<close> collinear_aff_dim by auto
  4038       then have "\<not> collinear (ball x r \<inter> affine hull S)"
  4039         apply (simp add: collinear_aff_dim)
  4040         by (metis (no_types, hide_lams) aff_dim_convex_Int_open IntI open_ball \<open>0 < r\<close> aff_dim_affine_hull affine_affine_hull affine_imp_convex centre_in_ball empty_iff hull_subset inf_commute subsetCE that)
  4041       then have *: "path_connected ((ball x r \<inter> affine hull S) - T)"
  4042         by (rule path_connected_convex_diff_countable [OF conv _ \<open>countable T\<close>])
  4043       have ST: "ball x r \<inter> affine hull S - T \<subseteq> S - T"
  4044         using subS by auto
  4045       show ?thesis
  4046       proof (intro exI conjI)
  4047         show "x \<in> ball x r \<inter> affine hull S"
  4048           using \<open>x \<in> S\<close> \<open>r > 0\<close> by (simp add: hull_inc)
  4049         have "openin (top_of_set (affine hull S)) (ball x r \<inter> affine hull S)"
  4050           by (subst inf.commute) (simp add: openin_Int_open)
  4051         then show "openin (top_of_set S) (ball x r \<inter> affine hull S)"
  4052           by (rule openin_subset_trans [OF _ subS Ssub])
  4053       qed (use * path_component_trans in \<open>auto simp: path_connected_component path_component_of_subset [OF ST]\<close>)
  4054     qed
  4055   qed (use xy path_component_trans in auto)
  4056 qed
  4058 corollary connected_openin_diff_countable:
  4059   fixes S :: "'a::euclidean_space set"
  4060   assumes "connected S" and ope: "openin (top_of_set (affine hull S)) S"
  4061       and "\<not> collinear S" "countable T"
  4062     shows "connected(S - T)"
  4063   by (metis path_connected_imp_connected path_connected_openin_diff_countable [OF assms])
  4065 corollary path_connected_open_diff_countable:
  4066   fixes S :: "'a::euclidean_space set"
  4067   assumes "2 \<le> DIM('a)" "open S" "connected S" "countable T"
  4068   shows "path_connected(S - T)"
  4069 proof (cases "S = {}")
  4070   case True
  4071   then show ?thesis
  4072     by (simp add: path_connected_empty)
  4073 next
  4074   case False
  4075   show ?thesis
  4076   proof (rule path_connected_openin_diff_countable)
  4077     show "openin (top_of_set (affine hull S)) S"
  4078       by (simp add: assms hull_subset open_subset)
  4079     show "\<not> collinear S"
  4080       using assms False by (simp add: collinear_aff_dim aff_dim_open)
  4081   qed (simp_all add: assms)
  4082 qed
  4084 corollary connected_open_diff_countable:
  4085   fixes S :: "'a::euclidean_space set"
  4086   assumes "2 \<le> DIM('a)" "open S" "connected S" "countable T"
  4087   shows "connected(S - T)"
  4088 by (simp add: assms path_connected_imp_connected path_connected_open_diff_countable)
  4092 subsection%unimportant \<open>Self-homeomorphisms shuffling points about\<close>
  4094 subsubsection%unimportant\<open>The theorem \<open>homeomorphism_moving_points_exists\<close>\<close>
  4096 lemma homeomorphism_moving_point_1:
  4097   fixes a :: "'a::euclidean_space"
  4098   assumes "affine T" "a \<in> T" and u: "u \<in> ball a r \<inter> T"
  4099   obtains f g where "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
  4100                     "f a = u" "\<And>x. x \<in> sphere a r \<Longrightarrow> f x = x"
  4101 proof -
  4102   have nou: "norm (u - a) < r" and "u \<in> T"
  4103     using u by (auto simp: dist_norm norm_minus_commute)
  4104   then have "0 < r"
  4105     by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
  4106   define f where "f \<equiv> \<lambda>x. (1 - norm(x - a) / r) *\<^sub>R (u - a) + x"
  4107   have *: "False" if eq: "x + (norm y / r) *\<^sub>R u = y + (norm x / r) *\<^sub>R u"
  4108                   and nou: "norm u < r" and yx: "norm y < norm x" for x y and u::'a
  4109   proof -
  4110     have "x = y + (norm x / r - (norm y / r)) *\<^sub>R u"
  4111       using eq by (simp add: algebra_simps)
  4112     then have "norm x = norm (y + ((norm x - norm y) / r) *\<^sub>R u)"
  4113       by (metis diff_divide_distrib)
  4114     also have "\<dots> \<le> norm y + norm(((norm x - norm y) / r) *\<^sub>R u)"
  4115       using norm_triangle_ineq by blast
  4116     also have "\<dots> = norm y + (norm x - norm y) * (norm u / r)"
  4117       using yx \<open>r > 0\<close>
  4118       by (simp add: divide_simps)
  4119     also have "\<dots> < norm y + (norm x - norm y) * 1"
  4120       apply (subst add_less_cancel_left)
  4121       apply (rule mult_strict_left_mono)
  4122       using nou \<open>0 < r\<close> yx
  4123        apply (simp_all add: field_simps)
  4124       done
  4125     also have "\<dots> = norm x"
  4126       by simp
  4127     finally show False by simp
  4128   qed
  4129   have "inj f"
  4130     unfolding f_def
  4131   proof (clarsimp simp: inj_on_def)
  4132     fix x y
  4133     assume "(1 - norm (x - a) / r) *\<^sub>R (u - a) + x =
  4134             (1 - norm (y - a) / r) *\<^sub>R (u - a) + y"
  4135     then have eq: "(x - a) + (norm (y - a) / r) *\<^sub>R (u - a) = (y - a) + (norm (x - a) / r) *\<^sub>R (u - a)"
  4136       by (auto simp: algebra_simps)
  4137     show "x=y"
  4138     proof (cases "norm (x - a) = norm (y - a)")
  4139       case True
  4140       then show ?thesis
  4141         using eq by auto
  4142     next
  4143       case False
  4144       then consider "norm (x - a) < norm (y - a)" | "norm (x - a) > norm (y - a)"
  4145         by linarith
  4146       then have "False"
  4147       proof cases
  4148         case 1 show False
  4149           using * [OF _ nou 1] eq by simp
  4150       next
  4151         case 2 with * [OF eq nou] show False
  4152           by auto
  4153       qed
  4154       then show "x=y" ..
  4155     qed
  4156   qed
  4157   then have inj_onf: "inj_on f (cball a r \<inter> T)"
  4158     using inj_on_Int by fastforce
  4159   have contf: "continuous_on (cball a r \<inter> T) f"
  4160     unfolding f_def using \<open>0 < r\<close>  by (intro continuous_intros) blast
  4161   have fim: "f ` (cball a r \<inter> T) = cball a r \<inter> T"
  4162   proof
  4163     have *: "norm (y + (1 - norm y / r) *\<^sub>R u) \<le> r" if "norm y \<le> r" "norm u < r" for y u::'a
  4164     proof -
  4165       have "norm (y + (1 - norm y / r) *\<^sub>R u) \<le> norm y + norm((1 - norm y / r) *\<^sub>R u)"
  4166         using norm_triangle_ineq by blast
  4167       also have "\<dots> = norm y + abs(1 - norm y / r) * norm u"
  4168         by simp
  4169       also have "\<dots> \<le> r"
  4170       proof -
  4171         have "(r - norm u) * (r - norm y) \<ge> 0"
  4172           using that by auto
  4173         then have "r * norm u + r * norm y \<le> r * r + norm u * norm y"
  4174           by (simp add: algebra_simps)
  4175         then show ?thesis
  4176         using that \<open>0 < r\<close> by (simp add: abs_if field_simps)
  4177       qed
  4178       finally show ?thesis .
