src/HOL/Computational_Algebra/Formal_Power_Series.thy
 author haftmann Sun Oct 08 22:28:20 2017 +0200 (20 months ago) changeset 66804 3f9bb52082c4 parent 66550 e5d82cf3c387 child 66806 a4e82b58d833 permissions -rw-r--r--
avoid name clashes on interpretation of abstract locales
```     1 (*  Title:      HOL/Computational_Algebra/Formal_Power_Series.thy
```
```     2     Author:     Amine Chaieb, University of Cambridge
```
```     3 *)
```
```     4
```
```     5 section \<open>A formalization of formal power series\<close>
```
```     6
```
```     7 theory Formal_Power_Series
```
```     8 imports
```
```     9   Complex_Main
```
```    10   Euclidean_Algorithm
```
```    11 begin
```
```    12
```
```    13
```
```    14 subsection \<open>The type of formal power series\<close>
```
```    15
```
```    16 typedef 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
```
```    17   morphisms fps_nth Abs_fps
```
```    18   by simp
```
```    19
```
```    20 notation fps_nth (infixl "\$" 75)
```
```    21
```
```    22 lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p \$ n = q \$ n)"
```
```    23   by (simp add: fps_nth_inject [symmetric] fun_eq_iff)
```
```    24
```
```    25 lemma fps_ext: "(\<And>n. p \$ n = q \$ n) \<Longrightarrow> p = q"
```
```    26   by (simp add: expand_fps_eq)
```
```    27
```
```    28 lemma fps_nth_Abs_fps [simp]: "Abs_fps f \$ n = f n"
```
```    29   by (simp add: Abs_fps_inverse)
```
```    30
```
```    31 text \<open>Definition of the basic elements 0 and 1 and the basic operations of addition,
```
```    32   negation and multiplication.\<close>
```
```    33
```
```    34 instantiation fps :: (zero) zero
```
```    35 begin
```
```    36   definition fps_zero_def: "0 = Abs_fps (\<lambda>n. 0)"
```
```    37   instance ..
```
```    38 end
```
```    39
```
```    40 lemma fps_zero_nth [simp]: "0 \$ n = 0"
```
```    41   unfolding fps_zero_def by simp
```
```    42
```
```    43 instantiation fps :: ("{one, zero}") one
```
```    44 begin
```
```    45   definition fps_one_def: "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)"
```
```    46   instance ..
```
```    47 end
```
```    48
```
```    49 lemma fps_one_nth [simp]: "1 \$ n = (if n = 0 then 1 else 0)"
```
```    50   unfolding fps_one_def by simp
```
```    51
```
```    52 instantiation fps :: (plus) plus
```
```    53 begin
```
```    54   definition fps_plus_def: "op + = (\<lambda>f g. Abs_fps (\<lambda>n. f \$ n + g \$ n))"
```
```    55   instance ..
```
```    56 end
```
```    57
```
```    58 lemma fps_add_nth [simp]: "(f + g) \$ n = f \$ n + g \$ n"
```
```    59   unfolding fps_plus_def by simp
```
```    60
```
```    61 instantiation fps :: (minus) minus
```
```    62 begin
```
```    63   definition fps_minus_def: "op - = (\<lambda>f g. Abs_fps (\<lambda>n. f \$ n - g \$ n))"
```
```    64   instance ..
```
```    65 end
```
```    66
```
```    67 lemma fps_sub_nth [simp]: "(f - g) \$ n = f \$ n - g \$ n"
```
```    68   unfolding fps_minus_def by simp
```
```    69
```
```    70 instantiation fps :: (uminus) uminus
```
```    71 begin
```
```    72   definition fps_uminus_def: "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f \$ n)))"
```
```    73   instance ..
```
```    74 end
```
```    75
```
```    76 lemma fps_neg_nth [simp]: "(- f) \$ n = - (f \$ n)"
```
```    77   unfolding fps_uminus_def by simp
```
```    78
```
```    79 instantiation fps :: ("{comm_monoid_add, times}") times
```
```    80 begin
```
```    81   definition fps_times_def: "op * = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f \$ i * g \$ (n - i)))"
```
```    82   instance ..
```
```    83 end
```
```    84
```
```    85 lemma fps_mult_nth: "(f * g) \$ n = (\<Sum>i=0..n. f\$i * g\$(n - i))"
```
```    86   unfolding fps_times_def by simp
```
```    87
```
```    88 lemma fps_mult_nth_0 [simp]: "(f * g) \$ 0 = f \$ 0 * g \$ 0"
```
```    89   unfolding fps_times_def by simp
```
```    90
```
```    91 declare atLeastAtMost_iff [presburger]
```
```    92 declare Bex_def [presburger]
```
```    93 declare Ball_def [presburger]
```
```    94
```
```    95 lemma mult_delta_left:
```
```    96   fixes x y :: "'a::mult_zero"
```
```    97   shows "(if b then x else 0) * y = (if b then x * y else 0)"
```
```    98   by simp
```
```    99
```
```   100 lemma mult_delta_right:
```
```   101   fixes x y :: "'a::mult_zero"
```
```   102   shows "x * (if b then y else 0) = (if b then x * y else 0)"
```
```   103   by simp
```
```   104
```
```   105 lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)"
```
```   106   by auto
```
```   107
```
```   108 lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
```
```   109   by auto
```
```   110
```
```   111
```
```   112 subsection \<open>Formal power series form a commutative ring with unity, if the range of sequences
```
```   113   they represent is a commutative ring with unity\<close>
```
```   114
```
```   115 instance fps :: (semigroup_add) semigroup_add
```
```   116 proof
```
```   117   fix a b c :: "'a fps"
```
```   118   show "a + b + c = a + (b + c)"
```
```   119     by (simp add: fps_ext add.assoc)
```
```   120 qed
```
```   121
```
```   122 instance fps :: (ab_semigroup_add) ab_semigroup_add
```
```   123 proof
```
```   124   fix a b :: "'a fps"
```
```   125   show "a + b = b + a"
```
```   126     by (simp add: fps_ext add.commute)
```
```   127 qed
```
```   128
```
```   129 lemma fps_mult_assoc_lemma:
```
```   130   fixes k :: nat
```
```   131     and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
```
```   132   shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) =
```
```   133          (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))"
```
```   134   by (induct k) (simp_all add: Suc_diff_le sum.distrib add.assoc)
```
```   135
```
```   136 instance fps :: (semiring_0) semigroup_mult
```
```   137 proof
```
```   138   fix a b c :: "'a fps"
```
```   139   show "(a * b) * c = a * (b * c)"
```
```   140   proof (rule fps_ext)
```
```   141     fix n :: nat
```
```   142     have "(\<Sum>j=0..n. \<Sum>i=0..j. a\$i * b\$(j - i) * c\$(n - j)) =
```
```   143           (\<Sum>j=0..n. \<Sum>i=0..n - j. a\$j * b\$i * c\$(n - j - i))"
```
```   144       by (rule fps_mult_assoc_lemma)
```
```   145     then show "((a * b) * c) \$ n = (a * (b * c)) \$ n"
```
```   146       by (simp add: fps_mult_nth sum_distrib_left sum_distrib_right mult.assoc)
```
```   147   qed
```
```   148 qed
```
```   149
```
```   150 lemma fps_mult_commute_lemma:
```
```   151   fixes n :: nat
```
```   152     and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add"
```
```   153   shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)"
```
```   154   by (rule sum.reindex_bij_witness[where i="op - n" and j="op - n"]) auto
```
```   155
```
```   156 instance fps :: (comm_semiring_0) ab_semigroup_mult
```
```   157 proof
```
```   158   fix a b :: "'a fps"
```
```   159   show "a * b = b * a"
```
```   160   proof (rule fps_ext)
```
```   161     fix n :: nat
```
```   162     have "(\<Sum>i=0..n. a\$i * b\$(n - i)) = (\<Sum>i=0..n. a\$(n - i) * b\$i)"
```
```   163       by (rule fps_mult_commute_lemma)
```
```   164     then show "(a * b) \$ n = (b * a) \$ n"
```
```   165       by (simp add: fps_mult_nth mult.commute)
```
```   166   qed
```
```   167 qed
```
```   168
```
```   169 instance fps :: (monoid_add) monoid_add
```
```   170 proof
```
```   171   fix a :: "'a fps"
```
```   172   show "0 + a = a" by (simp add: fps_ext)
```
```   173   show "a + 0 = a" by (simp add: fps_ext)
```
```   174 qed
```
```   175
```
```   176 instance fps :: (comm_monoid_add) comm_monoid_add
```
```   177 proof
```
```   178   fix a :: "'a fps"
```
```   179   show "0 + a = a" by (simp add: fps_ext)
```
```   180 qed
```
```   181
```
```   182 instance fps :: (semiring_1) monoid_mult
```
```   183 proof
```
```   184   fix a :: "'a fps"
```
```   185   show "1 * a = a"
```
```   186     by (simp add: fps_ext fps_mult_nth mult_delta_left sum.delta)
```
```   187   show "a * 1 = a"
```
```   188     by (simp add: fps_ext fps_mult_nth mult_delta_right sum.delta')
```
```   189 qed
```
```   190
```
```   191 instance fps :: (cancel_semigroup_add) cancel_semigroup_add
```
```   192 proof
```
```   193   fix a b c :: "'a fps"
```
```   194   show "b = c" if "a + b = a + c"
```
```   195     using that by (simp add: expand_fps_eq)
```
```   196   show "b = c" if "b + a = c + a"
```
```   197     using that by (simp add: expand_fps_eq)
```
```   198 qed
```
```   199
```
```   200 instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
```
```   201 proof
```
```   202   fix a b c :: "'a fps"
```
```   203   show "a + b - a = b"
```
```   204     by (simp add: expand_fps_eq)
```
```   205   show "a - b - c = a - (b + c)"
```
```   206     by (simp add: expand_fps_eq diff_diff_eq)
```
```   207 qed
```
```   208
```
```   209 instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
```
```   210
```
```   211 instance fps :: (group_add) group_add
```
```   212 proof
```
```   213   fix a b :: "'a fps"
```
```   214   show "- a + a = 0" by (simp add: fps_ext)
```
```   215   show "a + - b = a - b" by (simp add: fps_ext)
```
```   216 qed
```
```   217
```
```   218 instance fps :: (ab_group_add) ab_group_add
```
```   219 proof
```
```   220   fix a b :: "'a fps"
```
```   221   show "- a + a = 0" by (simp add: fps_ext)
```
```   222   show "a - b = a + - b" by (simp add: fps_ext)
```
```   223 qed
```
```   224
```
```   225 instance fps :: (zero_neq_one) zero_neq_one
```
```   226   by standard (simp add: expand_fps_eq)
```
```   227
```
```   228 instance fps :: (semiring_0) semiring
```
```   229 proof
```
```   230   fix a b c :: "'a fps"
```
```   231   show "(a + b) * c = a * c + b * c"
```
```   232     by (simp add: expand_fps_eq fps_mult_nth distrib_right sum.distrib)
```
```   233   show "a * (b + c) = a * b + a * c"
```
```   234     by (simp add: expand_fps_eq fps_mult_nth distrib_left sum.distrib)
```
```   235 qed
```
```   236
```
```   237 instance fps :: (semiring_0) semiring_0
```
```   238 proof
```
```   239   fix a :: "'a fps"
```
```   240   show "0 * a = 0"
```
```   241     by (simp add: fps_ext fps_mult_nth)
```
```   242   show "a * 0 = 0"
```
```   243     by (simp add: fps_ext fps_mult_nth)
```
```   244 qed
```
```   245
```
```   246 instance fps :: (semiring_0_cancel) semiring_0_cancel ..
```
```   247
```
```   248 instance fps :: (semiring_1) semiring_1 ..
```
```   249
```
```   250
```
```   251 subsection \<open>Selection of the nth power of the implicit variable in the infinite sum\<close>
```
```   252
```
```   253 lemma fps_square_nth: "(f^2) \$ n = (\<Sum>k\<le>n. f \$ k * f \$ (n - k))"
```
```   254   by (simp add: power2_eq_square fps_mult_nth atLeast0AtMost)
```
```   255
```
```   256 lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f \$n \<noteq> 0)"
```
```   257   by (simp add: expand_fps_eq)
```
```   258
```
```   259 lemma fps_nonzero_nth_minimal: "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f \$ n \<noteq> 0 \<and> (\<forall>m < n. f \$ m = 0))"
```
```   260   (is "?lhs \<longleftrightarrow> ?rhs")
```
```   261 proof
```
```   262   let ?n = "LEAST n. f \$ n \<noteq> 0"
```
```   263   show ?rhs if ?lhs
```
```   264   proof -
```
```   265     from that have "\<exists>n. f \$ n \<noteq> 0"
```
```   266       by (simp add: fps_nonzero_nth)
```
```   267     then have "f \$ ?n \<noteq> 0"
```
```   268       by (rule LeastI_ex)
```
```   269     moreover have "\<forall>m<?n. f \$ m = 0"
```
```   270       by (auto dest: not_less_Least)
```
```   271     ultimately have "f \$ ?n \<noteq> 0 \<and> (\<forall>m<?n. f \$ m = 0)" ..
```
```   272     then show ?thesis ..
