src/HOL/Library/Preorder.thy
 author wenzelm Fri Oct 09 20:26:03 2015 +0200 (2015-10-09) changeset 61378 3e04c9ca001a parent 60500 903bb1495239 child 61384 9f5145281888 permissions -rw-r--r--
discontinued specific HTML syntax;
```     1 (* Author: Florian Haftmann, TU Muenchen *)
```
```     2
```
```     3 section \<open>Preorders with explicit equivalence relation\<close>
```
```     4
```
```     5 theory Preorder
```
```     6 imports Orderings
```
```     7 begin
```
```     8
```
```     9 class preorder_equiv = preorder
```
```    10 begin
```
```    11
```
```    12 definition equiv :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
```
```    13   "equiv x y \<longleftrightarrow> x \<le> y \<and> y \<le> x"
```
```    14
```
```    15 notation
```
```    16   equiv ("op ~~") and
```
```    17   equiv ("(_/ ~~ _)" [51, 51] 50)
```
```    18
```
```    19 notation (xsymbols)
```
```    20   equiv ("op \<approx>") and
```
```    21   equiv ("(_/ \<approx> _)"  [51, 51] 50)
```
```    22
```
```    23 lemma refl [iff]:
```
```    24   "x \<approx> x"
```
```    25   unfolding equiv_def by simp
```
```    26
```
```    27 lemma trans:
```
```    28   "x \<approx> y \<Longrightarrow> y \<approx> z \<Longrightarrow> x \<approx> z"
```
```    29   unfolding equiv_def by (auto intro: order_trans)
```
```    30
```
```    31 lemma antisym:
```
```    32   "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x \<approx> y"
```
```    33   unfolding equiv_def ..
```
```    34
```
```    35 lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> x \<approx> y"
```
```    36   by (auto simp add: equiv_def less_le_not_le)
```
```    37
```
```    38 lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x \<approx> y"
```
```    39   by (auto simp add: equiv_def less_le)
```
```    40
```
```    41 lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x \<approx> y"
```
```    42   by (simp add: less_le)
```
```    43
```
```    44 lemma less_imp_not_eq: "x < y \<Longrightarrow> x \<approx> y \<longleftrightarrow> False"
```
```    45   by (simp add: less_le)
```
```    46
```
```    47 lemma less_imp_not_eq2: "x < y \<Longrightarrow> y \<approx> x \<longleftrightarrow> False"
```
```    48   by (simp add: equiv_def less_le)
```
```    49
```
```    50 lemma neq_le_trans: "\<not> a \<approx> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"
```
```    51   by (simp add: less_le)
```
```    52
```
```    53 lemma le_neq_trans: "a \<le> b \<Longrightarrow> \<not> a \<approx> b \<Longrightarrow> a < b"
```
```    54   by (simp add: less_le)
```
```    55
```
```    56 lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x \<approx> y"
```
```    57   by (simp add: equiv_def)
```
```    58
```
```    59 end
```
```    60
```
```    61 end
```