  4179     qed
  4180     have "f ` (cball a r) \<subseteq> cball a r"
  4181       apply (clarsimp simp add: dist_norm norm_minus_commute f_def)
  4182       using * by (metis diff_add_eq diff_diff_add diff_diff_eq2 norm_minus_commute nou)
  4183     moreover have "f ` T \<subseteq> T"
  4184       unfolding f_def using \<open>affine T\<close> \<open>a \<in> T\<close> \<open>u \<in> T\<close>
  4185       by (force simp: add.commute mem_affine_3_minus)
  4186     ultimately show "f ` (cball a r \<inter> T) \<subseteq> cball a r \<inter> T"
  4187       by blast
  4188   next
  4189     show "cball a r \<inter> T \<subseteq> f ` (cball a r \<inter> T)"
  4190     proof (clarsimp simp add: dist_norm norm_minus_commute)
  4191       fix x
  4192       assume x: "norm (x - a) \<le> r" and "x \<in> T"
  4193       have "\<exists>v \<in> {0..1}. ((1 - v) * r - norm ((x - a) - v *\<^sub>R (u - a))) \<bullet> 1 = 0"
  4194         by (rule ivt_decreasing_component_on_1) (auto simp: x continuous_intros)
  4195       then obtain v where "0\<le>v" "v\<le>1" and v: "(1 - v) * r = norm ((x - a) - v *\<^sub>R (u - a))"
  4196         by auto
  4197       show "x \<in> f ` (cball a r \<inter> T)"
  4198       proof (rule image_eqI)
  4199         show "x = f (x - v *\<^sub>R (u - a))"
  4200           using \<open>r > 0\<close> v by (simp add: f_def field_simps)
  4201         have "x - v *\<^sub>R (u - a) \<in> cball a r"
  4202           using \<open>r > 0\<close> v \<open>0 \<le> v\<close>
  4203           apply (simp add: field_simps dist_norm norm_minus_commute)
  4204           by (metis le_add_same_cancel2 order.order_iff_strict zero_le_mult_iff)
  4205         moreover have "x - v *\<^sub>R (u - a) \<in> T"
  4206           by (simp add: f_def \<open>affine T\<close> \<open>u \<in> T\<close> \<open>x \<in> T\<close> assms mem_affine_3_minus2)
  4207         ultimately show "x - v *\<^sub>R (u - a) \<in> cball a r \<inter> T"
  4208           by blast
  4209       qed
  4210     qed
  4211   qed
  4212   have "\<exists>g. homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
  4213     apply (rule homeomorphism_compact [OF _ contf fim inj_onf])
  4214     apply (simp add: affine_closed compact_Int_closed \<open>affine T\<close>)
  4215     done
  4216   then show ?thesis
  4217     apply (rule exE)
  4218     apply (erule_tac f=f in that)
  4219     using \<open>r > 0\<close>
  4220      apply (simp_all add: f_def dist_norm norm_minus_commute)
  4221     done
  4222 qed
  4224 corollary%unimportant homeomorphism_moving_point_2:
  4225   fixes a :: "'a::euclidean_space"
  4226   assumes "affine T" "a \<in> T" and u: "u \<in> ball a r \<inter> T" and v: "v \<in> ball a r \<inter> T"
  4227   obtains f g where "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
  4228                     "f u = v" "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> f x = x"
  4229 proof -
  4230   have "0 < r"
  4231     by (metis DiffD1 Diff_Diff_Int ball_eq_empty centre_in_ball not_le u)
  4232   obtain f1 g1 where hom1: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f1 g1"
  4233                  and "f1 a = u" and f1: "\<And>x. x \<in> sphere a r \<Longrightarrow> f1 x = x"
  4234     using homeomorphism_moving_point_1 [OF \<open>affine T\<close> \<open>a \<in> T\<close> u] by blast
  4235   obtain f2 g2 where hom2: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f2 g2"
  4236                  and "f2 a = v" and f2: "\<And>x. x \<in> sphere a r \<Longrightarrow> f2 x = x"
  4237     using homeomorphism_moving_point_1 [OF \<open>affine T\<close> \<open>a \<in> T\<close> v] by blast
  4238   show ?thesis
  4239   proof
  4240     show "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) (f2 \<circ> g1) (f1 \<circ> g2)"
  4241       by (metis homeomorphism_compose homeomorphism_symD hom1 hom2)
  4242     have "g1 u = a"
  4243       using \<open>0 < r\<close> \<open>f1 a = u\<close> assms hom1 homeomorphism_apply1 by fastforce
  4244     then show "(f2 \<circ> g1) u = v"
  4245       by (simp add: \<open>f2 a = v\<close>)
  4246     show "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> (f2 \<circ> g1) x = x"
  4247       using f1 f2 hom1 homeomorphism_apply1 by fastforce
  4248   qed
  4249 qed
  4252 corollary%unimportant homeomorphism_moving_point_3:
  4253   fixes a :: "'a::euclidean_space"
  4254   assumes "affine T" "a \<in> T" and ST: "ball a r \<inter> T \<subseteq> S" "S \<subseteq> T"
  4255       and u: "u \<in> ball a r \<inter> T" and v: "v \<in> ball a r \<inter> T"
  4256   obtains f g where "homeomorphism S S f g"
  4257                     "f u = v" "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> ball a r \<inter> T"
  4258 proof -
  4259   obtain f g where hom: "homeomorphism (cball a r \<inter> T) (cball a r \<inter> T) f g"
  4260                and "f u = v" and fid: "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> f x = x"
  4261     using homeomorphism_moving_point_2 [OF \<open>affine T\<close> \<open>a \<in> T\<close> u v] by blast
  4262   have gid: "\<And>x. \<lbrakk>x \<in> sphere a r; x \<in> T\<rbrakk> \<Longrightarrow> g x = x"
  4263     using fid hom homeomorphism_apply1 by fastforce
  4264   define ff where "ff \<equiv> \<lambda>x. if x \<in> ball a r \<inter> T then f x else x"
  4265   define gg where "gg \<equiv> \<lambda>x. if x \<in> ball a r \<inter> T then g x else x"
  4266   show ?thesis
  4267   proof
  4268     show "homeomorphism S S ff gg"
  4269     proof (rule homeomorphismI)
  4270       have "continuous_on ((cball a r \<inter> T) \<union> (T - ball a r)) ff"
  4271         apply (simp add: ff_def)
  4272         apply (rule continuous_on_cases)
  4273         using homeomorphism_cont1 [OF hom]
  4274             apply (auto simp: affine_closed \<open>affine T\<close> continuous_on_id fid)
  4275         done
  4276       then show "continuous_on S ff"
  4277         apply (rule continuous_on_subset)
  4278         using ST by auto
  4279       have "continuous_on ((cball a r \<inter> T) \<union> (T - ball a r)) gg"
  4280         apply (simp add: gg_def)
  4281         apply (rule continuous_on_cases)
  4282         using homeomorphism_cont2 [OF hom]
  4283             apply (auto simp: affine_closed \<open>affine T\<close> continuous_on_id gid)
  4284         done
  4285       then show "continuous_on S gg"
  4286         apply (rule continuous_on_subset)
  4287         using ST by auto
  4288       show "ff ` S \<subseteq> S"
  4289       proof (clarsimp simp add: ff_def)
  4290         fix x
  4291         assume "x \<in> S" and x: "dist a x < r" and "x \<in> T"
  4292         then have "f x \<in> cball a r \<inter> T"
  4293           using homeomorphism_image1 [OF hom] by force
  4294         then show "f x \<in> S"
  4295           using ST(1) \<open>x \<in> T\<close> gid hom homeomorphism_def x by fastforce
  4296       qed
  4297       show "gg ` S \<subseteq> S"
  4298       proof (clarsimp simp add: gg_def)
  4299         fix x
  4300         assume "x \<in> S" and x: "dist a x < r" and "x \<in> T"
  4301         then have "g x \<in> cball a r \<inter> T"
  4302           using homeomorphism_image2 [OF hom] by force
  4303         then have "g x \<in> ball a r"
  4304           using homeomorphism_apply2 [OF hom]
  4305             by (metis Diff_Diff_Int Diff_iff  \<open>x \<in> T\<close> cball_def fid le_less mem_Collect_eq mem_ball mem_sphere x)
  4306         then show "g x \<in> S"
  4307           using ST(1) \<open>g x \<in> cball a r \<inter> T\<close> by force
  4308         qed
  4309       show "\<And>x. x \<in> S \<Longrightarrow> gg (ff x) = x"
  4310         apply (simp add: ff_def gg_def)
  4311         using homeomorphism_apply1 [OF hom] homeomorphism_image1 [OF hom]
  4312         apply auto
  4313         apply (metis Int_iff homeomorphism_apply1 [OF hom] fid image_eqI less_eq_real_def mem_cball mem_sphere)
  4314         done
  4315       show "\<And>x. x \<in> S \<Longrightarrow> ff (gg x) = x"
  4316         apply (simp add: ff_def gg_def)
  4317         using homeomorphism_apply2 [OF hom] homeomorphism_image2 [OF hom]
  4318         apply auto
  4319         apply (metis Int_iff fid image_eqI less_eq_real_def mem_cball mem_sphere)
  4320         done
  4321     qed
  4322     show "ff u = v"
  4323       using u by (auto simp: ff_def \<open>f u = v\<close>)
  4324     show "{x. \<not> (ff x = x \<and> gg x = x)} \<subseteq> ball a r \<inter> T"
  4325       by (auto simp: ff_def gg_def)
  4326   qed
  4327 qed
  4330 proposition%unimportant homeomorphism_moving_point:
  4331   fixes a :: "'a::euclidean_space"
  4332   assumes ope: "openin (top_of_set (affine hull S)) S"
  4333       and "S \<subseteq> T"
  4334       and TS: "T \<subseteq> affine hull S"
  4335       and S: "connected S" "a \<in> S" "b \<in> S"
  4336   obtains f g where "homeomorphism T T f g" "f a = b"
  4337                     "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
  4338                     "bounded {x. \<not> (f x = x \<and> g x = x)}"
  4339 proof -
  4340   have 1: "\<exists>h k. homeomorphism T T h k \<and> h (f d) = d \<and>
  4341               {x. \<not> (h x = x \<and> k x = x)} \<subseteq> S \<and> bounded {x. \<not> (h x = x \<and> k x = x)}"
  4342         if "d \<in> S" "f d \<in> S" and homfg: "homeomorphism T T f g"
  4343         and S: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
  4344         and bo: "bounded {x. \<not> (f x = x \<and> g x = x)}" for d f g
  4345   proof (intro exI conjI)
  4346     show homgf: "homeomorphism T T g f"
  4347       by (metis homeomorphism_symD homfg)
  4348     then show "g (f d) = d"
  4349       by (meson \<open>S \<subseteq> T\<close> homeomorphism_def subsetD \<open>d \<in> S\<close>)
  4350     show "{x. \<not> (g x = x \<and> f x = x)} \<subseteq> S"
  4351       using S by blast
  4352     show "bounded {x. \<not> (g x = x \<and> f x = x)}"
  4353       using bo by (simp add: conj_commute)
  4354   qed
  4355   have 2: "\<exists>f g. homeomorphism T T f g \<and> f x = f2 (f1 x) \<and>
  4356                  {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
  4357              if "x \<in> S" "f1 x \<in> S" "f2 (f1 x) \<in> S"
  4358                 and hom: "homeomorphism T T f1 g1" "homeomorphism T T f2 g2"
  4359                 and sub: "{x. \<not> (f1 x = x \<and> g1 x = x)} \<subseteq> S"   "{x. \<not> (f2 x = x \<and> g2 x = x)} \<subseteq> S"
  4360                 and bo: "bounded {x. \<not> (f1 x = x \<and> g1 x = x)}"  "bounded {x. \<not> (f2 x = x \<and> g2 x = x)}"
  4361              for x f1 f2 g1 g2
  4362   proof (intro exI conjI)
  4363     show homgf: "homeomorphism T T (f2 \<circ> f1) (g1 \<circ> g2)"
  4364       by (metis homeomorphism_compose hom)
  4365     then show "(f2 \<circ> f1) x = f2 (f1 x)"
  4366       by force
  4367     show "{x. \<not> ((f2 \<circ> f1) x = x \<and> (g1 \<circ> g2) x = x)} \<subseteq> S"
  4368       using sub by force
  4369     have "bounded ({x. \<not>(f1 x = x \<and> g1 x = x)} \<union> {x. \<not>(f2 x = x \<and> g2 x = x)})"
  4370       using bo by simp
  4371     then show "bounded {x. \<not> ((f2 \<circ> f1) x = x \<and> (g1 \<circ> g2) x = x)}"
  4372       by (rule bounded_subset) auto
  4373   qed
  4374   have 3: "\<exists>U. openin (top_of_set S) U \<and>
  4375               d \<in> U \<and>
  4376               (\<forall>x\<in>U.