```
```   273   qed
```
```   274   show ?lhs if ?rhs
```
```   275     using that by (auto simp add: expand_fps_eq)
```
```   276 qed
```
```   277
```
```   278 lemma fps_eq_iff: "f = g \<longleftrightarrow> (\<forall>n. f \$ n = g \$n)"
```
```   279   by (rule expand_fps_eq)
```
```   280
```
```   281 lemma fps_sum_nth: "sum f S \$ n = sum (\<lambda>k. (f k) \$ n) S"
```
```   282 proof (cases "finite S")
```
```   283   case True
```
```   284   then show ?thesis by (induct set: finite) auto
```
```   285 next
```
```   286   case False
```
```   287   then show ?thesis by simp
```
```   288 qed
```
```   289
```
```   290
```
```   291 subsection \<open>Injection of the basic ring elements and multiplication by scalars\<close>
```
```   292
```
```   293 definition "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)"
```
```   294
```
```   295 lemma fps_nth_fps_const [simp]: "fps_const c \$ n = (if n = 0 then c else 0)"
```
```   296   unfolding fps_const_def by simp
```
```   297
```
```   298 lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0"
```
```   299   by (simp add: fps_ext)
```
```   300
```
```   301 lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1"
```
```   302   by (simp add: fps_ext)
```
```   303
```
```   304 lemma fps_const_neg [simp]: "- (fps_const (c::'a::ring)) = fps_const (- c)"
```
```   305   by (simp add: fps_ext)
```
```   306
```
```   307 lemma fps_const_add [simp]: "fps_const (c::'a::monoid_add) + fps_const d = fps_const (c + d)"
```
```   308   by (simp add: fps_ext)
```
```   309
```
```   310 lemma fps_const_sub [simp]: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)"
```
```   311   by (simp add: fps_ext)
```
```   312
```
```   313 lemma fps_const_mult[simp]: "fps_const (c::'a::ring) * fps_const d = fps_const (c * d)"
```
```   314   by (simp add: fps_eq_iff fps_mult_nth sum.neutral)
```
```   315
```
```   316 lemma fps_const_add_left: "fps_const (c::'a::monoid_add) + f =
```
```   317     Abs_fps (\<lambda>n. if n = 0 then c + f\$0 else f\$n)"
```
```   318   by (simp add: fps_ext)
```
```   319
```
```   320 lemma fps_const_add_right: "f + fps_const (c::'a::monoid_add) =
```
```   321     Abs_fps (\<lambda>n. if n = 0 then f\$0 + c else f\$n)"
```
```   322   by (simp add: fps_ext)
```
```   323
```
```   324 lemma fps_const_mult_left: "fps_const (c::'a::semiring_0) * f = Abs_fps (\<lambda>n. c * f\$n)"
```
```   325   unfolding fps_eq_iff fps_mult_nth
```
```   326   by (simp add: fps_const_def mult_delta_left sum.delta)
```
```   327
```
```   328 lemma fps_const_mult_right: "f * fps_const (c::'a::semiring_0) = Abs_fps (\<lambda>n. f\$n * c)"
```
```   329   unfolding fps_eq_iff fps_mult_nth
```
```   330   by (simp add: fps_const_def mult_delta_right sum.delta')
```
```   331
```
```   332 lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::semiring_1) * f)\$n = c* f\$n"
```
```   333   by (simp add: fps_mult_nth mult_delta_left sum.delta)
```
```   334
```
```   335 lemma fps_mult_right_const_nth [simp]: "(f * fps_const (c::'a::semiring_1))\$n = f\$n * c"
```
```   336   by (simp add: fps_mult_nth mult_delta_right sum.delta')
```
```   337
```
```   338
```
```   339 subsection \<open>Formal power series form an integral domain\<close>
```
```   340
```
```   341 instance fps :: (ring) ring ..
```
```   342
```
```   343 instance fps :: (ring_1) ring_1
```
```   344   by (intro_classes, auto simp add: distrib_right)
```
```   345
```
```   346 instance fps :: (comm_ring_1) comm_ring_1
```
```   347   by (intro_classes, auto simp add: distrib_right)
```
```   348
```
```   349 instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors
```
```   350 proof
```
```   351   fix a b :: "'a fps"
```
```   352   assume "a \<noteq> 0" and "b \<noteq> 0"
```
```   353   then obtain i j where i: "a \$ i \<noteq> 0" "\<forall>k<i. a \$ k = 0" and j: "b \$ j \<noteq> 0" "\<forall>k<j. b \$ k =0"
```
```   354     unfolding fps_nonzero_nth_minimal
```
```   355     by blast+
```
```   356   have "(a * b) \$ (i + j) = (\<Sum>k=0..i+j. a \$ k * b \$ (i + j - k))"
```
```   357     by (rule fps_mult_nth)
```
```   358   also have "\<dots> = (a \$ i * b \$ (i + j - i)) + (\<Sum>k\<in>{0..i+j} - {i}. a \$ k * b \$ (i + j - k))"
```
```   359     by (rule sum.remove) simp_all
```
```   360   also have "(\<Sum>k\<in>{0..i+j}-{i}. a \$ k * b \$ (i + j - k)) = 0"
```
```   361   proof (rule sum.neutral [rule_format])
```
```   362     fix k assume "k \<in> {0..i+j} - {i}"
```
```   363     then have "k < i \<or> i+j-k < j"
```
```   364       by auto
```
```   365     then show "a \$ k * b \$ (i + j - k) = 0"
```
```   366       using i j by auto
```
```   367   qed
```
```   368   also have "a \$ i * b \$ (i + j - i) + 0 = a \$ i * b \$ j"
```
```   369     by simp
```
```   370   also have "a \$ i * b \$ j \<noteq> 0"
```
```   371     using i j by simp
```
```   372   finally have "(a*b) \$ (i+j) \<noteq> 0" .
```
```   373   then show "a * b \<noteq> 0"
```
```   374     unfolding fps_nonzero_nth by blast
```
```   375 qed
```
```   376
```
```   377 instance fps :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
```
```   378
```
```   379 instance fps :: (idom) idom ..
```
```   380
```
```   381 lemma numeral_fps_const: "numeral k = fps_const (numeral k)"
```
```   382   by (induct k) (simp_all only: numeral.simps fps_const_1_eq_1
```
```   383     fps_const_add [symmetric])
```
```   384
```
```   385 lemma neg_numeral_fps_const:
```
```   386   "(- numeral k :: 'a :: ring_1 fps) = fps_const (- numeral k)"
```
```   387   by (simp add: numeral_fps_const)
```
```   388
```
```   389 lemma fps_numeral_nth: "numeral n \$ i = (if i = 0 then numeral n else 0)"
```
```   390   by (simp add: numeral_fps_const)
```
```   391
```
```   392 lemma fps_numeral_nth_0 [simp]: "numeral n \$ 0 = numeral n"
```
```   393   by (simp add: numeral_fps_const)
```
```   394
```
```   395 lemma fps_of_nat: "fps_const (of_nat c) = of_nat c"
```
```   396   by (induction c) (simp_all add: fps_const_add [symmetric] del: fps_const_add)
```
```   397
```
```   398 lemma numeral_neq_fps_zero [simp]: "(numeral f :: 'a :: field_char_0 fps) \<noteq> 0"
```
```   399 proof
```
```   400   assume "numeral f = (0 :: 'a fps)"
```
```   401   from arg_cong[of _ _ "\<lambda>F. F \$ 0", OF this] show False by simp
```
```   402 qed
```
```   403
```
```   404
```
```   405 subsection \<open>The efps_Xtractor series fps_X\<close>
```
```   406
```
```   407 lemma minus_one_power_iff: "(- (1::'a::comm_ring_1)) ^ n = (if even n then 1 else - 1)"
```
```   408   by (induct n) auto
```
```   409
```
```   410 definition "fps_X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)"
```
```   411
```
```   412 lemma fps_X_mult_nth [simp]:
```
```   413   "(fps_X * (f :: 'a::semiring_1 fps)) \$n = (if n = 0 then 0 else f \$ (n - 1))"
```
```   414 proof (cases "n = 0")
```
```   415   case False
```
```   416   have "(fps_X * f) \$n = (\<Sum>i = 0..n. fps_X \$ i * f \$ (n - i))"
```
```   417     by (simp add: fps_mult_nth)
```
```   418   also have "\<dots> = f \$ (n - 1)"
```
```   419     using False by (simp add: fps_X_def mult_delta_left sum.delta)
```
```   420   finally show ?thesis
```
```   421     using False by simp
```
```   422 next
```
```   423   case True
```
```   424   then show ?thesis
```
```   425     by (simp add: fps_mult_nth fps_X_def)
```
```   426 qed
```
```   427
```
```   428 lemma fps_X_mult_right_nth[simp]:
```
```   429   "((a::'a::semiring_1 fps) * fps_X) \$ n = (if n = 0 then 0 else a \$ (n - 1))"
```
```   430 proof -
```
```   431   have "(a * fps_X) \$ n = (\<Sum>i = 0..n. a \$ i * (if n - i = Suc 0 then 1 else 0))"
```
```   432     by (simp add: fps_times_def fps_X_def)
```
```   433   also have "\<dots> = (\<Sum>i = 0..n. if i = n - 1 then if n = 0 then 0 else a \$ i else 0)"
```
```   434     by (intro sum.cong) auto
```
```   435   also have "\<dots> = (if n = 0 then 0 else a \$ (n - 1))" by (simp add: sum.delta)
```
```   436   finally show ?thesis .
```
```   437 qed
```
```   438
```
```   439 lemma fps_mult_fps_X_commute: "fps_X * (a :: 'a :: semiring_1 fps) = a * fps_X"
```
```   440   by (simp add: fps_eq_iff)
```
```   441
```
```   442 lemma fps_X_power_iff: "fps_X ^ n = Abs_fps (\<lambda>m. if m = n then 1 else 0)"
```
```   443   by (induction n) (auto simp: fps_eq_iff)
```
```   444
```
```   445 lemma fps_X_nth[simp]: "fps_X\$n = (if n = 1 then 1 else 0)"
```
```   446   by (simp add: fps_X_def)
```
```   447
```
```   448 lemma fps_X_power_nth[simp]: "(fps_X^k) \$n = (if n = k then 1 else 0::'a::comm_ring_1)"
```
```   449   by (simp add: fps_X_power_iff)
```
```   450
```
```   451 lemma fps_X_power_mult_nth: "(fps_X^k * (f :: 'a::comm_ring_1 fps)) \$n = (if n < k then 0 else f \$ (n - k))"
```
```   452   apply (induct k arbitrary: n)
```
```   453   apply simp
```
```   454   unfolding power_Suc mult.assoc
```
```   455   apply (case_tac n)
```
```   456   apply auto
```
```   457   done
```
```   458
```
```   459 lemma fps_X_power_mult_right_nth:
```
```   460     "((f :: 'a::comm_ring_1 fps) * fps_X^k) \$n = (if n < k then 0 else f \$ (n - k))"
```
```   461   by (metis fps_X_power_mult_nth mult.commute)
```
```   462
```
```   463
```
```   464 lemma fps_X_neq_fps_const [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> fps_const c"
```
```   465 proof
```
```   466   assume "(fps_X::'a fps) = fps_const (c::'a)"
```
```   467   hence "fps_X\$1 = (fps_const (c::'a))\$1" by (simp only:)
```
```   468   thus False by auto
```
```   469 qed
```
```   470
```
```   471 lemma fps_X_neq_zero [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> 0"
```
```   472   by (simp only: fps_const_0_eq_0[symmetric] fps_X_neq_fps_const) simp
```
```   473
```
```   474 lemma fps_X_neq_one [simp]: "(fps_X :: 'a :: zero_neq_one fps) \<noteq> 1"
```
```   475   by (simp only: fps_const_1_eq_1[symmetric] fps_X_neq_fps_const) simp
```
```   476
```
```   477 lemma fps_X_neq_numeral [simp]: "(fps_X :: 'a :: {semiring_1,zero_neq_one} fps) \<noteq> numeral c"
```
```   478   by (simp only: numeral_fps_const fps_X_neq_fps_const) simp
```
```   479
```
```   480 lemma fps_X_pow_eq_fps_X_pow_iff [simp]:
```
```   481   "(fps_X :: ('a :: {comm_ring_1}) fps) ^ m = fps_X ^ n \<longleftrightarrow> m = n"
```
```   482 proof
```
```   483   assume "(fps_X :: 'a fps) ^ m = fps_X ^ n"
```
```   484   hence "(fps_X :: 'a fps) ^ m \$ m = fps_X ^ n \$ m" by (simp only:)
```
```   485   thus "m = n" by (simp split: if_split_asm)
```
```   486 qed simp_all
```
```   487
```
```   488
```
```   489 subsection \<open>Subdegrees\<close>
```
```   490
```
```   491 definition subdegree :: "('a::zero) fps \<Rightarrow> nat" where
```
```   492   "subdegree f = (if f = 0 then 0 else LEAST n. f\$n \<noteq> 0)"
```
```   493
```
```   494 lemma subdegreeI:
```
```   495   assumes "f \$ d \<noteq> 0" and "\<And>i. i < d \<Longrightarrow> f \$ i = 0"
```
```   496   shows   "subdegree f = d"
```
```   497 proof-
```
```   498   from assms(1) have "f \<noteq> 0" by auto
```
```   499   moreover from assms(1) have "(LEAST i. f \$ i \<noteq> 0) = d"
```
```   500   proof (rule Least_equality)
```
```   501     fix e assume "f \$ e \<noteq> 0"
```
```   502     with assms(2) have "\<not>(e < d)" by blast
```
```   503     thus "e \<ge> d" by simp
```
```   504   qed
```
```   505   ultimately show ?thesis unfolding subdegree_def by simp
```
```   506 qed
```
```   507
```
```   508 lemma nth_subdegree_nonzero [simp,intro]: "f \<noteq> 0 \<Longrightarrow> f \$ subdegree f \<noteq> 0"
```
```   509 proof-
```
```   510   assume "f \<noteq> 0"
```
```   511   hence "subdegree f = (LEAST n. f \$ n \<noteq> 0)" by (simp add: subdegree_def)
```
```   512   also from \<open>f \<noteq> 0\<close> have "\<exists>n. f\$n \<noteq> 0" using fps_nonzero_nth by blast
```
```   513   from LeastI_ex[OF this] have "f \$ (LEAST n. f \$ n \<noteq> 0) \<noteq> 0" .
```
```   514   finally show ?thesis .