  4377                   \<exists>f g. homeomorphism T T f g \<and> f d = x \<and>
  4378                         {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and>
  4379                         bounded {x. \<not> (f x = x \<and> g x = x)})"
  4380            if "d \<in> S" for d
  4381   proof -
  4382     obtain r where "r > 0" and r: "ball d r \<inter> affine hull S \<subseteq> S"
  4383       by (metis \<open>d \<in> S\<close> ope openin_contains_ball)
  4384     have *: "\<exists>f g. homeomorphism T T f g \<and> f d = e \<and>
  4385                    {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and>
  4386                    bounded {x. \<not> (f x = x \<and> g x = x)}" if "e \<in> S" "e \<in> ball d r" for e
  4387       apply (rule homeomorphism_moving_point_3 [of "affine hull S" d r T d e])
  4388       using r \<open>S \<subseteq> T\<close> TS that
  4389             apply (auto simp: \<open>d \<in> S\<close> \<open>0 < r\<close> hull_inc)
  4390       using bounded_subset by blast
  4391     show ?thesis
  4392       apply (rule_tac x="S \<inter> ball d r" in exI)
  4393       apply (intro conjI)
  4394         apply (simp add: openin_open_Int)
  4395        apply (simp add: \<open>0 < r\<close> that)
  4396       apply (blast intro: *)
  4397       done
  4398   qed
  4399   have "\<exists>f g. homeomorphism T T f g \<and> f a = b \<and>
  4400               {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
  4401     apply (rule connected_equivalence_relation [OF S], safe)
  4402       apply (blast intro: 1 2 3)+
  4403     done
  4404   then show ?thesis
  4405     using that by auto
  4406 qed
  4409 lemma homeomorphism_moving_points_exists_gen:
  4410   assumes K: "finite K" "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
  4411              "pairwise (\<lambda>i j. (x i \<noteq> x j) \<and> (y i \<noteq> y j)) K"
  4412       and "2 \<le> aff_dim S"
  4413       and ope: "openin (top_of_set (affine hull S)) S"
  4414       and "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
  4415   shows "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(x i) = y i) \<and>
  4416                {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
  4417   using assms
  4418 proof (induction K)
  4419   case empty
  4420   then show ?case
  4421     by (force simp: homeomorphism_ident)
  4422 next
  4423   case (insert i K)
  4424   then have xney: "\<And>j. \<lbrakk>j \<in> K; j \<noteq> i\<rbrakk> \<Longrightarrow> x i \<noteq> x j \<and> y i \<noteq> y j"
  4425        and pw: "pairwise (\<lambda>i j. x i \<noteq> x j \<and> y i \<noteq> y j) K"
  4426        and "x i \<in> S" "y i \<in> S"
  4427        and xyS: "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
  4428     by (simp_all add: pairwise_insert)
  4429   obtain f g where homfg: "homeomorphism T T f g" and feq: "\<And>i. i \<in> K \<Longrightarrow> f(x i) = y i"
  4430                and fg_sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S"
  4431                and bo_fg: "bounded {x. \<not> (f x = x \<and> g x = x)}"
  4432     using insert.IH [OF xyS pw] insert.prems by (blast intro: that)
  4433   then have "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(x i) = y i) \<and>
  4434                    {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
  4435     using insert by blast
  4436   have aff_eq: "affine hull (S - y ` K) = affine hull S"
  4437     apply (rule affine_hull_Diff)
  4438     apply (auto simp: insert)
  4439     using \<open>y i \<in> S\<close> insert.hyps(2) xney xyS by fastforce
  4440   have f_in_S: "f x \<in> S" if "x \<in> S" for x
  4441     using homfg fg_sub homeomorphism_apply1 \<open>S \<subseteq> T\<close>
  4442   proof -
  4443     have "(f (f x) \<noteq> f x \<or> g (f x) \<noteq> f x) \<or> f x \<in> S"
  4444       by (metis \<open>S \<subseteq> T\<close> homfg subsetD homeomorphism_apply1 that)
  4445     then show ?thesis
  4446       using fg_sub by force
  4447   qed
  4448   obtain h k where homhk: "homeomorphism T T h k" and heq: "h (f (x i)) = y i"
  4449                and hk_sub: "{x. \<not> (h x = x \<and> k x = x)} \<subseteq> S - y ` K"
  4450                and bo_hk:  "bounded {x. \<not> (h x = x \<and> k x = x)}"
  4451   proof (rule homeomorphism_moving_point [of "S - y`K" T "f(x i)" "y i"])
  4452     show "openin (top_of_set (affine hull (S - y ` K))) (S - y ` K)"
  4453       by (simp add: aff_eq openin_diff finite_imp_closedin image_subset_iff hull_inc insert xyS)
  4454     show "S - y ` K \<subseteq> T"
  4455       using \<open>S \<subseteq> T\<close> by auto
  4456     show "T \<subseteq> affine hull (S - y ` K)"
  4457       using insert by (simp add: aff_eq)
  4458     show "connected (S - y ` K)"
  4459     proof (rule connected_openin_diff_countable [OF \<open>connected S\<close> ope])
  4460       show "\<not> collinear S"
  4461         using collinear_aff_dim \<open>2 \<le> aff_dim S\<close> by force
  4462       show "countable (y ` K)"
  4463         using countable_finite insert.hyps(1) by blast
  4464     qed
  4465     show "f (x i) \<in> S - y ` K"
  4466       apply (auto simp: f_in_S \<open>x i \<in> S\<close>)
  4467         by (metis feq homfg \<open>x i \<in> S\<close> homeomorphism_def \<open>S \<subseteq> T\<close> \<open>i \<notin> K\<close> subsetCE xney xyS)
  4468     show "y i \<in> S - y ` K"
  4469       using insert.hyps xney by (auto simp: \<open>y i \<in> S\<close>)
  4470   qed blast
  4471   show ?case
  4472   proof (intro exI conjI)
  4473     show "homeomorphism T T (h \<circ> f) (g \<circ> k)"
  4474       using homfg homhk homeomorphism_compose by blast
  4475     show "\<forall>i \<in> insert i K. (h \<circ> f) (x i) = y i"
  4476       using feq hk_sub by (auto simp: heq)
  4477     show "{x. \<not> ((h \<circ> f) x = x \<and> (g \<circ> k) x = x)} \<subseteq> S"
  4478       using fg_sub hk_sub by force
  4479     have "bounded ({x. \<not>(f x = x \<and> g x = x)} \<union> {x. \<not>(h x = x \<and> k x = x)})"
  4480       using bo_fg bo_hk bounded_Un by blast
  4481     then show "bounded {x. \<not> ((h \<circ> f) x = x \<and> (g \<circ> k) x = x)}"
  4482       by (rule bounded_subset) auto
  4483   qed
  4484 qed
  4486 proposition%unimportant homeomorphism_moving_points_exists:
  4487   fixes S :: "'a::euclidean_space set"
  4488   assumes 2: "2 \<le> DIM('a)" "open S" "connected S" "S \<subseteq> T" "finite K"
  4489       and KS: "\<And>i. i \<in> K \<Longrightarrow> x i \<in> S \<and> y i \<in> S"
  4490       and pw: "pairwise (\<lambda>i j. (x i \<noteq> x j) \<and> (y i \<noteq> y j)) K"
  4491       and S: "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
  4492   obtains f g where "homeomorphism T T f g" "\<And>i. i \<in> K \<Longrightarrow> f(x i) = y i"