```
```   515 qed
```
```   516
```
```   517 lemma nth_less_subdegree_zero [dest]: "n < subdegree f \<Longrightarrow> f \$ n = 0"
```
```   518 proof (cases "f = 0")
```
```   519   assume "f \<noteq> 0" and less: "n < subdegree f"
```
```   520   note less
```
```   521   also from \<open>f \<noteq> 0\<close> have "subdegree f = (LEAST n. f \$ n \<noteq> 0)" by (simp add: subdegree_def)
```
```   522   finally show "f \$ n = 0" using not_less_Least by blast
```
```   523 qed simp_all
```
```   524
```
```   525 lemma subdegree_geI:
```
```   526   assumes "f \<noteq> 0" "\<And>i. i < n \<Longrightarrow> f\$i = 0"
```
```   527   shows   "subdegree f \<ge> n"
```
```   528 proof (rule ccontr)
```
```   529   assume "\<not>(subdegree f \<ge> n)"
```
```   530   with assms(2) have "f \$ subdegree f = 0" by simp
```
```   531   moreover from assms(1) have "f \$ subdegree f \<noteq> 0" by simp
```
```   532   ultimately show False by contradiction
```
```   533 qed
```
```   534
```
```   535 lemma subdegree_greaterI:
```
```   536   assumes "f \<noteq> 0" "\<And>i. i \<le> n \<Longrightarrow> f\$i = 0"
```
```   537   shows   "subdegree f > n"
```
```   538 proof (rule ccontr)
```
```   539   assume "\<not>(subdegree f > n)"
```
```   540   with assms(2) have "f \$ subdegree f = 0" by simp
```
```   541   moreover from assms(1) have "f \$ subdegree f \<noteq> 0" by simp
```
```   542   ultimately show False by contradiction
```
```   543 qed
```
```   544
```
```   545 lemma subdegree_leI:
```
```   546   "f \$ n \<noteq> 0 \<Longrightarrow> subdegree f \<le> n"
```
```   547   by (rule leI) auto
```
```   548
```
```   549
```
```   550 lemma subdegree_0 [simp]: "subdegree 0 = 0"
```
```   551   by (simp add: subdegree_def)
```
```   552
```
```   553 lemma subdegree_1 [simp]: "subdegree (1 :: ('a :: zero_neq_one) fps) = 0"
```
```   554   by (auto intro!: subdegreeI)
```
```   555
```
```   556 lemma subdegree_fps_X [simp]: "subdegree (fps_X :: ('a :: zero_neq_one) fps) = 1"
```
```   557   by (auto intro!: subdegreeI simp: fps_X_def)
```
```   558
```
```   559 lemma subdegree_fps_const [simp]: "subdegree (fps_const c) = 0"
```
```   560   by (cases "c = 0") (auto intro!: subdegreeI)
```
```   561
```
```   562 lemma subdegree_numeral [simp]: "subdegree (numeral n) = 0"
```
```   563   by (simp add: numeral_fps_const)
```
```   564
```
```   565 lemma subdegree_eq_0_iff: "subdegree f = 0 \<longleftrightarrow> f = 0 \<or> f \$ 0 \<noteq> 0"
```
```   566 proof (cases "f = 0")
```
```   567   assume "f \<noteq> 0"
```
```   568   thus ?thesis
```
```   569     using nth_subdegree_nonzero[OF \<open>f \<noteq> 0\<close>] by (fastforce intro!: subdegreeI)
```
```   570 qed simp_all
```
```   571
```
```   572 lemma subdegree_eq_0 [simp]: "f \$ 0 \<noteq> 0 \<Longrightarrow> subdegree f = 0"
```
```   573   by (simp add: subdegree_eq_0_iff)
```
```   574
```
```   575 lemma nth_subdegree_mult [simp]:
```
```   576   fixes f g :: "('a :: {mult_zero,comm_monoid_add}) fps"
```
```   577   shows "(f * g) \$ (subdegree f + subdegree g) = f \$ subdegree f * g \$ subdegree g"
```
```   578 proof-
```
```   579   let ?n = "subdegree f + subdegree g"
```
```   580   have "(f * g) \$ ?n = (\<Sum>i=0..?n. f\$i * g\$(?n-i))"
```
```   581     by (simp add: fps_mult_nth)
```
```   582   also have "... = (\<Sum>i=0..?n. if i = subdegree f then f\$i * g\$(?n-i) else 0)"
```
```   583   proof (intro sum.cong)
```
```   584     fix x assume x: "x \<in> {0..?n}"
```
```   585     hence "x = subdegree f \<or> x < subdegree f \<or> ?n - x < subdegree g" by auto
```
```   586     thus "f \$ x * g \$ (?n - x) = (if x = subdegree f then f \$ x * g \$ (?n - x) else 0)"
```
```   587       by (elim disjE conjE) auto
```
```   588   qed auto
```
```   589   also have "... = f \$ subdegree f * g \$ subdegree g" by (simp add: sum.delta)
```
```   590   finally show ?thesis .
```
```   591 qed
```
```   592
```
```   593 lemma subdegree_mult [simp]:
```
```   594   assumes "f \<noteq> 0" "g \<noteq> 0"
```
```   595   shows "subdegree ((f :: ('a :: {ring_no_zero_divisors}) fps) * g) = subdegree f + subdegree g"
```
```   596 proof (rule subdegreeI)
```
```   597   let ?n = "subdegree f + subdegree g"
```
```   598   have "(f * g) \$ ?n = (\<Sum>i=0..?n. f\$i * g\$(?n-i))" by (simp add: fps_mult_nth)
```
```   599   also have "... = (\<Sum>i=0..?n. if i = subdegree f then f\$i * g\$(?n-i) else 0)"
```
```   600   proof (intro sum.cong)
```
```   601     fix x assume x: "x \<in> {0..?n}"
```
```   602     hence "x = subdegree f \<or> x < subdegree f \<or> ?n - x < subdegree g" by auto
```
```   603     thus "f \$ x * g \$ (?n - x) = (if x = subdegree f then f \$ x * g \$ (?n - x) else 0)"
```
```   604       by (elim disjE conjE) auto
```
```   605   qed auto
```
```   606   also have "... = f \$ subdegree f * g \$ subdegree g" by (simp add: sum.delta)
```
```   607   also from assms have "... \<noteq> 0" by auto
```
```   608   finally show "(f * g) \$ (subdegree f + subdegree g) \<noteq> 0" .
```
```   609 next
```
```   610   fix m assume m: "m < subdegree f + subdegree g"
```
```   611   have "(f * g) \$ m = (\<Sum>i=0..m. f\$i * g\$(m-i))" by (simp add: fps_mult_nth)
```
```   612   also have "... = (\<Sum>i=0..m. 0)"
```
```   613   proof (rule sum.cong)
```
```   614     fix i assume "i \<in> {0..m}"
```
```   615     with m have "i < subdegree f \<or> m - i < subdegree g" by auto
```
```   616     thus "f\$i * g\$(m-i) = 0" by (elim disjE) auto
```
```   617   qed auto
```
```   618   finally show "(f * g) \$ m = 0" by simp
```
```   619 qed
```
```   620
```
```   621 lemma subdegree_power [simp]:
```
```   622   "subdegree ((f :: ('a :: ring_1_no_zero_divisors) fps) ^ n) = n * subdegree f"
```
```   623   by (cases "f = 0"; induction n) simp_all
```
```   624
```
```   625 lemma subdegree_uminus [simp]:
```
```   626   "subdegree (-(f::('a::group_add) fps)) = subdegree f"
```
```   627   by (simp add: subdegree_def)
```
```   628
```
```   629 lemma subdegree_minus_commute [simp]:
```
```   630   "subdegree (f-(g::('a::group_add) fps)) = subdegree (g - f)"
```
```   631 proof -
```
```   632   have "f - g = -(g - f)" by simp
```
```   633   also have "subdegree ... = subdegree (g - f)" by (simp only: subdegree_uminus)
```
```   634   finally show ?thesis .
```
```   635 qed
```
```   636
```
```   637 lemma subdegree_add_ge:
```
```   638   assumes "f \<noteq> -(g :: ('a :: {group_add}) fps)"
```
```   639   shows   "subdegree (f + g) \<ge> min (subdegree f) (subdegree g)"
```
```   640 proof (rule subdegree_geI)
```
```   641   from assms show "f + g \<noteq> 0" by (subst (asm) eq_neg_iff_add_eq_0)
```
```   642 next
```
```   643   fix i assume "i < min (subdegree f) (subdegree g)"
```
```   644   hence "f \$ i = 0" and "g \$ i = 0" by auto
```
```   645   thus "(f + g) \$ i = 0" by force
```
```   646 qed
```
```   647
```
```   648 lemma subdegree_add_eq1:
```
```   649   assumes "f \<noteq> 0"
```
```   650   assumes "subdegree f < subdegree (g :: ('a :: {group_add}) fps)"
```
```   651   shows   "subdegree (f + g) = subdegree f"
```
```   652 proof (rule antisym[OF subdegree_leI])
```
```   653   from assms show "subdegree (f + g) \<ge> subdegree f"
```
```   654     by (intro order.trans[OF min.boundedI subdegree_add_ge]) auto
```
```   655   from assms have "f \$ subdegree f \<noteq> 0" "g \$ subdegree f = 0" by auto
```
```   656   thus "(f + g) \$ subdegree f \<noteq> 0" by simp
```
```   657 qed
```
```   658
```
```   659 lemma subdegree_add_eq2:
```
```   660   assumes "g \<noteq> 0"
```
```   661   assumes "subdegree g < subdegree (f :: ('a :: {ab_group_add}) fps)"
```
```   662   shows   "subdegree (f + g) = subdegree g"
```
```   663   using subdegree_add_eq1[OF assms] by (simp add: add.commute)
```
```   664
```
```   665 lemma subdegree_diff_eq1:
```
```   666   assumes "f \<noteq> 0"
```
```   667   assumes "subdegree f < subdegree (g :: ('a :: {ab_group_add}) fps)"
```
```   668   shows   "subdegree (f - g) = subdegree f"
```
```   669   using subdegree_add_eq1[of f "-g"] assms by (simp add: add.commute)
```
```   670
```
```   671 lemma subdegree_diff_eq2:
```
```   672   assumes "g \<noteq> 0"
```
```   673   assumes "subdegree g < subdegree (f :: ('a :: {ab_group_add}) fps)"
```
```   674   shows   "subdegree (f - g) = subdegree g"
```
```   675   using subdegree_add_eq2[of "-g" f] assms by (simp add: add.commute)
```
```   676
```
```   677 lemma subdegree_diff_ge [simp]:
```
```   678   assumes "f \<noteq> (g :: ('a :: {group_add}) fps)"
```
```   679   shows   "subdegree (f - g) \<ge> min (subdegree f) (subdegree g)"
```
```   680   using assms subdegree_add_ge[of f "-g"] by simp
```
```   681
```
```   682
```
```   683
```
```   684
```
```   685 subsection \<open>Shifting and slicing\<close>
```
```   686
```
```   687 definition fps_shift :: "nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps" where
```
```   688   "fps_shift n f = Abs_fps (\<lambda>i. f \$ (i + n))"
```
```   689
```
```   690 lemma fps_shift_nth [simp]: "fps_shift n f \$ i = f \$ (i + n)"
```
```   691   by (simp add: fps_shift_def)
```
```   692
```
```   693 lemma fps_shift_0 [simp]: "fps_shift 0 f = f"
```
```   694   by (intro fps_ext) (simp add: fps_shift_def)
```
```   695
```
```   696 lemma fps_shift_zero [simp]: "fps_shift n 0 = 0"
```
```   697   by (intro fps_ext) (simp add: fps_shift_def)
```
```   698
```
```   699 lemma fps_shift_one: "fps_shift n 1 = (if n = 0 then 1 else 0)"
```
```   700   by (intro fps_ext) (simp add: fps_shift_def)
```
```   701
```
```   702 lemma fps_shift_fps_const: "fps_shift n (fps_const c) = (if n = 0 then fps_const c else 0)"
```
```   703   by (intro fps_ext) (simp add: fps_shift_def)
```
```   704
```
```   705 lemma fps_shift_numeral: "fps_shift n (numeral c) = (if n = 0 then numeral c else 0)"
```
```   706   by (simp add: numeral_fps_const fps_shift_fps_const)
```
```   707
```
```   708 lemma fps_shift_fps_X_power [simp]:
```
```   709   "n \<le> m \<Longrightarrow> fps_shift n (fps_X ^ m) = (fps_X ^ (m - n) ::'a::comm_ring_1 fps)"
```
```   710   by (intro fps_ext) (auto simp: fps_shift_def )
```
```   711
```
```   712 lemma fps_shift_times_fps_X_power:
```
```   713   "n \<le> subdegree f \<Longrightarrow> fps_shift n f * fps_X ^ n = (f :: 'a :: comm_ring_1 fps)"
```
```   714   by (intro fps_ext) (auto simp: fps_X_power_mult_right_nth nth_less_subdegree_zero)
```
```   715
```
```   716 lemma fps_shift_times_fps_X_power' [simp]:
```
```   717   "fps_shift n (f * fps_X^n) = (f :: 'a :: comm_ring_1 fps)"
```
```   718   by (intro fps_ext) (auto simp: fps_X_power_mult_right_nth nth_less_subdegree_zero)
```
```   719
```
```   720 lemma fps_shift_times_fps_X_power'':
```
```   721   "m \<le> n \<Longrightarrow> fps_shift n (f * fps_X^m) = fps_shift (n - m) (f :: 'a :: comm_ring_1 fps)"
```
```   722   by (intro fps_ext) (auto simp: fps_X_power_mult_right_nth nth_less_subdegree_zero)
```
```   723
```
```   724 lemma fps_shift_subdegree [simp]:
```
```   725   "n \<le> subdegree f \<Longrightarrow> subdegree (fps_shift n f) = subdegree (f :: 'a :: comm_ring_1 fps) - n"
```
```   726   by (cases "f = 0") (force intro: nth_less_subdegree_zero subdegreeI)+
```
```   727
```
```   728 lemma subdegree_decompose:
```
```   729   "f = fps_shift (subdegree f) f * fps_X ^ subdegree (f :: ('a :: comm_ring_1) fps)"
```
```   730   by (rule fps_ext) (auto simp: fps_X_power_mult_right_nth)
```
```   731
```
```   732 lemma subdegree_decompose':
```
```   733   "n \<le> subdegree (f :: ('a :: comm_ring_1) fps) \<Longrightarrow> f = fps_shift n f * fps_X^n"
```
```   734   by (rule fps_ext) (auto simp: fps_X_power_mult_right_nth intro!: nth_less_subdegree_zero)
```
```   735
```
```   736 lemma fps_shift_fps_shift:
```
```   737   "fps_shift (m + n) f = fps_shift m (fps_shift n f)"
```
```   738   by (rule fps_ext) (simp add: add_ac)
```
```   739
```
```   740 lemma fps_shift_add:
```
```   741   "fps_shift n (f + g) = fps_shift n f + fps_shift n g"
```
```   742   by (simp add: fps_eq_iff)
```
```   743
```
```   744 lemma fps_shift_mult:
```
```   745   assumes "n \<le> subdegree (g :: 'b :: {comm_ring_1} fps)"
```
```   746   shows   "fps_shift n (h*g) = h * fps_shift n g"
```
```   747 proof -
```
```   748   from assms have "g = fps_shift n g * fps_X^n" by (rule subdegree_decompose')
```
```   749   also have "h * ... = (h * fps_shift n g) * fps_X^n" by simp
```
```   750   also have "fps_shift n ... = h * fps_shift n g" by simp
```
```   751   finally show ?thesis .