  4493                     "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S" "bounded {x. (\<not> (f x = x \<and> g x = x))}"
  4494 proof (cases "S = {}")
  4495   case True
  4496   then show ?thesis
  4497     using KS homeomorphism_ident that by fastforce
  4498 next
  4499   case False
  4500   then have affS: "affine hull S = UNIV"
  4501     by (simp add: affine_hull_open \<open>open S\<close>)
  4502   then have ope: "openin (top_of_set (affine hull S)) S"
  4503     using \<open>open S\<close> open_openin by auto
  4504   have "2 \<le> DIM('a)" by (rule 2)
  4505   also have "\<dots> = aff_dim (UNIV :: 'a set)"
  4506     by simp
  4507   also have "\<dots> \<le> aff_dim S"
  4508     by (metis aff_dim_UNIV aff_dim_affine_hull aff_dim_le_DIM affS)
  4509   finally have "2 \<le> aff_dim S"
  4510     by linarith
  4511   then show ?thesis
  4512     using homeomorphism_moving_points_exists_gen [OF \<open>finite K\<close> KS pw _ ope S] that by fastforce
  4513 qed
  4515 subsubsection%unimportant\<open>The theorem \<open>homeomorphism_grouping_points_exists\<close>\<close>
  4517 lemma homeomorphism_grouping_point_1:
  4518   fixes a::real and c::real
  4519   assumes "a < b" "c < d"
  4520   obtains f g where "homeomorphism (cbox a b) (cbox c d) f g" "f a = c" "f b = d"
  4521 proof -
  4522   define f where "f \<equiv> \<lambda>x. ((d - c) / (b - a)) * x + (c - a * ((d - c) / (b - a)))"
  4523   have "\<exists>g. homeomorphism (cbox a b) (cbox c d) f g"
  4524   proof (rule homeomorphism_compact)
  4525     show "continuous_on (cbox a b) f"
  4526       apply (simp add: f_def)
  4527       apply (intro continuous_intros)
  4528       using assms by auto
  4529     have "f ` {a..b} = {c..d}"
  4530       unfolding f_def image_affinity_atLeastAtMost
  4531       using assms sum_sqs_eq by (auto simp: divide_simps algebra_simps)
  4532     then show "f ` cbox a b = cbox c d"
  4533       by auto
  4534     show "inj_on f (cbox a b)"
  4535       unfolding f_def inj_on_def using assms by auto
  4536   qed auto
  4537   then obtain g where "homeomorphism (cbox a b) (cbox c d) f g" ..
  4538   then show ?thesis
  4539   proof
  4540     show "f a = c"
  4541       by (simp add: f_def)
  4542     show "f b = d"
  4543       using assms sum_sqs_eq [of a b] by (auto simp: f_def divide_simps algebra_simps)
  4544   qed
  4545 qed
  4547 lemma homeomorphism_grouping_point_2:
  4548   fixes a::real and w::real
  4549   assumes hom_ab: "homeomorphism (cbox a b) (cbox u v) f1 g1"
  4550       and hom_bc: "homeomorphism (cbox b c) (cbox v w) f2 g2"
  4551       and "b \<in> cbox a c" "v \<in> cbox u w"
  4552       and eq: "f1 a = u" "f1 b = v" "f2 b = v" "f2 c = w"
  4553  obtains f g where "homeomorphism (cbox a c) (cbox u w) f g" "f a = u" "f c = w"
  4554                    "\<And>x. x \<in> cbox a b \<Longrightarrow> f x = f1 x" "\<And>x. x \<in> cbox b c \<Longrightarrow> f x = f2 x"
  4555 proof -
  4556   have le: "a \<le> b" "b \<le> c" "u \<le> v" "v \<le> w"
  4557     using assms by simp_all
  4558   then have ac: "cbox a c = cbox a b \<union> cbox b c" and uw: "cbox u w = cbox u v \<union> cbox v w"
  4559     by auto
  4560   define f where "f \<equiv> \<lambda>x. if x \<le> b then f1 x else f2 x"
  4561   have "\<exists>g. homeomorphism (cbox a c) (cbox u w) f g"
  4562   proof (rule homeomorphism_compact)
  4563     have cf1: "continuous_on (cbox a b) f1"
  4564       using hom_ab homeomorphism_cont1 by blast
  4565     have cf2: "continuous_on (cbox b c) f2"
  4566       using hom_bc homeomorphism_cont1 by blast
  4567     show "continuous_on (cbox a c) f"
  4568       apply (simp add: f_def)
  4569       apply (rule continuous_on_cases_le [OF continuous_on_subset [OF cf1] continuous_on_subset [OF cf2]])
  4570       using le eq apply (force simp: continuous_on_id)+
  4571       done
  4572     have "f ` cbox a b = f1 ` cbox a b" "f ` cbox b c = f2 ` cbox b c"
  4573       unfolding f_def using eq by force+
  4574     then show "f ` cbox a c = cbox u w"
  4575       apply (simp only: ac uw image_Un)
  4576       by (metis hom_ab hom_bc homeomorphism_def)
  4577     have neq12: "f1 x \<noteq> f2 y" if x: "a \<le> x" "x \<le> b" and y: "b < y" "y \<le> c" for x y
  4578     proof -
  4579       have "f1 x \<in> cbox u v"
  4580         by (metis hom_ab homeomorphism_def image_eqI mem_box_real(2) x)
  4581       moreover have "f2 y \<in> cbox v w"
  4582         by (metis (full_types) hom_bc homeomorphism_def image_subset_iff mem_box_real(2) not_le not_less_iff_gr_or_eq order_refl y)
  4583       moreover have "f2 y \<noteq> f2 b"
  4584         by (metis cancel_comm_monoid_add_class.diff_cancel diff_gt_0_iff_gt hom_bc homeomorphism_def le(2) less_imp_le less_numeral_extra(3) mem_box_real(2) order_refl y)
  4585       ultimately show ?thesis
  4586         using le eq by simp
  4587     qed
  4588     have "inj_on f1 (cbox a b)"
  4589       by (metis (full_types) hom_ab homeomorphism_def inj_onI)
  4590     moreover have "inj_on f2 (cbox b c)"
  4591       by (metis (full_types) hom_bc homeomorphism_def inj_onI)
  4592     ultimately show "inj_on f (cbox a c)"
  4593       apply (simp (no_asm) add: inj_on_def)
  4594       apply (simp add: f_def inj_on_eq_iff)
  4595       using neq12  apply force
  4596       done
  4597   qed auto
  4598   then obtain g where "homeomorphism (cbox a c) (cbox u w) f g" ..
  4599   then show ?thesis
  4600     apply (rule that)
  4601     using eq le by (auto simp: f_def)
  4602 qed
  4604 lemma homeomorphism_grouping_point_3:
  4605   fixes a::real
  4606   assumes cbox_sub: "cbox c d \<subseteq> box a b" "cbox u v \<subseteq> box a b"
  4607       and box_ne: "box c d \<noteq> {}" "box u v \<noteq> {}"
  4608   obtains f g where "homeomorphism (cbox a b) (cbox a b) f g" "f a = a" "f b = b"
  4609                     "\<And>x. x \<in> cbox c d \<Longrightarrow> f x \<in> cbox u v"
  4610 proof -
  4611   have less: "a < c" "a < u" "d < b" "v < b" "c < d" "u < v" "cbox c d \<noteq> {}"
  4612     using assms
  4613     by (simp_all add: cbox_sub subset_eq)
  4614   obtain f1 g1 where 1: "homeomorphism (cbox a c) (cbox a u) f1 g1"
  4615                    and f1_eq: "f1 a = a" "f1 c = u"
  4616     using homeomorphism_grouping_point_1 [OF \<open>a < c\<close> \<open>a < u\<close>] .
  4617   obtain f2 g2 where 2: "homeomorphism (cbox c d) (cbox u v) f2 g2"
  4618                    and f2_eq: "f2 c = u" "f2 d = v"
  4619     using homeomorphism_grouping_point_1 [OF \<open>c < d\<close> \<open>u < v\<close>] .
  4620   obtain f3 g3 where 3: "homeomorphism (cbox d b) (cbox v b) f3 g3"
  4621                    and f3_eq: "f3 d = v" "f3 b = b"
  4622     using homeomorphism_grouping_point_1 [OF \<open>d < b\<close> \<open>v < b\<close>] .
  4623   obtain f4 g4 where 4: "homeomorphism (cbox a d) (cbox a v) f4 g4" and "f4 a = a" "f4 d = v"
  4624                  and f4_eq: "\<And>x. x \<in> cbox a c \<Longrightarrow> f4 x = f1 x" "\<And>x. x \<in> cbox c d \<Longrightarrow> f4 x = f2 x"
  4625     using homeomorphism_grouping_point_2 [OF 1 2] less  by (auto simp: f1_eq f2_eq)
  4626   obtain f g where fg: "homeomorphism (cbox a b) (cbox a b) f g" "f a = a" "f b = b"
  4627                and f_eq: "\<And>x. x \<in> cbox a d \<Longrightarrow> f x = f4 x" "\<And>x. x \<in> cbox d b \<Longrightarrow> f x = f3 x"
  4628     using homeomorphism_grouping_point_2 [OF 4 3] less by (auto simp: f4_eq f3_eq f2_eq f1_eq)
  4629   show ?thesis
  4630     apply (rule that [OF fg])
  4631     using f4_eq f_eq homeomorphism_image1 [OF 2]
  4632     apply simp
  4633     by (metis atLeastAtMost_iff box_real(1) box_real(2) cbox_sub(1) greaterThanLessThan_iff imageI less_eq_real_def subset_eq)
  4634 qed
  4637 lemma homeomorphism_grouping_point_4:
  4638   fixes T :: "real set"
  4639   assumes "open U" "open S" "connected S" "U \<noteq> {}" "finite K" "K \<subseteq> S" "U \<subseteq> S" "S \<subseteq> T"
  4640   obtains f g where "homeomorphism T T f g"
  4641                     "\<And>x. x \<in> K \<Longrightarrow> f x \<in> U" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
  4642                     "bounded {x. (\<not> (f x = x \<and> g x = x))}"
  4643 proof -
  4644   obtain c d where "box c d \<noteq> {}" "cbox c d \<subseteq> U"
  4645   proof -
  4646     obtain u where "u \<in> U"
  4647       using \<open>U \<noteq> {}\<close> by blast
  4648     then obtain e where "e > 0" "cball u e \<subseteq> U"
  4649       using \<open>open U\<close> open_contains_cball by blast
  4650     then show ?thesis
  4651       by (rule_tac c=u and d="u+e" in that) (auto simp: dist_norm subset_iff)
  4652   qed
  4653   have "compact K"
  4654     by (simp add: \<open>finite K\<close> finite_imp_compact)
  4655   obtain a b where "box a b \<noteq> {}" "K \<subseteq> cbox a b" "cbox a b \<subseteq> S"
  4656   proof (cases "K = {}")
  4657     case True then show ?thesis
  4658       using \<open>box c d \<noteq> {}\<close> \<open>cbox c d \<subseteq> U\<close> \<open>U \<subseteq> S\<close> that by blast
  4659   next
  4660     case False
  4661     then obtain a b where "a \<in> K" "b \<in> K"
  4662             and a: "\<And>x. x \<in> K \<Longrightarrow> a \<le> x" and b: "\<And>x. x \<in> K \<Longrightarrow> x \<le> b"
  4663       using compact_attains_inf compact_attains_sup by (metis \<open>compact K\<close>)+
  4664     obtain e where "e > 0" "cball b e \<subseteq> S"
  4665       using \<open>open S\<close> open_contains_cball
  4666       by (metis \<open>b \<in> K\<close> \<open>K \<subseteq> S\<close> subsetD)
  4667     show ?thesis
  4668     proof
  4669       show "box a (b + e) \<noteq> {}"
  4670         using \<open>0 < e\<close> \<open>b \<in> K\<close> a by force
  4671       show "K \<subseteq> cbox a (b + e)"
  4672         using \<open>0 < e\<close> a b by fastforce
  4673       have "a \<in> S"
  4674         using \<open>a \<in> K\<close> assms(6) by blast
  4675       have "b + e \<in> S"
  4676         using \<open>0 < e\<close> \<open>cball b e \<subseteq> S\<close>  by (force simp: dist_norm)
  4677       show "cbox a (b + e) \<subseteq> S"
  4678         using \<open>a \<in> S\<close> \<open>b + e \<in> S\<close> \<open>connected S\<close> connected_contains_Icc by auto
  4679     qed
  4680   qed
  4681   obtain w z where "cbox w z \<subseteq> S" and sub_wz: "cbox a b \<union> cbox c d \<subseteq> box w z"
  4682   proof -
  4683     have "a \<in> S" "b \<in> S"
  4684       using \<open>box a b \<noteq> {}\<close> \<open>cbox a b \<subseteq> S\<close> by auto
  4685     moreover have "c \<in> S" "d \<in> S"
  4686       using \<open>box c d \<noteq> {}\<close> \<open>cbox c d \<subseteq> U\<close> \<open>U \<subseteq> S\<close> by force+
  4687     ultimately have "min a c \<in> S" "max b d \<in> S"
  4688       by linarith+
  4689     then obtain e1 e2 where "e1 > 0" "cball (min a c) e1 \<subseteq> S" "e2 > 0" "cball (max b d) e2 \<subseteq> S"
  4690       using \<open>open S\<close> open_contains_cball by metis
  4691     then have *: "min a c - e1 \<in> S" "max b d + e2 \<in> S"
  4692       by (auto simp: dist_norm)
  4693     show ?thesis
  4694     proof
  4695       show "cbox (min a c - e1) (max b d+ e2) \<subseteq> S"
  4696         using * \<open>connected S\<close> connected_contains_Icc by auto
  4697       show "cbox a b \<union> cbox c d \<subseteq> box (min a c - e1) (max b d + e2)"
  4698         using \<open>0 < e1\<close> \<open>0 < e2\<close> by auto
  4699     qed
  4700   qed
  4701   then
  4702   obtain f g where hom: "homeomorphism (cbox w z) (cbox w z) f g"
  4703                and "f w = w" "f z = z"
  4704                and fin: "\<And>x. x \<in> cbox a b \<Longrightarrow> f x \<in> cbox c d"
  4705     using homeomorphism_grouping_point_3 [of a b w z c d]
  4706     using \<open>box a b \<noteq> {}\<close> \<open>box c d \<noteq> {}\<close> by blast
  4707   have contfg: "continuous_on (cbox w z) f" "continuous_on (cbox w z) g"
  4708     using hom homeomorphism_def by blast+
  4709   define f' where "f' \<equiv> \<lambda>x. if x \<in> cbox w z then f x else x"
  4710   define g' where "g' \<equiv> \<lambda>x. if x \<in> cbox w z then g x else x"
  4711   show ?thesis
  4712   proof
  4713     have T: "cbox w z \<union> (T - box w z) = T"
  4714       using \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> by auto
  4715     show "homeomorphism T T f' g'"
  4716     proof
  4717       have clo: "closedin (top_of_set (cbox w z \<union> (T - box w z))) (T - box w z)"
  4718         by (metis Diff_Diff_Int Diff_subset T closedin_def open_box openin_open_Int topspace_euclidean_subtopology)
  4719       have "continuous_on (cbox w z \<union> (T - box w z)) f'" "continuous_on (cbox w z \<union> (T - box w z)) g'"
  4720         unfolding f'_def g'_def
  4721          apply (safe intro!: continuous_on_cases_local contfg continuous_on_id clo)
  4722          apply (simp_all add: closed_subset)
  4723         using \<open>f w = w\<close> \<open>f z = z\<close> apply force
  4724         by (metis \<open>f w = w\<close> \<open>f z = z\<close> hom homeomorphism_def less_eq_real_def mem_box_real(2))
  4725       then show "continuous_on T f'" "continuous_on T g'"
  4726         by (simp_all only: T)
  4727       show "f' ` T \<subseteq> T"
  4728         unfolding f'_def
  4729         by clarsimp (metis \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> subsetD hom homeomorphism_def imageI mem_box_real(2))
  4730       show "g' ` T \<subseteq> T"
  4731         unfolding g'_def
  4732         by clarsimp (metis \<open>cbox w z \<subseteq> S\<close> \<open>S \<subseteq> T\<close> subsetD hom homeomorphism_def imageI mem_box_real(2))
  4733       show "\<And>x. x \<in> T \<Longrightarrow> g' (f' x) = x"
  4734         unfolding f'_def g'_def
  4735         using homeomorphism_apply1 [OF hom]  homeomorphism_image1 [OF hom] by fastforce
  4736       show "\<And>y. y \<in> T \<Longrightarrow> f' (g' y) = y"
  4737         unfolding f'_def g'_def
  4738         using homeomorphism_apply2 [OF hom]  homeomorphism_image2 [OF hom] by fastforce
  4739     qed
  4740     show "\<And>x. x \<in> K \<Longrightarrow> f' x \<in> U"
  4741       using fin sub_wz \<open>K \<subseteq> cbox a b\<close> \<open>cbox c d \<subseteq> U\<close> by (force simp: f'_def)
  4742     show "{x. \<not> (f' x = x \<and> g' x = x)} \<subseteq> S"
  4743       using \<open>cbox w z \<subseteq> S\<close> by (auto simp: f'_def g'_def)
  4744     show "bounded {x. \<not> (f' x = x \<and> g' x = x)}"
  4745       apply (rule bounded_subset [of "cbox w z"])
  4746       using bounded_cbox apply blast
  4747       apply (auto simp: f'_def g'_def)
  4748       done
  4749   qed
  4750 qed
  4752 proposition%unimportant homeomorphism_grouping_points_exists:
  4753   fixes S :: "'a::euclidean_space set"