```
```   752 qed
```
```   753
```
```   754 lemma fps_shift_mult_right:
```
```   755   assumes "n \<le> subdegree (g :: 'b :: {comm_ring_1} fps)"
```
```   756   shows   "fps_shift n (g*h) = h * fps_shift n g"
```
```   757   by (subst mult.commute, subst fps_shift_mult) (simp_all add: assms)
```
```   758
```
```   759 lemma nth_subdegree_zero_iff [simp]: "f \$ subdegree f = 0 \<longleftrightarrow> f = 0"
```
```   760   by (cases "f = 0") auto
```
```   761
```
```   762 lemma fps_shift_subdegree_zero_iff [simp]:
```
```   763   "fps_shift (subdegree f) f = 0 \<longleftrightarrow> f = 0"
```
```   764   by (subst (1) nth_subdegree_zero_iff[symmetric], cases "f = 0")
```
```   765      (simp_all del: nth_subdegree_zero_iff)
```
```   766
```
```   767
```
```   768 definition "fps_cutoff n f = Abs_fps (\<lambda>i. if i < n then f\$i else 0)"
```
```   769
```
```   770 lemma fps_cutoff_nth [simp]: "fps_cutoff n f \$ i = (if i < n then f\$i else 0)"
```
```   771   unfolding fps_cutoff_def by simp
```
```   772
```
```   773 lemma fps_cutoff_zero_iff: "fps_cutoff n f = 0 \<longleftrightarrow> (f = 0 \<or> n \<le> subdegree f)"
```
```   774 proof
```
```   775   assume A: "fps_cutoff n f = 0"
```
```   776   thus "f = 0 \<or> n \<le> subdegree f"
```
```   777   proof (cases "f = 0")
```
```   778     assume "f \<noteq> 0"
```
```   779     with A have "n \<le> subdegree f"
```
```   780       by (intro subdegree_geI) (auto simp: fps_eq_iff split: if_split_asm)
```
```   781     thus ?thesis ..
```
```   782   qed simp
```
```   783 qed (auto simp: fps_eq_iff intro: nth_less_subdegree_zero)
```
```   784
```
```   785 lemma fps_cutoff_0 [simp]: "fps_cutoff 0 f = 0"
```
```   786   by (simp add: fps_eq_iff)
```
```   787
```
```   788 lemma fps_cutoff_zero [simp]: "fps_cutoff n 0 = 0"
```
```   789   by (simp add: fps_eq_iff)
```
```   790
```
```   791 lemma fps_cutoff_one: "fps_cutoff n 1 = (if n = 0 then 0 else 1)"
```
```   792   by (simp add: fps_eq_iff)
```
```   793
```
```   794 lemma fps_cutoff_fps_const: "fps_cutoff n (fps_const c) = (if n = 0 then 0 else fps_const c)"
```
```   795   by (simp add: fps_eq_iff)
```
```   796
```
```   797 lemma fps_cutoff_numeral: "fps_cutoff n (numeral c) = (if n = 0 then 0 else numeral c)"
```
```   798   by (simp add: numeral_fps_const fps_cutoff_fps_const)
```
```   799
```
```   800 lemma fps_shift_cutoff:
```
```   801   "fps_shift n (f :: ('a :: comm_ring_1) fps) * fps_X^n + fps_cutoff n f = f"
```
```   802   by (simp add: fps_eq_iff fps_X_power_mult_right_nth)
```
```   803
```
```   804
```
```   805 subsection \<open>Formal Power series form a metric space\<close>
```
```   806
```
```   807 instantiation fps :: (comm_ring_1) dist
```
```   808 begin
```
```   809
```
```   810 definition
```
```   811   dist_fps_def: "dist (a :: 'a fps) b = (if a = b then 0 else inverse (2 ^ subdegree (a - b)))"
```
```   812
```
```   813 lemma dist_fps_ge0: "dist (a :: 'a fps) b \<ge> 0"
```
```   814   by (simp add: dist_fps_def)
```
```   815
```
```   816 lemma dist_fps_sym: "dist (a :: 'a fps) b = dist b a"
```
```   817   by (simp add: dist_fps_def)
```
```   818
```
```   819 instance ..
```
```   820
```
```   821 end
```
```   822
```
```   823 instantiation fps :: (comm_ring_1) metric_space
```
```   824 begin
```
```   825
```
```   826 definition uniformity_fps_def [code del]:
```
```   827   "(uniformity :: ('a fps \<times> 'a fps) filter) = (INF e:{0 <..}. principal {(x, y). dist x y < e})"
```
```   828
```
```   829 definition open_fps_def' [code del]:
```
```   830   "open (U :: 'a fps set) \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)"
```
```   831
```
```   832 instance
```
```   833 proof
```
```   834   show th: "dist a b = 0 \<longleftrightarrow> a = b" for a b :: "'a fps"
```
```   835     by (simp add: dist_fps_def split: if_split_asm)
```
```   836   then have th'[simp]: "dist a a = 0" for a :: "'a fps" by simp
```
```   837
```
```   838   fix a b c :: "'a fps"
```
```   839   consider "a = b" | "c = a \<or> c = b" | "a \<noteq> b" "a \<noteq> c" "b \<noteq> c" by blast
```
```   840   then show "dist a b \<le> dist a c + dist b c"
```
```   841   proof cases
```
```   842     case 1
```
```   843     then show ?thesis by (simp add: dist_fps_def)
```
```   844   next
```
```   845     case 2
```
```   846     then show ?thesis
```
```   847       by (cases "c = a") (simp_all add: th dist_fps_sym)
```
```   848   next
```
```   849     case neq: 3
```
```   850     have False if "dist a b > dist a c + dist b c"
```
```   851     proof -
```
```   852       let ?n = "subdegree (a - b)"
```
```   853       from neq have "dist a b > 0" "dist b c > 0" and "dist a c > 0" by (simp_all add: dist_fps_def)
```
```   854       with that have "dist a b > dist a c" and "dist a b > dist b c" by simp_all
```
```   855       with neq have "?n < subdegree (a - c)" and "?n < subdegree (b - c)"
```
```   856         by (simp_all add: dist_fps_def field_simps)
```
```   857       hence "(a - c) \$ ?n = 0" and "(b - c) \$ ?n = 0"
```
```   858         by (simp_all only: nth_less_subdegree_zero)
```
```   859       hence "(a - b) \$ ?n = 0" by simp
```
```   860       moreover from neq have "(a - b) \$ ?n \<noteq> 0" by (intro nth_subdegree_nonzero) simp_all
```
```   861       ultimately show False by contradiction
```
```   862     qed
```
```   863     thus ?thesis by (auto simp add: not_le[symmetric])
```
```   864   qed
```
```   865 qed (rule open_fps_def' uniformity_fps_def)+
```
```   866
```
```   867 end
```
```   868
```
```   869 declare uniformity_Abort[where 'a="'a :: comm_ring_1 fps", code]
```
```   870
```
```   871 lemma open_fps_def: "open (S :: 'a::comm_ring_1 fps set) = (\<forall>a \<in> S. \<exists>r. r >0 \<and> {y. dist y a < r} \<subseteq> S)"
```
```   872   unfolding open_dist subset_eq by simp
```
```   873
```
```   874 text \<open>The infinite sums and justification of the notation in textbooks.\<close>
```
```   875
```
```   876 lemma reals_power_lt_ex:
```
```   877   fixes x y :: real
```
```   878   assumes xp: "x > 0"
```
```   879     and y1: "y > 1"
```
```   880   shows "\<exists>k>0. (1/y)^k < x"
```
```   881 proof -
```
```   882   have yp: "y > 0"
```
```   883     using y1 by simp
```
```   884   from reals_Archimedean2[of "max 0 (- log y x) + 1"]
```
```   885   obtain k :: nat where k: "real k > max 0 (- log y x) + 1"
```
```   886     by blast
```
```   887   from k have kp: "k > 0"
```
```   888     by simp
```
```   889   from k have "real k > - log y x"
```
```   890     by simp
```
```   891   then have "ln y * real k > - ln x"
```
```   892     unfolding log_def
```
```   893     using ln_gt_zero_iff[OF yp] y1
```
```   894     by (simp add: minus_divide_left field_simps del: minus_divide_left[symmetric])
```
```   895   then have "ln y * real k + ln x > 0"
```
```   896     by simp
```
```   897   then have "exp (real k * ln y + ln x) > exp 0"
```
```   898     by (simp add: ac_simps)
```
```   899   then have "y ^ k * x > 1"
```
```   900     unfolding exp_zero exp_add exp_of_nat_mult exp_ln [OF xp] exp_ln [OF yp]
```
```   901     by simp
```
```   902   then have "x > (1 / y)^k" using yp
```
```   903     by (simp add: field_simps)
```
```   904   then show ?thesis
```
```   905     using kp by blast
```
```   906 qed
```
```   907
```
```   908 lemma fps_sum_rep_nth: "(sum (\<lambda>i. fps_const(a\$i)*fps_X^i) {0..m})\$n =
```
```   909     (if n \<le> m then a\$n else 0::'a::comm_ring_1)"
```
```   910   by (auto simp add: fps_sum_nth cond_value_iff cong del: if_weak_cong)
```
```   911
```
```   912 lemma fps_notation: "(\<lambda>n. sum (\<lambda>i. fps_const(a\$i) * fps_X^i) {0..n}) \<longlonglongrightarrow> a"
```
```   913   (is "?s \<longlonglongrightarrow> a")
```
```   914 proof -
```
```   915   have "\<exists>n0. \<forall>n \<ge> n0. dist (?s n) a < r" if "r > 0" for r
```
```   916   proof -
```
```   917     obtain n0 where n0: "(1/2)^n0 < r" "n0 > 0"
```
```   918       using reals_power_lt_ex[OF \<open>r > 0\<close>, of 2] by auto
```
```   919     show ?thesis
```
```   920     proof -
```
```   921       have "dist (?s n) a < r" if nn0: "n \<ge> n0" for n
```
```   922       proof -
```
```   923         from that have thnn0: "(1/2)^n \<le> (1/2 :: real)^n0"
```
```   924           by (simp add: divide_simps)
```
```   925         show ?thesis
```
```   926         proof (cases "?s n = a")
```
```   927           case True
```
```   928           then show ?thesis
```
```   929             unfolding dist_eq_0_iff[of "?s n" a, symmetric]
```
```   930             using \<open>r > 0\<close> by (simp del: dist_eq_0_iff)
```
```   931         next
```
```   932           case False
```
```   933           from False have dth: "dist (?s n) a = (1/2)^subdegree (?s n - a)"
```
```   934             by (simp add: dist_fps_def field_simps)
```
```   935           from False have kn: "subdegree (?s n - a) > n"
```
```   936             by (intro subdegree_greaterI) (simp_all add: fps_sum_rep_nth)
```
```   937           then have "dist (?s n) a < (1/2)^n"
```
```   938             by (simp add: field_simps dist_fps_def)
```
```   939           also have "\<dots> \<le> (1/2)^n0"
```
```   940             using nn0 by (simp add: divide_simps)
```
```   941           also have "\<dots> < r"
```
```   942             using n0 by simp
```
```   943           finally show ?thesis .
```
```   944         qed
```
```   945       qed
```
```   946       then show ?thesis by blast
```
```   947     qed
```
```   948   qed
```
```   949   then show ?thesis
```
```   950     unfolding lim_sequentially by blast
```
```   951 qed
```
```   952
```
```   953
```
```   954 subsection \<open>Inverses of formal power series\<close>
```
```   955
```
```   956 declare sum.cong[fundef_cong]
```
```   957
```
```   958 instantiation fps :: ("{comm_monoid_add,inverse,times,uminus}") inverse
```
```   959 begin
```
```   960
```
```   961 fun natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a"
```
```   962 where
```
```   963   "natfun_inverse f 0 = inverse (f\$0)"
```
```   964 | "natfun_inverse f n = - inverse (f\$0) * sum (\<lambda>i. f\$i * natfun_inverse f (n - i)) {1..n}"
```
```   965
```
```   966 definition fps_inverse_def: "inverse f = (if f \$ 0 = 0 then 0 else Abs_fps (natfun_inverse f))"
```
```   967
```
```   968 definition fps_divide_def:
```
```   969   "f div g = (if g = 0 then 0 else
```
```   970      let n = subdegree g; h = fps_shift n g
```
```   971      in  fps_shift n (f * inverse h))"
```
```   972
```
```   973 instance ..