  4754   assumes "open U" "open S" "connected S" "U \<noteq> {}" "finite K" "K \<subseteq> S" "U \<subseteq> S" "S \<subseteq> T"
  4755   obtains f g where "homeomorphism T T f g" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
  4756                     "bounded {x. (\<not> (f x = x \<and> g x = x))}" "\<And>x. x \<in> K \<Longrightarrow> f x \<in> U"
  4757 proof (cases "2 \<le> DIM('a)")
  4758   case True
  4759   have TS: "T \<subseteq> affine hull S"
  4760     using affine_hull_open assms by blast
  4761   have "infinite U"
  4762     using \<open>open U\<close> \<open>U \<noteq> {}\<close> finite_imp_not_open by blast
  4763   then obtain P where "P \<subseteq> U" "finite P" "card K = card P"
  4764     using infinite_arbitrarily_large by metis
  4765   then obtain \<gamma> where \<gamma>: "bij_betw \<gamma> K P"
  4766     using \<open>finite K\<close> finite_same_card_bij by blast
  4767   obtain f g where "homeomorphism T T f g" "\<And>i. i \<in> K \<Longrightarrow> f (id i) = \<gamma> i" "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> S" "bounded {x. \<not> (f x = x \<and> g x = x)}"
  4768   proof (rule homeomorphism_moving_points_exists [OF True \<open>open S\<close> \<open>connected S\<close> \<open>S \<subseteq> T\<close> \<open>finite K\<close>])
  4769     show "\<And>i. i \<in> K \<Longrightarrow> id i \<in> S \<and> \<gamma> i \<in> S"
  4770       using \<open>P \<subseteq> U\<close> \<open>bij_betw \<gamma> K P\<close> \<open>K \<subseteq> S\<close> \<open>U \<subseteq> S\<close> bij_betwE by blast
  4771     show "pairwise (\<lambda>i j. id i \<noteq> id j \<and> \<gamma> i \<noteq> \<gamma> j) K"
  4772       using \<gamma> by (auto simp: pairwise_def bij_betw_def inj_on_def)
  4773   qed (use affine_hull_open assms that in auto)
  4774   then show ?thesis
  4775     using \<gamma> \<open>P \<subseteq> U\<close> bij_betwE by (fastforce simp add: intro!: that)
  4776 next
  4777   case False
  4778   with DIM_positive have "DIM('a) = 1"
  4779     by (simp add: dual_order.antisym)
  4780   then obtain h::"'a \<Rightarrow>real" and j
  4781   where "linear h" "linear j"
  4782     and noh: "\<And>x. norm(h x) = norm x" and noj: "\<And>y. norm(j y) = norm y"
  4783     and hj:  "\<And>x. j(h x) = x" "\<And>y. h(j y) = y"
  4784     and ranh: "surj h"
  4785     using isomorphisms_UNIV_UNIV
  4786     by (metis (mono_tags, hide_lams) DIM_real UNIV_eq_I range_eqI)
  4787   obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g"
  4788                and f: "\<And>x. x \<in> h ` K \<Longrightarrow> f x \<in> h ` U"
  4789                and sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> h ` S"
  4790                and bou: "bounded {x. \<not> (f x = x \<and> g x = x)}"
  4791     apply (rule homeomorphism_grouping_point_4 [of "h ` U" "h ` S" "h ` K" "h ` T"])
  4792     by (simp_all add: assms image_mono  \<open>linear h\<close> open_surjective_linear_image connected_linear_image ranh)
  4793   have jf: "j (f (h x)) = x \<longleftrightarrow> f (h x) = h x" for x
  4794     by (metis hj)
  4795   have jg: "j (g (h x)) = x \<longleftrightarrow> g (h x) = h x" for x
  4796     by (metis hj)
  4797   have cont_hj: "continuous_on X h"  "continuous_on Y j" for X Y
  4798     by (simp_all add: \<open>linear h\<close> \<open>linear j\<close> linear_linear linear_continuous_on)
  4799   show ?thesis
  4800   proof
  4801     show "homeomorphism T T (j \<circ> f \<circ> h) (j \<circ> g \<circ> h)"
  4802     proof
  4803       show "continuous_on T (j \<circ> f \<circ> h)" "continuous_on T (j \<circ> g \<circ> h)"
  4804         using hom homeomorphism_def
  4805         by (blast intro: continuous_on_compose cont_hj)+
  4806       show "(j \<circ> f \<circ> h) ` T \<subseteq> T" "(j \<circ> g \<circ> h) ` T \<subseteq> T"
  4807         by auto (metis (mono_tags, hide_lams) hj(1) hom homeomorphism_def imageE imageI)+
  4808       show "\<And>x. x \<in> T \<Longrightarrow> (j \<circ> g \<circ> h) ((j \<circ> f \<circ> h) x) = x"
  4809         using hj hom homeomorphism_apply1 by fastforce
  4810       show "\<And>y. y \<in> T \<Longrightarrow> (j \<circ> f \<circ> h) ((j \<circ> g \<circ> h) y) = y"
  4811         using hj hom homeomorphism_apply2 by fastforce
  4812     qed
  4813     show "{x. \<not> ((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)} \<subseteq> S"
  4814       apply (clarsimp simp: jf jg hj)
  4815       using sub hj
  4816       apply (drule_tac c="h x" in subsetD, force)
  4817       by (metis imageE)
  4818     have "bounded (j ` {x. (\<not> (f x = x \<and> g x = x))})"
  4819       by (rule bounded_linear_image [OF bou]) (use \<open>linear j\<close> linear_conv_bounded_linear in auto)
  4820     moreover
  4821     have *: "{x. \<not>((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)} = j ` {x. (\<not> (f x = x \<and> g x = x))}"
  4822       using hj by (auto simp: jf jg image_iff, metis+)
  4823     ultimately show "bounded {x. \<not> ((j \<circ> f \<circ> h) x = x \<and> (j \<circ> g \<circ> h) x = x)}"
  4824       by metis
  4825     show "\<And>x. x \<in> K \<Longrightarrow> (j \<circ> f \<circ> h) x \<in> U"
  4826       using f hj by fastforce
  4827   qed
  4828 qed
  4831 proposition%unimportant homeomorphism_grouping_points_exists_gen:
  4832   fixes S :: "'a::euclidean_space set"
  4833   assumes opeU: "openin (top_of_set S) U"
  4834       and opeS: "openin (top_of_set (affine hull S)) S"
  4835       and "U \<noteq> {}" "finite K" "K \<subseteq> S" and S: "S \<subseteq> T" "T \<subseteq> affine hull S" "connected S"
  4836   obtains f g where "homeomorphism T T f g" "{x. (\<not> (f x = x \<and> g x = x))} \<subseteq> S"
  4837                     "bounded {x. (\<not> (f x = x \<and> g x = x))}" "\<And>x. x \<in> K \<Longrightarrow> f x \<in> U"
  4838 proof (cases "2 \<le> aff_dim S")
  4839   case True
  4840   have opeU': "openin (top_of_set (affine hull S)) U"
  4841     using opeS opeU openin_trans by blast
  4842   obtain u where "u \<in> U" "u \<in> S"
  4843     using \<open>U \<noteq> {}\<close> opeU openin_imp_subset by fastforce+
  4844   have "infinite U"
  4845     apply (rule infinite_openin [OF opeU \<open>u \<in> U\<close>])
  4846     apply (rule connected_imp_perfect_aff_dim [OF \<open>connected S\<close> _ \<open>u \<in> S\<close>])
  4847     using True apply simp
  4848     done
  4849   then obtain P where "P \<subseteq> U" "finite P" "card K = card P"
  4850     using infinite_arbitrarily_large by metis
  4851   then obtain \<gamma> where \<gamma>: "bij_betw \<gamma> K P"
  4852     using \<open>finite K\<close> finite_same_card_bij by blast
  4853   have "\<exists>f g. homeomorphism T T f g \<and> (\<forall>i \<in> K. f(id i) = \<gamma> i) \<and>
  4854                {x. \<not> (f x = x \<and> g x = x)} \<subseteq> S \<and> bounded {x. \<not> (f x = x \<and> g x = x)}"
  4855   proof (rule homeomorphism_moving_points_exists_gen [OF \<open>finite K\<close> _ _ True opeS S])
  4856     show "\<And>i. i \<in> K \<Longrightarrow> id i \<in> S \<and> \<gamma> i \<in> S"
  4857       by (metis id_apply opeU openin_contains_cball subsetCE \<open>P \<subseteq> U\<close> \<open>bij_betw \<gamma> K P\<close> \<open>K \<subseteq> S\<close> bij_betwE)
  4858     show "pairwise (\<lambda>i j. id i \<noteq> id j \<and> \<gamma> i \<noteq> \<gamma> j) K"
  4859       using \<gamma> by (auto simp: pairwise_def bij_betw_def inj_on_def)
  4860   qed
  4861   then show ?thesis
  4862     using \<gamma> \<open>P \<subseteq> U\<close> bij_betwE by (fastforce simp add: intro!: that)
  4863 next
  4864   case False
  4865   with aff_dim_geq [of S] consider "aff_dim S = -1" | "aff_dim S = 0" | "aff_dim S = 1" by linarith
  4866   then show ?thesis
  4867   proof cases
  4868     assume "aff_dim S = -1"
  4869     then have "S = {}"
  4870       using aff_dim_empty by blast
  4871     then have "False"
  4872       using \<open>U \<noteq> {}\<close> \<open>K \<subseteq> S\<close> openin_imp_subset [OF opeU] by blast
  4873     then show ?thesis ..
  4874   next
  4875     assume "aff_dim S = 0"
  4876     then obtain a where "S = {a}"
  4877       using aff_dim_eq_0 by blast
  4878     then have "K \<subseteq> U"
  4879       using \<open>U \<noteq> {}\<close> \<open>K \<subseteq> S\<close> openin_imp_subset [OF opeU] by blast
  4880     show ?thesis
  4881       apply (rule that [of id id])
  4882       using \<open>K \<subseteq> U\<close> by (auto simp: continuous_on_id intro: homeomorphismI)
  4883   next
  4884     assume "aff_dim S = 1"
  4885     then have "affine hull S homeomorphic (UNIV :: real set)"
  4886       by (auto simp: homeomorphic_affine_sets)
  4887     then obtain h::"'a\<Rightarrow>real" and j where homhj: "homeomorphism (affine hull S) UNIV h j"
  4888       using homeomorphic_def by blast
  4889     then have h: "\<And>x. x \<in> affine hull S \<Longrightarrow> j(h(x)) = x" and j: "\<And>y. j y \<in> affine hull S \<and> h(j y) = y"
  4890       by (auto simp: homeomorphism_def)
  4891     have connh: "connected (h ` S)"
  4892       by (meson Topological_Spaces.connected_continuous_image \<open>connected S\<close> homeomorphism_cont1 homeomorphism_of_subsets homhj hull_subset top_greatest)
  4893     have hUS: "h ` U \<subseteq> h ` S"
  4894       by (meson homeomorphism_imp_open_map homeomorphism_of_subsets homhj hull_subset opeS opeU open_UNIV openin_open_eq)
  4895     have opn: "openin (top_of_set (affine hull S)) U \<Longrightarrow> open (h ` U)" for U
  4896       using homeomorphism_imp_open_map [OF homhj]  by simp
  4897     have "open (h ` U)" "open (h ` S)"
  4898       by (auto intro: opeS opeU openin_trans opn)
  4899     then obtain f g where hom: "homeomorphism (h ` T) (h ` T) f g"
  4900                  and f: "\<And>x. x \<in> h ` K \<Longrightarrow> f x \<in> h ` U"
  4901                  and sub: "{x. \<not> (f x = x \<and> g x = x)} \<subseteq> h ` S"
  4902                  and bou: "bounded {x. \<not> (f x = x \<and> g x = x)}"
  4903       apply (rule homeomorphism_grouping_points_exists [of "h ` U" "h ` S" "h ` K" "h ` T"])
  4904       using assms by (auto simp: connh hUS)
  4905     have jf: "\<And>x. x \<in> affine hull S \<Longrightarrow> j (f (h x)) = x \<longleftrightarrow> f (h x) = h x"
  4906       by (metis h j)
  4907     have jg: "\<And>x. x \<in> affine hull S \<Longrightarrow> j (g (h x)) = x \<longleftrightarrow> g (h x) = h x"
  4908       by (metis h j)
  4909     have cont_hj: "continuous_on T h"  "continuous_on Y j" for Y
  4910       apply (rule continuous_on_subset [OF _ \<open>T \<subseteq> affine hull S\<close>])
  4911       using homeomorphism_def homhj apply blast
  4912       by (meson continuous_on_subset homeomorphism_def homhj top_greatest)
  4913     define f' where "f' \<equiv> \<lambda>x. if x \<in> affine hull S then (j \<circ> f \<circ> h) x else x"
  4914     define g' where "g' \<equiv> \<lambda>x. if x \<in> affine hull S then (j \<circ> g \<circ> h) x else x"
  4915     show ?thesis
  4916     proof
  4917       show "homeomorphism T T f' g'"
  4918       proof
  4919         have "continuous_on T (j \<circ> f \<circ> h)"
  4920           apply (intro continuous_on_compose cont_hj)
  4921           using hom homeomorphism_def by blast
  4922         then show "continuous_on T f'"
  4923           apply (rule continuous_on_eq)
  4924           using \<open>T \<subseteq> affine hull S\<close> f'_def by auto
  4925         have "continuous_on T (j \<circ> g \<circ> h)"
  4926           apply (intro continuous_on_compose cont_hj)
  4927           using hom homeomorphism_def by blast
  4928         then show "continuous_on T g'"
  4929           apply (rule continuous_on_eq)
  4930           using \<open>T \<subseteq> affine hull S\<close> g'_def by auto
  4931         show "f' ` T \<subseteq> T"
  4932         proof (clarsimp simp: f'_def)
  4933           fix x assume "x \<in> T"
  4934           then have "f (h x) \<in> h ` T"
  4935             by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
  4936           then show "j (f (h x)) \<in> T"
  4937             using \<open>T \<subseteq> affine hull S\<close> h by auto
  4938         qed
  4939         show "g' ` T \<subseteq> T"
  4940         proof (clarsimp simp: g'_def)
  4941           fix x assume "x \<in> T"
  4942           then have "g (h x) \<in> h ` T"
  4943             by (metis (no_types) hom homeomorphism_def image_subset_iff subset_refl)
  4944           then show "j (g (h x)) \<in> T"
  4945             using \<open>T \<subseteq> affine hull S\<close> h by auto
  4946         qed
  4947         show "\<And>x. x \<in> T \<Longrightarrow> g' (f' x) = x"
  4948           using h j hom homeomorphism_apply1 by (fastforce simp add: f'_def g'_def)
  4949         show "\<And>y. y \<in> T \<Longrightarrow> f' (g' y) = y"
  4950           using h j hom homeomorphism_apply2 by (fastforce simp add: f'_def g'_def)
  4951       qed
  4952     next
  4953       show "{x. \<not> (f' x = x \<and> g' x = x)} \<subseteq> S"
  4954         apply (clarsimp simp: f'_def g'_def jf jg)
  4955         apply (rule imageE [OF subsetD [OF sub]], force)
  4956         by (metis h hull_inc)
  4957     next
  4958       have "compact (j ` closure {x. \<not> (f x = x \<and> g x = x)})"
  4959         using bou by (auto simp: compact_continuous_image cont_hj)
  4960       then have "bounded (j ` {x. \<not> (f x = x \<and> g x = x)})"
  4961         by (rule bounded_closure_image [OF compact_imp_bounded])
  4962       moreover
  4963       have *: "{x \<in> affine hull S. j (f (h x)) \<noteq> x \<or> j (g (h x)) \<noteq> x} = j ` {x. (\<not> (f x = x \<and> g x = x))}"
  4964         using h j by (auto simp: image_iff; metis)
  4965       ultimately have "bounded {x \<in> affine hull S. j (f (h x)) \<noteq> x \<or> j (g (h x)) \<noteq> x}"
  4966         by metis
  4967       then show "bounded {x. \<not> (f' x = x \<and> g' x = x)}"
  4968         by (simp add: f'_def g'_def Collect_mono bounded_subset)
  4969     next
  4970       show "f' x \<in> U" if "x \<in> K" for x
  4971       proof -
  4972         have "U \<subseteq> S"
  4973           using opeU openin_imp_subset by blast
  4974         then have "j (f (h x)) \<in> U"
  4975           using f h hull_subset that by fastforce
  4976         then show "f' x \<in> U"
  4977           using \<open>K \<subseteq> S\<close> S f'_def that by auto
  4978       qed
  4979     qed
  4980   qed
  4981 qed
  4984 subsection\<open>Nullhomotopic mappings\<close>
  4986 text\<open> A mapping out of a sphere is nullhomotopic iff it extends to the ball.
  4987 This even works out in the degenerate cases when the radius is \<open>\<le>\<close> 0, and
  4988 we also don't need to explicitly assume continuity since it's already implicit
  4989 in both sides of the equivalence.\<close>
  4991 lemma nullhomotopic_from_lemma:
  4992   assumes contg: "continuous_on (cball a r - {a}) g"
  4993       and fa: "\<And>e. 0 < e
  4994                \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>x. x \<noteq> a \<and> norm(x - a) < d \<longrightarrow> norm(g x - f a) < e)"
  4995       and r: "\<And>x. x \<in> cball a r \<and> x \<noteq> a \<Longrightarrow> f x = g x"
  4996     shows "continuous_on (cball a r) f"
  4997 proof (clarsimp simp: continuous_on_eq_continuous_within Ball_def)
  4998   fix x
  4999   assume x: "dist a x \<le> r"
  5000   show "continuous (at x within cball a r) f"
  5001   proof (cases "x=a")
  5002     case True
  5003     then show ?thesis
  5004       by (metis continuous_within_eps_delta fa dist_norm dist_self r)
  5005   next
  5006     case False
  5007     show ?thesis
  5008     proof (rule continuous_transform_within [where f=g and d = "norm(x-a)"])
  5009       have "\<exists>d>0. \<forall>x'\<in>cball a r.