```
```   974
```
```   975 end
```
```   976
```
```   977 lemma fps_inverse_zero [simp]:
```
```   978   "inverse (0 :: 'a::{comm_monoid_add,inverse,times,uminus} fps) = 0"
```
```   979   by (simp add: fps_ext fps_inverse_def)
```
```   980
```
```   981 lemma fps_inverse_one [simp]: "inverse (1 :: 'a::{division_ring,zero_neq_one} fps) = 1"
```
```   982   apply (auto simp add: expand_fps_eq fps_inverse_def)
```
```   983   apply (case_tac n)
```
```   984   apply auto
```
```   985   done
```
```   986
```
```   987 lemma inverse_mult_eq_1 [intro]:
```
```   988   assumes f0: "f\$0 \<noteq> (0::'a::field)"
```
```   989   shows "inverse f * f = 1"
```
```   990 proof -
```
```   991   have c: "inverse f * f = f * inverse f"
```
```   992     by (simp add: mult.commute)
```
```   993   from f0 have ifn: "\<And>n. inverse f \$ n = natfun_inverse f n"
```
```   994     by (simp add: fps_inverse_def)
```
```   995   from f0 have th0: "(inverse f * f) \$ 0 = 1"
```
```   996     by (simp add: fps_mult_nth fps_inverse_def)
```
```   997   have "(inverse f * f)\$n = 0" if np: "n > 0" for n
```
```   998   proof -
```
```   999     from np have eq: "{0..n} = {0} \<union> {1 .. n}"
```
```  1000       by auto
```
```  1001     have d: "{0} \<inter> {1 .. n} = {}"
```
```  1002       by auto
```
```  1003     from f0 np have th0: "- (inverse f \$ n) =
```
```  1004       (sum (\<lambda>i. f\$i * natfun_inverse f (n - i)) {1..n}) / (f\$0)"
```
```  1005       by (cases n) (simp_all add: divide_inverse fps_inverse_def)
```
```  1006     from th0[symmetric, unfolded nonzero_divide_eq_eq[OF f0]]
```
```  1007     have th1: "sum (\<lambda>i. f\$i * natfun_inverse f (n - i)) {1..n} = - (f\$0) * (inverse f)\$n"
```
```  1008       by (simp add: field_simps)
```
```  1009     have "(f * inverse f) \$ n = (\<Sum>i = 0..n. f \$i * natfun_inverse f (n - i))"
```
```  1010       unfolding fps_mult_nth ifn ..
```
```  1011     also have "\<dots> = f\$0 * natfun_inverse f n + (\<Sum>i = 1..n. f\$i * natfun_inverse f (n-i))"
```
```  1012       by (simp add: eq)
```
```  1013     also have "\<dots> = 0"
```
```  1014       unfolding th1 ifn by simp
```
```  1015     finally show ?thesis unfolding c .
```
```  1016   qed
```
```  1017   with th0 show ?thesis
```
```  1018     by (simp add: fps_eq_iff)
```
```  1019 qed
```
```  1020
```
```  1021 lemma fps_inverse_0_iff[simp]: "(inverse f) \$ 0 = (0::'a::division_ring) \<longleftrightarrow> f \$ 0 = 0"
```
```  1022   by (simp add: fps_inverse_def nonzero_imp_inverse_nonzero)
```
```  1023
```
```  1024 lemma fps_inverse_nth_0 [simp]: "inverse f \$ 0 = inverse (f \$ 0 :: 'a :: division_ring)"
```
```  1025   by (simp add: fps_inverse_def)
```
```  1026
```
```  1027 lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::division_ring) fps) \<longleftrightarrow> f \$ 0 = 0"
```
```  1028 proof
```
```  1029   assume A: "inverse f = 0"
```
```  1030   have "0 = inverse f \$ 0" by (subst A) simp
```
```  1031   thus "f \$ 0 = 0" by simp
```
```  1032 qed (simp add: fps_inverse_def)
```
```  1033
```
```  1034 lemma fps_inverse_idempotent[intro, simp]:
```
```  1035   assumes f0: "f\$0 \<noteq> (0::'a::field)"
```
```  1036   shows "inverse (inverse f) = f"
```
```  1037 proof -
```
```  1038   from f0 have if0: "inverse f \$ 0 \<noteq> 0" by simp
```
```  1039   from inverse_mult_eq_1[OF f0] inverse_mult_eq_1[OF if0]
```
```  1040   have "inverse f * f = inverse f * inverse (inverse f)"
```
```  1041     by (simp add: ac_simps)
```
```  1042   then show ?thesis
```
```  1043     using f0 unfolding mult_cancel_left by simp
```
```  1044 qed
```
```  1045
```
```  1046 lemma fps_inverse_unique:
```
```  1047   assumes fg: "(f :: 'a :: field fps) * g = 1"
```
```  1048   shows   "inverse f = g"
```
```  1049 proof -
```
```  1050   have f0: "f \$ 0 \<noteq> 0"
```
```  1051   proof
```
```  1052     assume "f \$ 0 = 0"
```
```  1053     hence "0 = (f * g) \$ 0" by simp
```
```  1054     also from fg have "(f * g) \$ 0 = 1" by simp
```
```  1055     finally show False by simp
```
```  1056   qed
```
```  1057   from inverse_mult_eq_1[OF this] fg
```
```  1058   have th0: "inverse f * f = g * f"
```
```  1059     by (simp add: ac_simps)
```
```  1060   then show ?thesis
```
```  1061     using f0
```
```  1062     unfolding mult_cancel_right
```
```  1063     by (auto simp add: expand_fps_eq)
```
```  1064 qed
```
```  1065
```
```  1066 lemma fps_inverse_eq_0: "f\$0 = 0 \<Longrightarrow> inverse (f :: 'a :: division_ring fps) = 0"
```
```  1067   by simp
```
```  1068
```
```  1069 lemma sum_zero_lemma:
```
```  1070   fixes n::nat
```
```  1071   assumes "0 < n"
```
```  1072   shows "(\<Sum>i = 0..n. if n = i then 1 else if n - i = 1 then - 1 else 0) = (0::'a::field)"
```
```  1073 proof -
```
```  1074   let ?f = "\<lambda>i. if n = i then 1 else if n - i = 1 then - 1 else 0"
```
```  1075   let ?g = "\<lambda>i. if i = n then 1 else if i = n - 1 then - 1 else 0"
```
```  1076   let ?h = "\<lambda>i. if i=n - 1 then - 1 else 0"
```
```  1077   have th1: "sum ?f {0..n} = sum ?g {0..n}"
```
```  1078     by (rule sum.cong) auto
```
```  1079   have th2: "sum ?g {0..n - 1} = sum ?h {0..n - 1}"
```
```  1080     apply (rule sum.cong)
```
```  1081     using assms
```
```  1082     apply auto
```
```  1083     done
```
```  1084   have eq: "{0 .. n} = {0.. n - 1} \<union> {n}"
```
```  1085     by auto
```
```  1086   from assms have d: "{0.. n - 1} \<inter> {n} = {}"
```
```  1087     by auto
```
```  1088   have f: "finite {0.. n - 1}" "finite {n}"
```
```  1089     by auto
```
```  1090   show ?thesis
```
```  1091     unfolding th1
```
```  1092     apply (simp add: sum.union_disjoint[OF f d, unfolded eq[symmetric]] del: One_nat_def)
```
```  1093     unfolding th2
```
```  1094     apply (simp add: sum.delta)
```
```  1095     done
```
```  1096 qed
```
```  1097
```
```  1098 lemma fps_inverse_mult: "inverse (f * g :: 'a::field fps) = inverse f * inverse g"
```
```  1099 proof (cases "f\$0 = 0 \<or> g\$0 = 0")
```
```  1100   assume "\<not>(f\$0 = 0 \<or> g\$0 = 0)"
```
```  1101   hence [simp]: "f\$0 \<noteq> 0" "g\$0 \<noteq> 0" by simp_all
```
```  1102   show ?thesis
```
```  1103   proof (rule fps_inverse_unique)
```
```  1104     have "f * g * (inverse f * inverse g) = (inverse f * f) * (inverse g * g)" by simp
```
```  1105     also have "... = 1" by (subst (1 2) inverse_mult_eq_1) simp_all
```
```  1106     finally show "f * g * (inverse f * inverse g) = 1" .
```
```  1107   qed
```
```  1108 next
```
```  1109   assume A: "f\$0 = 0 \<or> g\$0 = 0"
```
```  1110   hence "inverse (f * g) = 0" by simp
```
```  1111   also from A have "... = inverse f * inverse g" by auto
```
```  1112   finally show "inverse (f * g) = inverse f * inverse g" .
```
```  1113 qed
```
```  1114
```
```  1115
```
```  1116 lemma fps_inverse_gp: "inverse (Abs_fps(\<lambda>n. (1::'a::field))) =
```
```  1117     Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)"
```
```  1118   apply (rule fps_inverse_unique)
```
```  1119   apply (simp_all add: fps_eq_iff fps_mult_nth sum_zero_lemma)
```
```  1120   done
```
```  1121
```
```  1122 lemma subdegree_inverse [simp]: "subdegree (inverse (f::'a::field fps)) = 0"
```
```  1123 proof (cases "f\$0 = 0")
```
```  1124   assume nz: "f\$0 \<noteq> 0"
```
```  1125   hence "subdegree (inverse f) + subdegree f = subdegree (inverse f * f)"
```
```  1126     by (subst subdegree_mult) auto
```
```  1127   also from nz have "subdegree f = 0" by (simp add: subdegree_eq_0_iff)
```
```  1128   also from nz have "inverse f * f = 1" by (rule inverse_mult_eq_1)
```
```  1129   finally show "subdegree (inverse f) = 0" by simp
```
```  1130 qed (simp_all add: fps_inverse_def)
```
```  1131
```
```  1132 lemma fps_is_unit_iff [simp]: "(f :: 'a :: field fps) dvd 1 \<longleftrightarrow> f \$ 0 \<noteq> 0"
```
```  1133 proof
```
```  1134   assume "f dvd 1"
```
```  1135   then obtain g where "1 = f * g" by (elim dvdE)
```
```  1136   from this[symmetric] have "(f*g) \$ 0 = 1" by simp
```
```  1137   thus "f \$ 0 \<noteq> 0" by auto
```
```  1138 next
```
```  1139   assume A: "f \$ 0 \<noteq> 0"
```
```  1140   thus "f dvd 1" by (simp add: inverse_mult_eq_1[OF A, symmetric])
```
```  1141 qed
```
```  1142
```
```  1143 lemma subdegree_eq_0' [simp]: "(f :: 'a :: field fps) dvd 1 \<Longrightarrow> subdegree f = 0"
```
```  1144   by simp
```
```  1145
```
```  1146 lemma fps_unit_dvd [simp]: "(f \$ 0 :: 'a :: field) \<noteq> 0 \<Longrightarrow> f dvd g"
```
```  1147   by (rule dvd_trans, subst fps_is_unit_iff) simp_all
```
```  1148
```
```  1149 instantiation fps :: (field) normalization_semidom
```
```  1150 begin
```
```  1151
```
```  1152 definition fps_unit_factor_def [simp]:
```
```  1153   "unit_factor f = fps_shift (subdegree f) f"
```
```  1154
```
```  1155 definition fps_normalize_def [simp]:
```
```  1156   "normalize f = (if f = 0 then 0 else fps_X ^ subdegree f)"
```
```  1157
```
```  1158 instance proof
```
```  1159   fix f :: "'a fps"
```
```  1160   show "unit_factor f * normalize f = f"
```
```  1161     by (simp add: fps_shift_times_fps_X_power)
```
```  1162 next
```
```  1163   fix f g :: "'a fps"
```
```  1164   show "unit_factor (f * g) = unit_factor f * unit_factor g"
```
```  1165   proof (cases "f = 0 \<or> g = 0")
```
```  1166     assume "\<not>(f = 0 \<or> g = 0)"
```
```  1167     thus "unit_factor (f * g) = unit_factor f * unit_factor g"
```
```  1168     unfolding fps_unit_factor_def
```
```  1169       by (auto simp: fps_shift_fps_shift fps_shift_mult fps_shift_mult_right)
```
```  1170   qed auto
```
```  1171 next
```
```  1172   fix f g :: "'a fps"
```
```  1173   assume "g \<noteq> 0"
```
```  1174   then have "f * (fps_shift (subdegree g) g * inverse (fps_shift (subdegree g) g)) = f"
```
```  1175     by (metis add_cancel_right_left fps_shift_nth inverse_mult_eq_1 mult.commute mult_cancel_left2 nth_subdegree_nonzero)
```
```  1176   then have "fps_shift (subdegree g) (g * (f * inverse (fps_shift (subdegree g) g))) = f"
```
```  1177     by (simp add: fps_shift_mult_right mult.commute)
```
```  1178   with \<open>g \<noteq> 0\<close> show "f * g / g = f"
```
```  1179     by (simp add: fps_divide_def Let_def ac_simps)
```
```  1180 qed (auto simp add: fps_divide_def Let_def)
```
```  1181
```
```  1182 end
```
```  1183
```
```  1184 instantiation fps :: (field) ring_div
```
```  1185 begin
```
```  1186
```
```  1187 definition fps_mod_def:
```
```  1188   "f mod g = (if g = 0 then f else
```
```  1189      let n = subdegree g; h = fps_shift n g
```
```  1190      in  fps_cutoff n (f * inverse h) * h)"
```
```  1191
```
```  1192 lemma fps_mod_eq_zero:
```
```  1193   assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree g"
```
```  1194   shows   "f mod g = 0"
```
```  1195   using assms by (cases "f = 0") (auto simp: fps_cutoff_zero_iff fps_mod_def Let_def)
```
```  1196
```
```  1197 lemma fps_times_divide_eq:
```
```  1198   assumes "g \<noteq> 0" and "subdegree f \<ge> subdegree (g :: 'a fps)"
```
```  1199   shows   "f div g * g = f"
```
```  1200 proof (cases "f = 0")
```
```  1201   assume nz: "f \<noteq> 0"
```
```  1202   define n where "n = subdegree g"
```
```  1203   define h where "h = fps_shift n g"
```
```  1204   from assms have [simp]: "h \$ 0 \<noteq> 0" unfolding h_def by (simp add: n_def)
```
```  1205
```
```  1206   from assms nz have "f div g * g = fps_shift n (f * inverse h) * g"
```
```  1207     by (simp add: fps_divide_def Let_def h_def n_def)
```
```  1208   also have "... = fps_shift n (f * inverse h) * fps_X^n * h" unfolding h_def n_def
```
```  1209     by (subst subdegree_decompose[of g]) simp
```
```  1210   also have "fps_shift n (f * inverse h) * fps_X^n = f * inverse h"
```
```  1211     by (rule fps_shift_times_fps_X_power) (simp_all add: nz assms n_def)
```
```  1212   also have "... * h = f * (inverse h * h)" by simp
```
```  1213   also have "inverse h * h = 1" by (rule inverse_mult_eq_1) simp
```
```  1214   finally show ?thesis by simp
```
```  1215 qed (simp_all add: fps_divide_def Let_def)
```
```  1216
```
```  1217 lemma
```
```  1218   assumes "g\$0 \<noteq> 0"
```
```  1219   shows   fps_divide_unit: "f div g = f * inverse g" and fps_mod_unit [simp]: "f mod g = 0"
```
```  1220 proof -
```
```  1221   from assms have [simp]: "subdegree g = 0" by (simp add: subdegree_eq_0_iff)
```
```  1222   from assms show "f div g = f * inverse g"
```
```  1223     by (auto simp: fps_divide_def Let_def subdegree_eq_0_iff)
```
```  1224   from assms show "f mod g = 0" by (intro fps_mod_eq_zero) auto
```
```  1225 qed
```
```  1226
```
```  1227 context
```
```  1228 begin
```
```  1229 private lemma fps_divide_cancel_aux1:
```
```  1230   assumes "h\$0 \<noteq> (0 :: 'a :: field)"
```
```  1231   shows   "(h * f) div (h * g) = f div g"
```
```  1232 proof (cases "g = 0")
```
```  1233   assume "g \<noteq> 0"
```
```  1234   from assms have "h \<noteq> 0" by auto
```
```  1235   note nz [simp] = \<open>g \<noteq> 0\<close> \<open>h \<noteq> 0\<close>
```
```  1236   from assms have [simp]: "subdegree h = 0" by (simp add: subdegree_eq_0_iff)
```
```  1237
```
```  1238   have "(h * f) div (h * g) =
```
```  1239           fps_shift (subdegree g) (h * f * inverse (fps_shift (subdegree g) (h*g)))"
```
```  1240     by (simp add: fps_divide_def Let_def)
```
```  1241   also have "h * f * inverse (fps_shift (subdegree g) (h*g)) =
```
```  1242                (inverse h * h) * f * inverse (fps_shift (subdegree g) g)"
```
```  1243     by (subst fps_shift_mult) (simp_all add: algebra_simps fps_inverse_mult)
```
```  1244   also from assms have "inverse h * h = 1" by (rule inverse_mult_eq_1)
```
```  1245   finally show "(h * f) div (h * g) = f div g" by (simp_all add: fps_divide_def Let_def)
```
```  1246 qed (simp_all add: fps_divide_def)
```
```  1247
```
```  1248 private lemma fps_divide_cancel_aux2:
```
```  1249   "(f * fps_X^m) div (g * fps_X^m) = f div (g :: 'a :: field fps)"
```
```  1250 proof (cases "g = 0")
```
```  1251   assume [simp]: "g \<noteq> 0"
```
```  1252   have "(f * fps_X^m) div (g * fps_X^m) =
```
```  1253           fps_shift (subdegree g + m) (f*inverse (fps_shift (subdegree g + m) (g*fps_X^m))*fps_X^m)"
```
```  1254     by (simp add: fps_divide_def Let_def algebra_simps)
```
```  1255   also have "... = f div g"
```
```  1256     by (simp add: fps_shift_times_fps_X_power'' fps_divide_def Let_def)
```
```  1257   finally show ?thesis .