  5010                       dist x' x < d \<longrightarrow> dist (g x') (g x) < e" if "e>0" for e
  5011       proof -
  5012         obtain d where "d > 0"
  5013            and d: "\<And>x'. \<lbrakk>dist x' a \<le> r; x' \<noteq> a; dist x' x < d\<rbrakk> \<Longrightarrow>
  5014                                  dist (g x') (g x) < e"
  5015           using contg False x \<open>e>0\<close>
  5016           unfolding continuous_on_iff by (fastforce simp add: dist_commute intro: that)
  5017         show ?thesis
  5018           using \<open>d > 0\<close> \<open>x \<noteq> a\<close>
  5019           by (rule_tac x="min d (norm(x - a))" in exI)
  5020              (auto simp: dist_commute dist_norm [symmetric]  intro!: d)
  5021       qed
  5022       then show "continuous (at x within cball a r) g"
  5023         using contg False by (auto simp: continuous_within_eps_delta)
  5024       show "0 < norm (x - a)"
  5025         using False by force
  5026       show "x \<in> cball a r"
  5027         by (simp add: x)
  5028       show "\<And>x'. \<lbrakk>x' \<in> cball a r; dist x' x < norm (x - a)\<rbrakk>
  5029         \<Longrightarrow> g x' = f x'"
  5030         by (metis dist_commute dist_norm less_le r)
  5031     qed
  5032   qed
  5033 qed
  5035 proposition nullhomotopic_from_sphere_extension:
  5036   fixes f :: "'M::euclidean_space \<Rightarrow> 'a::real_normed_vector"
  5037   shows  "(\<exists>c. homotopic_with (\<lambda>x. True) (sphere a r) S f (\<lambda>x. c)) \<longleftrightarrow>
  5038           (\<exists>g. continuous_on (cball a r) g \<and> g ` (cball a r) \<subseteq> S \<and>
  5039                (\<forall>x \<in> sphere a r. g x = f x))"
  5040          (is "?lhs = ?rhs")
  5041 proof (cases r "0::real" rule: linorder_cases)
  5042   case equal
  5043   then show ?thesis
  5044     apply (auto simp: homotopic_with)
  5045     apply (rule_tac x="\<lambda>x. h (0, a)" in exI)
  5046      apply (fastforce simp add:)
  5047     using continuous_on_const by blast
  5048 next
  5049   case greater
  5050   let ?P = "continuous_on {x. norm(x - a) = r} f \<and> f ` {x. norm(x - a) = r} \<subseteq> S"
  5051   have ?P if ?lhs using that
  5052   proof
  5053     fix c
  5054     assume c: "homotopic_with (\<lambda>x. True) (sphere a r) S f (\<lambda>x. c)"
  5055     then have contf: "continuous_on (sphere a r) f" and fim: "f ` sphere a r \<subseteq> S"
  5056       by (auto simp: homotopic_with_imp_subset1 homotopic_with_imp_continuous)
  5057     show ?P
  5058       using contf fim by (auto simp: sphere_def dist_norm norm_minus_commute)
  5059   qed
  5060   moreover have ?P if ?rhs using that
  5061   proof
  5062     fix g
  5063     assume g: "continuous_on (cball a r) g \<and> g ` cball a r \<subseteq> S \<and> (\<forall>xa\<in>sphere a r. g xa = f xa)"
  5064     then
  5065     show ?P
  5066       apply (safe elim!: continuous_on_eq [OF continuous_on_subset])
  5067       apply (auto simp: dist_norm norm_minus_commute)
  5068       by (metis dist_norm image_subset_iff mem_sphere norm_minus_commute sphere_cball subsetCE)
  5069   qed
  5070   moreover have ?thesis if ?P
  5071   proof
  5072     assume ?lhs
  5073     then obtain c where "homotopic_with (\<lambda>x. True) (sphere a r) S (\<lambda>x. c) f"
  5074       using homotopic_with_sym by blast
  5075     then obtain h where conth: "continuous_on ({0..1::real} \<times> sphere a r) h"
  5076                     and him: "h ` ({0..1} \<times> sphere a r) \<subseteq> S"
  5077                     and h: "\<And>x. h(0, x) = c" "\<And>x. h(1, x) = f x"
  5078       by (auto simp: homotopic_with_def)
  5079     obtain b1::'M where "b1 \<in> Basis"
  5080       using SOME_Basis by auto
  5081     have "c \<in> S"
  5082       apply (rule him [THEN subsetD])
  5083       apply (rule_tac x = "(0, a + r *\<^sub>R b1)" in image_eqI)
  5084       using h greater \<open>b1 \<in> Basis\<close>
  5085        apply (auto simp: dist_norm)
  5086       done
  5087     have uconth: "uniformly_continuous_on ({0..1::real} \<times> (sphere a r)) h"
  5088       by (force intro: compact_Times conth compact_uniformly_continuous)
  5089     let ?g = "\<lambda>x. h (norm (x - a)/r,
  5090                      a + (if x = a then r *\<^sub>R b1 else (r / norm(x - a)) *\<^sub>R (x - a)))"
  5091     let ?g' = "\<lambda>x. h (norm (x - a)/r, a + (r / norm(x - a)) *\<^sub>R (x - a))"
  5092     show ?rhs
  5093     proof (intro exI conjI)
  5094       have "continuous_on (cball a r - {a}) ?g'"
  5095         apply (rule continuous_on_compose2 [OF conth])
  5096          apply (intro continuous_intros)
  5097         using greater apply (auto simp: dist_norm norm_minus_commute)
  5098         done
  5099       then show "continuous_on (cball a r) ?g"
  5100       proof (rule nullhomotopic_from_lemma)
  5101         show "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> norm (?g' x - ?g a) < e" if "0 < e" for e
  5102         proof -
  5103           obtain d where "0 < d"
  5104              and d: "\<And>x x'. \<lbrakk>x \<in> {0..1} \<times> sphere a r; x' \<in> {0..1} \<times> sphere a r; dist x' x < d\<rbrakk>
  5105                         \<Longrightarrow> dist (h x') (h x) < e"
  5106             using uniformly_continuous_onE [OF uconth \<open>0 < e\<close>] by auto
  5107           have *: "norm (h (norm (x - a) / r,
  5108                          a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + r *\<^sub>R b1)) < e"
  5109                    if "x \<noteq> a" "norm (x - a) < r" "norm (x - a) < d * r" for x
  5110           proof -
  5111             have "norm (h (norm (x - a) / r, a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + r *\<^sub>R b1)) =
  5112                   norm (h (norm (x - a) / r, a + (r / norm (x - a)) *\<^sub>R (x - a)) - h (0, a + (r / norm (x - a)) *\<^sub>R (x - a)))"
  5113               by (simp add: h)
  5114             also have "\<dots> < e"
  5115               apply (rule d [unfolded dist_norm])
  5116               using greater \<open>0 < d\<close> \<open>b1 \<in> Basis\<close> that
  5117                 by (auto simp: dist_norm divide_simps)
  5118             finally show ?thesis .
  5119           qed
  5120           show ?thesis
  5121             apply (rule_tac x = "min r (d * r)" in exI)
  5122             using greater \<open>0 < d\<close> by (auto simp: *)
  5123         qed
  5124         show "\<And>x. x \<in> cball a r \<and> x \<noteq> a \<Longrightarrow> ?g x = ?g' x"
  5125           by auto
  5126       qed
  5127     next
  5128       show "?g ` cball a r \<subseteq> S"
  5129         using greater him \<open>c \<in> S\<close>
  5130         by (force simp: h dist_norm norm_minus_commute)
  5131     next
  5132       show "\<forall>x\<in>sphere a r. ?g x = f x"
  5133         using greater by (auto simp: h dist_norm norm_minus_commute)
  5134     qed
  5135   next
  5136     assume ?rhs
  5137     then obtain g where contg: "continuous_on (cball a r) g"
  5138                     and gim: "g ` cball a r \<subseteq> S"
  5139                     and gf: "\<forall>x \<in> sphere a r. g x = f x"
  5140       by auto
  5141     let ?h = "\<lambda>y. g (a + (fst y) *\<^sub>R (snd y - a))"
  5142     have "continuous_on ({0..1} \<times> sphere a r) ?h"
  5143       apply (rule continuous_on_compose2 [OF contg])
  5144        apply (intro continuous_intros)
  5145       apply (auto simp: dist_norm norm_minus_commute mult_left_le_one_le)
  5146       done
  5147     moreover
  5148     have "?h ` ({0..1} \<times> sphere a r) \<subseteq> S"
  5149       by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gim [THEN subsetD])
  5150     moreover
  5151     have "\<forall>x\<in>sphere a r. ?h (0, x) = g a" "\<forall>x\<in>sphere a r. ?h (1, x) = f x"
  5152       by (auto simp: dist_norm norm_minus_commute mult_left_le_one_le gf)
  5153     ultimately
  5154     show ?lhs
  5155       apply (subst homotopic_with_sym)
  5156       apply (rule_tac x="g a" in exI)
  5157       apply (auto simp: homotopic_with)
  5158       done
  5159   qed
  5160   ultimately
  5161   show ?thesis by meson
  5162 qed simp
  5164 end