```
```  1258 qed (simp_all add: fps_divide_def)
```
```  1259
```
```  1260 instance proof
```
```  1261   fix f g :: "'a fps"
```
```  1262   define n where "n = subdegree g"
```
```  1263   define h where "h = fps_shift n g"
```
```  1264
```
```  1265   show "f div g * g + f mod g = f"
```
```  1266   proof (cases "g = 0 \<or> f = 0")
```
```  1267     assume "\<not>(g = 0 \<or> f = 0)"
```
```  1268     hence nz [simp]: "f \<noteq> 0" "g \<noteq> 0" by simp_all
```
```  1269     show ?thesis
```
```  1270     proof (rule disjE[OF le_less_linear])
```
```  1271       assume "subdegree f \<ge> subdegree g"
```
```  1272       with nz show ?thesis by (simp add: fps_mod_eq_zero fps_times_divide_eq)
```
```  1273     next
```
```  1274       assume "subdegree f < subdegree g"
```
```  1275       have g_decomp: "g = h * fps_X^n" unfolding h_def n_def by (rule subdegree_decompose)
```
```  1276       have "f div g * g + f mod g =
```
```  1277               fps_shift n (f * inverse h) * g + fps_cutoff n (f * inverse h) * h"
```
```  1278         by (simp add: fps_mod_def fps_divide_def Let_def n_def h_def)
```
```  1279       also have "... = h * (fps_shift n (f * inverse h) * fps_X^n + fps_cutoff n (f * inverse h))"
```
```  1280         by (subst g_decomp) (simp add: algebra_simps)
```
```  1281       also have "... = f * (inverse h * h)"
```
```  1282         by (subst fps_shift_cutoff) simp
```
```  1283       also have "inverse h * h = 1" by (rule inverse_mult_eq_1) (simp add: h_def n_def)
```
```  1284       finally show ?thesis by simp
```
```  1285     qed
```
```  1286   qed (auto simp: fps_mod_def fps_divide_def Let_def)
```
```  1287 next
```
```  1288
```
```  1289   fix f g h :: "'a fps"
```
```  1290   assume "h \<noteq> 0"
```
```  1291   show "(h * f) div (h * g) = f div g"
```
```  1292   proof -
```
```  1293     define m where "m = subdegree h"
```
```  1294     define h' where "h' = fps_shift m h"
```
```  1295     have h_decomp: "h = h' * fps_X ^ m" unfolding h'_def m_def by (rule subdegree_decompose)
```
```  1296     from \<open>h \<noteq> 0\<close> have [simp]: "h'\$0 \<noteq> 0" by (simp add: h'_def m_def)
```
```  1297     have "(h * f) div (h * g) = (h' * f * fps_X^m) div (h' * g * fps_X^m)"
```
```  1298       by (simp add: h_decomp algebra_simps)
```
```  1299     also have "... = f div g" by (simp add: fps_divide_cancel_aux1 fps_divide_cancel_aux2)
```
```  1300     finally show ?thesis .
```
```  1301   qed
```
```  1302
```
```  1303 next
```
```  1304   fix f g h :: "'a fps"
```
```  1305   assume [simp]: "h \<noteq> 0"
```
```  1306   define n h' where dfs: "n = subdegree h" "h' = fps_shift n h"
```
```  1307   have "(f + g * h) div h = fps_shift n (f * inverse h') + fps_shift n (g * (h * inverse h'))"
```
```  1308     by (simp add: fps_divide_def Let_def dfs[symmetric] algebra_simps fps_shift_add)
```
```  1309   also have "h * inverse h' = (inverse h' * h') * fps_X^n"
```
```  1310     by (subst subdegree_decompose) (simp_all add: dfs)
```
```  1311   also have "... = fps_X^n" by (subst inverse_mult_eq_1) (simp_all add: dfs)
```
```  1312   also have "fps_shift n (g * fps_X^n) = g" by simp
```
```  1313   also have "fps_shift n (f * inverse h') = f div h"
```
```  1314     by (simp add: fps_divide_def Let_def dfs)
```
```  1315   finally show "(f + g * h) div h = g + f div h" by simp
```
```  1316 qed
```
```  1317
```
```  1318 end
```
```  1319 end
```
```  1320
```
```  1321 lemma subdegree_mod:
```
```  1322   assumes "f \<noteq> 0" "subdegree f < subdegree g"
```
```  1323   shows   "subdegree (f mod g) = subdegree f"
```
```  1324 proof (cases "f div g * g = 0")
```
```  1325   assume "f div g * g \<noteq> 0"
```
```  1326   hence [simp]: "f div g \<noteq> 0" "g \<noteq> 0" by auto
```
```  1327   from div_mult_mod_eq[of f g] have "f mod g = f - f div g * g" by (simp add: algebra_simps)
```
```  1328   also from assms have "subdegree ... = subdegree f"
```
```  1329     by (intro subdegree_diff_eq1) simp_all
```
```  1330   finally show ?thesis .
```
```  1331 next
```
```  1332   assume zero: "f div g * g = 0"
```
```  1333   from div_mult_mod_eq[of f g] have "f mod g = f - f div g * g" by (simp add: algebra_simps)
```
```  1334   also note zero
```
```  1335   finally show ?thesis by simp
```
```  1336 qed
```
```  1337
```
```  1338 lemma fps_divide_nth_0 [simp]: "g \$ 0 \<noteq> 0 \<Longrightarrow> (f div g) \$ 0 = f \$ 0 / (g \$ 0 :: _ :: field)"
```
```  1339   by (simp add: fps_divide_unit divide_inverse)
```
```  1340
```
```  1341
```
```  1342 lemma dvd_imp_subdegree_le:
```
```  1343   "(f :: 'a :: idom fps) dvd g \<Longrightarrow> g \<noteq> 0 \<Longrightarrow> subdegree f \<le> subdegree g"
```
```  1344   by (auto elim: dvdE)
```
```  1345
```
```  1346 lemma fps_dvd_iff:
```
```  1347   assumes "(f :: 'a :: field fps) \<noteq> 0" "g \<noteq> 0"
```
```  1348   shows   "f dvd g \<longleftrightarrow> subdegree f \<le> subdegree g"
```
```  1349 proof
```
```  1350   assume "subdegree f \<le> subdegree g"
```
```  1351   with assms have "g mod f = 0"
```
```  1352     by (simp add: fps_mod_def Let_def fps_cutoff_zero_iff)
```
```  1353   thus "f dvd g" by (simp add: dvd_eq_mod_eq_0)
```
```  1354 qed (simp add: assms dvd_imp_subdegree_le)
```
```  1355
```
```  1356 lemma fps_shift_altdef:
```
```  1357   "fps_shift n f = (f :: 'a :: field fps) div fps_X^n"
```
```  1358   by (simp add: fps_divide_def)
```
```  1359
```
```  1360 lemma fps_div_fps_X_power_nth: "((f :: 'a :: field fps) div fps_X^n) \$ k = f \$ (k + n)"
```
```  1361   by (simp add: fps_shift_altdef [symmetric])
```
```  1362
```
```  1363 lemma fps_div_fps_X_nth: "((f :: 'a :: field fps) div fps_X) \$ k = f \$ Suc k"
```
```  1364   using fps_div_fps_X_power_nth[of f 1] by simp
```
```  1365
```
```  1366 lemma fps_const_inverse: "inverse (fps_const (a::'a::field)) = fps_const (inverse a)"
```
```  1367   by (cases "a \<noteq> 0", rule fps_inverse_unique) (auto simp: fps_eq_iff)
```
```  1368
```
```  1369 lemma fps_const_divide: "fps_const (x :: _ :: field) / fps_const y = fps_const (x / y)"
```
```  1370   by (cases "y = 0") (simp_all add: fps_divide_unit fps_const_inverse divide_inverse)
```
```  1371
```
```  1372 lemma inverse_fps_numeral:
```
```  1373   "inverse (numeral n :: ('a :: field_char_0) fps) = fps_const (inverse (numeral n))"
```
```  1374   by (intro fps_inverse_unique fps_ext) (simp_all add: fps_numeral_nth)
```
```  1375
```
```  1376 lemma fps_numeral_divide_divide:
```
```  1377   "x / numeral b / numeral c = (x / numeral (b * c) :: 'a :: field fps)"
```
```  1378   by (cases "numeral b = (0::'a)"; cases "numeral c = (0::'a)")
```
```  1379       (simp_all add: fps_divide_unit fps_inverse_mult [symmetric] numeral_fps_const numeral_mult
```
```  1380                 del: numeral_mult [symmetric])
```
```  1381
```
```  1382 lemma fps_numeral_mult_divide:
```
```  1383   "numeral b * x / numeral c = (numeral b / numeral c * x :: 'a :: field fps)"
```
```  1384   by (cases "numeral c = (0::'a)") (simp_all add: fps_divide_unit numeral_fps_const)
```
```  1385
```
```  1386 lemmas fps_numeral_simps =
```
```  1387   fps_numeral_divide_divide fps_numeral_mult_divide inverse_fps_numeral neg_numeral_fps_const
```
```  1388
```
```  1389 lemma subdegree_div:
```
```  1390   assumes "q dvd p"
```
```  1391   shows   "subdegree ((p :: 'a :: field fps) div q) = subdegree p - subdegree q"
```
```  1392 proof (cases "p = 0")
```
```  1393   case False
```
```  1394   from assms have "p = p div q * q" by simp
```
```  1395   also from assms False have "subdegree \<dots> = subdegree (p div q) + subdegree q"
```
```  1396     by (intro subdegree_mult) (auto simp: dvd_div_eq_0_iff)
```
```  1397   finally show ?thesis by simp
```
```  1398 qed simp_all
```
```  1399
```
```  1400 lemma subdegree_div_unit:
```
```  1401   assumes "q \$ 0 \<noteq> 0"
```
```  1402   shows   "subdegree ((p :: 'a :: field fps) div q) = subdegree p"
```
```  1403   using assms by (subst subdegree_div) simp_all
```
```  1404
```
```  1405
```
```  1406 subsection \<open>Formal power series form a Euclidean ring\<close>
```
```  1407
```
```  1408 instantiation fps :: (field) euclidean_ring_cancel
```
```  1409 begin
```
```  1410
```
```  1411 definition fps_euclidean_size_def:
```
```  1412   "euclidean_size f = (if f = 0 then 0 else 2 ^ subdegree f)"
```
```  1413
```
```  1414 instance proof
```
```  1415   fix f g :: "'a fps" assume [simp]: "g \<noteq> 0"
```
```  1416   show "euclidean_size f \<le> euclidean_size (f * g)"
```
```  1417     by (cases "f = 0") (auto simp: fps_euclidean_size_def)
```
```  1418   show "euclidean_size (f mod g) < euclidean_size g"
```
```  1419     apply (cases "f = 0", simp add: fps_euclidean_size_def)
```
```  1420     apply (rule disjE[OF le_less_linear[of "subdegree g" "subdegree f"]])
```
```  1421     apply (simp_all add: fps_mod_eq_zero fps_euclidean_size_def subdegree_mod)
```
```  1422     done
```
```  1423 qed (simp_all add: fps_euclidean_size_def)
```
```  1424
```
```  1425 end
```
```  1426
```
```  1427 instantiation fps :: (field) euclidean_ring_gcd
```
```  1428 begin
```
```  1429 definition fps_gcd_def: "(gcd :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.gcd"
```
```  1430 definition fps_lcm_def: "(lcm :: 'a fps \<Rightarrow> _) = Euclidean_Algorithm.lcm"
```
```  1431 definition fps_Gcd_def: "(Gcd :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Gcd"
```
```  1432 definition fps_Lcm_def: "(Lcm :: 'a fps set \<Rightarrow> _) = Euclidean_Algorithm.Lcm"
```
```  1433 instance by standard (simp_all add: fps_gcd_def fps_lcm_def fps_Gcd_def fps_Lcm_def)
```
```  1434 end
```
```  1435
```
```  1436 lemma fps_gcd:
```
```  1437   assumes [simp]: "f \<noteq> 0" "g \<noteq> 0"
```
```  1438   shows   "gcd f g = fps_X ^ min (subdegree f) (subdegree g)"
```
```  1439 proof -
```
```  1440   let ?m = "min (subdegree f) (subdegree g)"
```
```  1441   show "gcd f g = fps_X ^ ?m"
```
```  1442   proof (rule sym, rule gcdI)
```
```  1443     fix d assume "d dvd f" "d dvd g"
```
```  1444     thus "d dvd fps_X ^ ?m" by (cases "d = 0") (auto simp: fps_dvd_iff)
```
```  1445   qed (simp_all add: fps_dvd_iff)
```
```  1446 qed
```
```  1447
```
```  1448 lemma fps_gcd_altdef: "gcd (f :: 'a :: field fps) g =
```
```  1449   (if f = 0 \<and> g = 0 then 0 else
```
```  1450    if f = 0 then fps_X ^ subdegree g else
```
```  1451    if g = 0 then fps_X ^ subdegree f else
```
```  1452      fps_X ^ min (subdegree f) (subdegree g))"
```
```  1453   by (simp add: fps_gcd)
```
```  1454
```
```  1455 lemma fps_lcm:
```
```  1456   assumes [simp]: "f \<noteq> 0" "g \<noteq> 0"
```
```  1457   shows   "lcm f g = fps_X ^ max (subdegree f) (subdegree g)"
```
```  1458 proof -
```
```  1459   let ?m = "max (subdegree f) (subdegree g)"
```
```  1460   show "lcm f g = fps_X ^ ?m"
```
```  1461   proof (rule sym, rule lcmI)
```
```  1462     fix d assume "f dvd d" "g dvd d"
```
```  1463     thus "fps_X ^ ?m dvd d" by (cases "d = 0") (auto simp: fps_dvd_iff)
```
```  1464   qed (simp_all add: fps_dvd_iff)
```
```  1465 qed
```
```  1466
```
```  1467 lemma fps_lcm_altdef: "lcm (f :: 'a :: field fps) g =
```
```  1468   (if f = 0 \<or> g = 0 then 0 else fps_X ^ max (subdegree f) (subdegree g))"
```
```  1469   by (simp add: fps_lcm)
```
```  1470
```
```  1471 lemma fps_Gcd:
```
```  1472   assumes "A - {0} \<noteq> {}"
```
```  1473   shows   "Gcd A = fps_X ^ (INF f:A-{0}. subdegree f)"
```
```  1474 proof (rule sym, rule GcdI)
```
```  1475   fix f assume "f \<in> A"
```
```  1476   thus "fps_X ^ (INF f:A - {0}. subdegree f) dvd f"
```
```  1477     by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cINF_lower)
```
```  1478 next
```
```  1479   fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> d dvd f"
```
```  1480   from assms obtain f where "f \<in> A - {0}" by auto
```
```  1481   with d[of f] have [simp]: "d \<noteq> 0" by auto
```
```  1482   from d assms have "subdegree d \<le> (INF f:A-{0}. subdegree f)"
```
```  1483     by (intro cINF_greatest) (auto simp: fps_dvd_iff[symmetric])
```
```  1484   with d assms show "d dvd fps_X ^ (INF f:A-{0}. subdegree f)" by (simp add: fps_dvd_iff)
```
```  1485 qed simp_all
```
```  1486
```
```  1487 lemma fps_Gcd_altdef: "Gcd (A :: 'a :: field fps set) =
```
```  1488   (if A \<subseteq> {0} then 0 else fps_X ^ (INF f:A-{0}. subdegree f))"
```
```  1489   using fps_Gcd by auto
```
```  1490
```
```  1491 lemma fps_Lcm:
```
```  1492   assumes "A \<noteq> {}" "0 \<notin> A" "bdd_above (subdegree`A)"
```
```  1493   shows   "Lcm A = fps_X ^ (SUP f:A. subdegree f)"
```
```  1494 proof (rule sym, rule LcmI)
```
```  1495   fix f assume "f \<in> A"
```
```  1496   moreover from assms(3) have "bdd_above (subdegree ` A)" by auto
```
```  1497   ultimately show "f dvd fps_X ^ (SUP f:A. subdegree f)" using assms(2)
```
```  1498     by (cases "f = 0") (auto simp: fps_dvd_iff intro!: cSUP_upper)
```
```  1499 next
```
```  1500   fix d assume d: "\<And>f. f \<in> A \<Longrightarrow> f dvd d"
```
```  1501   from assms obtain f where f: "f \<in> A" "f \<noteq> 0" by auto
```
```  1502   show "fps_X ^ (SUP f:A. subdegree f) dvd d"
```
```  1503   proof (cases "d = 0")
```
```  1504     assume "d \<noteq> 0"
```
```  1505     moreover from d have "\<And>f. f \<in> A \<Longrightarrow> f \<noteq> 0 \<Longrightarrow> f dvd d" by blast
```
```  1506     ultimately have "subdegree d \<ge> (SUP f:A. subdegree f)" using assms
```
```  1507       by (intro cSUP_least) (auto simp: fps_dvd_iff)
```
```  1508     with \<open>d \<noteq> 0\<close> show ?thesis by (simp add: fps_dvd_iff)
```
```  1509   qed simp_all
```
```  1510 qed simp_all
```
```  1511
```
```  1512 lemma fps_Lcm_altdef:
```
```  1513   "Lcm (A :: 'a :: field fps set) =
```
```  1514      (if 0 \<in> A \<or> \<not>bdd_above (subdegree`A) then 0 else
```
```  1515       if A = {} then 1 else fps_X ^ (SUP f:A. subdegree f))"
```
```  1516 proof (cases "bdd_above (subdegree`A)")
```
```  1517   assume unbounded: "\<not>bdd_above (subdegree`A)"
```
```  1518   have "Lcm A = 0"
```
```  1519   proof (rule ccontr)
```
```  1520     assume "Lcm A \<noteq> 0"
```
```  1521     from unbounded obtain f where f: "f \<in> A" "subdegree (Lcm A) < subdegree f"
```
```  1522       unfolding bdd_above_def by (auto simp: not_le)
```
```  1523     moreover from f and \<open>Lcm A \<noteq> 0\<close> have "subdegree f \<le> subdegree (Lcm A)"
```
```  1524       by (intro dvd_imp_subdegree_le dvd_Lcm) simp_all
```
```  1525     ultimately show False by simp
```
```  1526   qed
```
```  1527   with unbounded show ?thesis by simp
```
```  1528 qed (simp_all add: fps_Lcm Lcm_eq_0_I)
```
```  1529
```
```  1530
```
```  1531
```
```  1532 subsection \<open>Formal Derivatives, and the MacLaurin theorem around 0\<close>
```
```  1533
```
```  1534 definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f \$ (n + 1))"
```
```  1535
```
```  1536 lemma fps_deriv_nth[simp]: "fps_deriv f \$ n = of_nat (n +1) * f \$ (n + 1)"
```
```  1537   by (simp add: fps_deriv_def)
```
```  1538
```
```  1539 lemma fps_0th_higher_deriv:
```
```  1540   "(fps_deriv ^^ n) f \$ 0 = (fact n * f \$ n :: 'a :: {comm_ring_1, semiring_char_0})"
```
```  1541   by (induction n arbitrary: f) (simp_all del: funpow.simps add: funpow_Suc_right algebra_simps)
```
```  1542
```
```  1543 lemma fps_deriv_linear[simp]:
```
```  1544   "fps_deriv (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
```
```  1545     fps_const a * fps_deriv f + fps_const b * fps_deriv g"
```
```  1546   unfolding fps_eq_iff fps_add_nth  fps_const_mult_left fps_deriv_nth by (simp add: field_simps)
```
```  1547
```
```  1548 lemma fps_deriv_mult[simp]:
```
```  1549   fixes f :: "'a::comm_ring_1 fps"
```
```  1550   shows "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g"
```
```  1551 proof -
```
```  1552   let ?D = "fps_deriv"
```
```  1553   have "(f * ?D g + ?D f * g) \$ n = ?D (f*g) \$ n" for n
```
```  1554   proof -
```
```  1555     let ?Zn = "{0 ..n}"
```
```  1556     let ?Zn1 = "{0 .. n + 1}"
```
```  1557     let ?g = "\<lambda>i. of_nat (i+1) * g \$ (i+1) * f \$ (n - i) +
```
```  1558         of_nat (i+1)* f \$ (i+1) * g \$ (n - i)"
```
```  1559     let ?h = "\<lambda>i. of_nat i * g \$ i * f \$ ((n+1) - i) +
```
```  1560         of_nat i* f \$ i * g \$ ((n + 1) - i)"
```
```  1561     have s0: "sum (\<lambda>i. of_nat i * f \$ i * g \$ (n + 1 - i)) ?Zn1 =
```
```  1562       sum (\<lambda>i. of_nat (n + 1 - i) * f \$ (n + 1 - i) * g \$ i) ?Zn1"
```
```  1563        by (rule sum.reindex_bij_witness[where i="op - (n + 1)" and j="op - (n + 1)"]) auto
```
```  1564     have s1: "sum (\<lambda>i. f \$ i * g \$ (n + 1 - i)) ?Zn1 =
```
```  1565       sum (\<lambda>i. f \$ (n + 1 - i) * g \$ i) ?Zn1"
```
```  1566        by (rule sum.reindex_bij_witness[where i="op - (n + 1)" and j="op - (n + 1)"]) auto
```
```  1567     have "(f * ?D g + ?D f * g)\$n = (?D g * f + ?D f * g)\$n"
```
```  1568       by (simp only: mult.commute)
```
```  1569     also have "\<dots> = (\<Sum>i = 0..n. ?g i)"
```
```  1570       by (simp add: fps_mult_nth sum.distrib[symmetric])
```
```  1571     also have "\<dots> = sum ?h {0..n+1}"
```
```  1572       by (rule sum.reindex_bij_witness_not_neutral
```
```  1573             [where S'="{}" and T'="{0}" and j="Suc" and i="\<lambda>i. i - 1"]) auto
```
```  1574     also have "\<dots> = (fps_deriv (f * g)) \$ n"
```
```  1575       apply (simp only: fps_deriv_nth fps_mult_nth sum.distrib)
```
```  1576       unfolding s0 s1
```
```  1577       unfolding sum.distrib[symmetric] sum_distrib_left
```
```  1578       apply (rule sum.cong)
```
```  1579       apply (auto simp add: of_nat_diff field_simps)
```
```  1580       done
```
```  1581     finally show ?thesis .
```
```  1582   qed
```
```  1583   then show ?thesis
```
```  1584     unfolding fps_eq_iff by auto
```
```  1585 qed
```
```  1586
```
```  1587 lemma fps_deriv_fps_X[simp]: "fps_deriv fps_X = 1"
```
```  1588   by (simp add: fps_deriv_def fps_X_def fps_eq_iff)
```
```  1589
```
```  1590 lemma fps_deriv_neg[simp]:
```
```  1591   "fps_deriv (- (f:: 'a::comm_ring_1 fps)) = - (fps_deriv f)"
```
```  1592   by (simp add: fps_eq_iff fps_deriv_def)
```
```  1593
```
```  1594 lemma fps_deriv_add[simp]:
```
```  1595   "fps_deriv ((f:: 'a::comm_ring_1 fps) + g) = fps_deriv f + fps_deriv g"
```
```  1596   using fps_deriv_linear[of 1 f 1 g] by simp
```
```  1597
```
```  1598 lemma fps_deriv_sub[simp]:
```
```  1599   "fps_deriv ((f:: 'a::comm_ring_1 fps) - g) = fps_deriv f - fps_deriv g"
```
```  1600   using fps_deriv_add [of f "- g"] by simp
```
```  1601
```
```  1602 lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0"
```
```  1603   by (simp add: fps_ext fps_deriv_def fps_const_def)
```
```  1604
```
```  1605 lemma fps_deriv_of_nat [simp]: "fps_deriv (of_nat n) = 0"
```
```  1606   by (simp add: fps_of_nat [symmetric])
```
```  1607
```
```  1608 lemma fps_deriv_numeral [simp]: "fps_deriv (numeral n) = 0"
```
```  1609   by (simp add: numeral_fps_const)
```
```  1610
```
```  1611 lemma fps_deriv_mult_const_left[simp]:
```
```  1612   "fps_deriv (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_deriv f"
```
```  1613   by simp
```
```  1614
```
```  1615 lemma fps_deriv_0[simp]: "fps_deriv 0 = 0"
```
```  1616   by (simp add: fps_deriv_def fps_eq_iff)
```
```  1617
```
```  1618 lemma fps_deriv_1[simp]: "fps_deriv 1 = 0"
```
```  1619   by (simp add: fps_deriv_def fps_eq_iff )
```
```  1620
```
```  1621 lemma fps_deriv_mult_const_right[simp]:
```
```  1622   "fps_deriv (f * fps_const (c::'a::comm_ring_1)) = fps_deriv f * fps_const c"
```
```  1623   by simp
```
```  1624
```
```  1625 lemma fps_deriv_sum:
```
```  1626   "fps_deriv (sum f S) = sum (\<lambda>i. fps_deriv (f i :: 'a::comm_ring_1 fps)) S"
```
```  1627 proof (cases "finite S")
```
```  1628   case False
```
```  1629   then show ?thesis by simp
```
```  1630 next
```
```  1631   case True
```
```  1632   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
```
```  1633 qed
```
```  1634
```
```  1635 lemma fps_deriv_eq_0_iff [simp]:
```
```  1636   "fps_deriv f = 0 \<longleftrightarrow> f = fps_const (f\$0 :: 'a::{idom,semiring_char_0})"
```
```  1637   (is "?lhs \<longleftrightarrow> ?rhs")
```
```  1638 proof
```
```  1639   show ?lhs if ?rhs
```
```  1640   proof -
```
```  1641     from that have "fps_deriv f = fps_deriv (fps_const (f\$0))"
```
```  1642       by simp
```
```  1643     then show ?thesis
```
```  1644       by simp
```
```  1645   qed
```
```  1646   show ?rhs if ?lhs
```
```  1647   proof -
```
```  1648     from that have "\<forall>n. (fps_deriv f)\$n = 0"
```
```  1649       by simp
```
```  1650     then have "\<forall>n. f\$(n+1) = 0"
```
```  1651       by (simp del: of_nat_Suc of_nat_add One_nat_def)
```
```  1652     then show ?thesis
```
```  1653       apply (clarsimp simp add: fps_eq_iff fps_const_def)
```
```  1654       apply (erule_tac x="n - 1" in allE)
```
```  1655       apply simp
```
```  1656       done
```
```  1657   qed
```
```  1658 qed
```
```  1659
```
```  1660 lemma fps_deriv_eq_iff:
```
```  1661   fixes f :: "'a::{idom,semiring_char_0} fps"
```
```  1662   shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f\$0 - g\$0) + g)"
```
```  1663 proof -
```
```  1664   have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0"
```
```  1665     by simp
```
```  1666   also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f - g) \$ 0)"
```
```  1667     unfolding fps_deriv_eq_0_iff ..
```
```  1668   finally show ?thesis
```
```  1669     by (simp add: field_simps)
```
```  1670 qed
```
```  1671
```
```  1672 lemma fps_deriv_eq_iff_ex:
```
```  1673   "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>c::'a::{idom,semiring_char_0}. f = fps_const c + g)"
```
```  1674   by (auto simp: fps_deriv_eq_iff)
```
```  1675
```
```  1676
```
```  1677 fun fps_nth_deriv :: "nat \<Rightarrow> 'a::semiring_1 fps \<Rightarrow> 'a fps"
```
```  1678 where
```
```  1679   "fps_nth_deriv 0 f = f"
```
```  1680 | "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)"
```
```  1681
```
```  1682 lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)"
```
```  1683   by (induct n arbitrary: f) auto
```
```  1684
```
```  1685 lemma fps_nth_deriv_linear[simp]:
```
```  1686   "fps_nth_deriv n (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) =
```
```  1687     fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g"
```
```  1688   by (induct n arbitrary: f g) (auto simp add: fps_nth_deriv_commute)
```
```  1689
```
```  1690 lemma fps_nth_deriv_neg[simp]:
```
```  1691   "fps_nth_deriv n (- (f :: 'a::comm_ring_1 fps)) = - (fps_nth_deriv n f)"
```
```  1692   by (induct n arbitrary: f) simp_all
```
```  1693
```
```  1694 lemma fps_nth_deriv_add[simp]:
```
```  1695   "fps_nth_deriv n ((f :: 'a::comm_ring_1 fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g"
```
```  1696   using fps_nth_deriv_linear[of n 1 f 1 g] by simp
```
```  1697
```
```  1698 lemma fps_nth_deriv_sub[simp]:
```
```  1699   "fps_nth_deriv n ((f :: 'a::comm_ring_1 fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
```
```  1700   using fps_nth_deriv_add [of n f "- g"] by simp
```
```  1701
```
```  1702 lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0"
```
```  1703   by (induct n) simp_all
```
```  1704
```
```  1705 lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)"
```
```  1706   by (induct n) simp_all
```
```  1707
```
```  1708 lemma fps_nth_deriv_const[simp]:
```
```  1709   "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)"
```
```  1710   by (cases n) simp_all
```
```  1711
```
```  1712 lemma fps_nth_deriv_mult_const_left[simp]:
```
```  1713   "fps_nth_deriv n (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_nth_deriv n f"
```
```  1714   using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp
```
```  1715
```
```  1716 lemma fps_nth_deriv_mult_const_right[simp]:
```
```  1717   "fps_nth_deriv n (f * fps_const (c::'a::comm_ring_1)) = fps_nth_deriv n f * fps_const c"
```
```  1718   using fps_nth_deriv_linear[of n "c" f 0 0] by (simp add: mult.commute)
```
```  1719
```
```  1720 lemma fps_nth_deriv_sum:
```
```  1721   "fps_nth_deriv n (sum f S) = sum (\<lambda>i. fps_nth_deriv n (f i :: 'a::comm_ring_1 fps)) S"
```
```  1722 proof (cases "finite S")
```
```  1723   case True
```
```  1724   show ?thesis by (induct rule: finite_induct [OF True]) simp_all
```
```  1725 next
```
```  1726   case False
```
```  1727   then show ?thesis by simp
```
```  1728 qed
```
```  1729
```
```  1730 lemma fps_deriv_maclauren_0:
```
```  1731   "(fps_nth_deriv k (f :: 'a::comm_semiring_1 fps)) \$ 0 = of_nat (fact k) * f \$ k"
```
```  1732   by (induct k arbitrary: f) (auto simp add: field_simps)
```
```  1733
```
```  1734
```
```  1735 subsection \<open>Powers\<close>
```
```  1736
```
```  1737 lemma fps_power_zeroth_eq_one: "a\$0 =1 \<Longrightarrow> a^n \$ 0 = (1::'a::semiring_1)"
```
```  1738   by (induct n) (auto simp add: expand_fps_eq fps_mult_nth)
```
```  1739
```
```  1740 lemma fps_power_first_eq: "(a :: 'a::comm_ring_1 fps) \$ 0 =1 \<Longrightarrow> a^n \$ 1 = of_nat n * a\$1"
```
```  1741 proof (induct n)
```
```  1742   case 0
```
```  1743   then show ?case by simp
```
```  1744 next
```
```  1745   case (Suc n)
```
```  1746   show ?case unfolding power_Suc fps_mult_nth
```
```  1747     using Suc.hyps[OF \<open>a\$0 = 1\<close>] \<open>a\$0 = 1\<close> fps_power_zeroth_eq_one[OF \<open>a\$0=1\<close>]
```
```  1748     by (simp add: field_simps)
```
```  1749 qed
```
```  1750
```
```  1751 lemma startsby_one_power:"a \$ 0 = (1::'a::comm_ring_1) \<Longrightarrow> a^n \$ 0 = 1"
```
```  1752   by (induct n) (auto simp add: fps_mult_nth)
```
```  1753
```
```  1754 lemma startsby_zero_power:"a \$0 = (0::'a::comm_ring_1) \<Longrightarrow> n > 0 \<Longrightarrow> a^n \$0 = 0"
```
```  1755   by (induct n) (auto simp add: fps_mult_nth)
```
```  1756
```
```  1757 lemma startsby_power:"a \$0 = (v::'a::comm_ring_1) \<Longrightarrow> a^n \$0 = v^n"
```
```  1758   by (induct n) (auto simp add: fps_mult_nth)
```
```  1759
```
```  1760 lemma startsby_zero_power_iff[simp]: "a^n \$0 = (0::'a::idom) \<longleftrightarrow> n \<noteq> 0 \<and> a\$0 = 0"
```
```  1761   apply (rule iffI)
```
```  1762   apply (induct n)
```
```  1763   apply (auto simp add: fps_mult_nth)
```
```  1764   apply (rule startsby_zero_power, simp_all)
```
```  1765   done
```
```  1766
```
```  1767 lemma startsby_zero_power_prefix:
```
```  1768   assumes a0: "a \$ 0 = (0::'a::idom)"
```
```  1769   shows "\<forall>n < k. a ^ k \$ n = 0"
```
```  1770   using a0
```
```  1771 proof (induct k rule: nat_less_induct)
```
```  1772   fix k
```
```  1773   assume H: "\<forall>m<k. a \$0 =  0 \<longrightarrow> (\<forall>n<m. a ^ m \$ n = 0)" and a0: "a \$ 0 = 0"
```
```  1774   show "\<forall>m<k. a ^ k \$ m = 0"
```
```  1775   proof (cases k)
```
```  1776     case 0
```
```  1777     then show ?thesis by simp
```
```  1778   next
```
```  1779     case (Suc l)
```
```  1780     have "a^k \$ m = 0" if mk: "m < k" for m
```
```  1781     proof (cases "m = 0")
```
```  1782       case True
```
```  1783       then show ?thesis
```
```  1784         using startsby_zero_power[of a k] Suc a0 by simp
```
```  1785     next
```
```  1786       case False
```
```  1787       have "a ^k \$ m = (a^l * a) \$m"
```
```  1788         by (simp add: Suc mult.commute)
```
```  1789       also have "\<dots> = (\<Sum>i = 0..m. a ^ l \$ i * a \$ (m - i))"
```
```  1790         by (simp add: fps_mult_nth)
```
```  1791       also have "\<dots> = 0"
```
```  1792         apply (rule sum.neutral)
```
```  1793         apply auto
```
```  1794         apply (case_tac "x = m")
```
```  1795         using a0 apply simp
```
```  1796         apply (rule H[rule_format])
```
```  1797         using a0 Suc mk apply auto
```
```  1798         done
```
```  1799       finally show ?thesis .
```
```  1800     qed
```
```  1801     then show ?thesis by blast
```
```  1802   qed
```
```  1803 qed
```
```  1804
```
```  1805 lemma startsby_zero_sum_depends:
```
```  1806   assumes a0: "a \$0 = (0::'a::idom)"
```
```  1807     and kn: "n \<ge> k"
```
```  1808   shows "sum (\<lambda>i. (a ^ i)\$k) {0 .. n} = sum (\<lambda>i. (a ^ i)\$k) {0 .. k}"
```
```  1809   apply (rule sum.mono_neutral_right)
```
```  1810   using kn
```
```  1811   apply auto
```
```  1812   apply (rule startsby_zero_power_prefix[rule_format, OF a0])
```
```  1813   apply arith
```
```  1814   done
```
```  1815
```
```  1816 lemma startsby_zero_power_nth_same:
```
```  1817   assumes a0: "a\$0 = (0::'a::idom)"
```
```  1818   shows "a^n \$ n = (a\$1) ^ n"
```
```  1819 proof (induct n)
```
```  1820   case 0
```
```  1821   then show ?case by simp
```
```  1822 next
```
```  1823   case (Suc n)
```
```  1824   have "a ^ Suc n \$ (Suc n) = (a^n * a)\$(Suc n)"
```
```  1825     by (simp add: field_simps)
```
```  1826   also have "\<dots> = sum (\<lambda>i. a^n\$i * a \$ (Suc n - i)) {0.. Suc n}"
```
```  1827     by (simp add: fps_mult_nth)
```
```  1828   also have "\<dots> = sum (\<lambda>i. a^n\$i * a \$ (Suc n - i)) {n .. Suc n}"
```
```  1829     apply (rule sum.mono_neutral_right)
```
```  1830     apply simp
```
```  1831     apply clarsimp
```
```  1832     apply clarsimp
```
```  1833     apply (rule startsby_zero_power_prefix[rule_format, OF a0])
```
```  1834     apply arith
```
```  1835     done
```
```  1836   also have "\<dots> = a^n \$ n * a\$1"
```
```  1837     using a0 by simp
```
```  1838   finally show ?case
```
```  1839     using Suc.hyps by simp
```
```  1840 qed
```
```  1841
```
```  1842 lemma fps_inverse_power:
```
```  1843   fixes a :: "'a::field fps"
```
```  1844   shows "inverse (a^n) = inverse a ^ n"
```
```  1845   by (induction n) (simp_all add: fps_inverse_mult)
```
```  1846
```
```  1847 lemma fps_deriv_power:
```
```  1848   "fps_deriv (a ^ n) = fps_const (of_nat n :: 'a::comm_ring_1) * fps_deriv a * a ^ (n - 1)"
```
```  1849   apply (induct n)
```
```  1850   apply (auto simp add: field_simps fps_const_add[symmetric] simp del: fps_const_add)
```
```  1851   apply (case_tac n)
```
```  1852   apply (auto simp add: field_simps)
```
```  1853   done
```
```  1854
```
```  1855 lemma fps_inverse_deriv:
```
```  1856   fixes a :: "'a::field fps"
```
```  1857   assumes a0: "a\$0 \<noteq> 0"
```
```  1858   shows "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
```
```  1859 proof -
```
```  1860   from inverse_mult_eq_1[OF a0]
```
```  1861   have "fps_deriv (inverse a * a) = 0" by simp
```
```  1862   then have "inverse a * fps_deriv a + fps_deriv (inverse a) * a = 0"
```
```  1863     by simp
```
```  1864   then have "inverse a * (inverse a * fps_deriv a + fps_deriv (inverse a) * a) = 0"
```
```  1865     by simp
```
```  1866   with inverse_mult_eq_1[OF a0]
```
```  1867   have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) = 0"
```
```  1868     unfolding power2_eq_square
```
```  1869     apply (simp add: field_simps)
```
```  1870     apply (simp add: mult.assoc[symmetric])
```
```  1871     done
```
```  1872   then have "(inverse a)\<^sup>2 * fps_deriv a + fps_deriv (inverse a) - fps_deriv a * (inverse a)\<^sup>2 =
```
```  1873       0 - fps_deriv a * (inverse a)\<^sup>2"
```
```  1874     by simp
```
```  1875   then show "fps_deriv (inverse a) = - fps_deriv a * (inverse a)\<^sup>2"
```
```  1876     by (simp add: field_simps)
```
```  1877 qed
```
```  1878
```
```  1879 lemma fps_inverse_deriv':
```
```  1880   fixes a :: "'a::field fps"
```
```  1881   assumes a0: "a \$ 0 \<noteq> 0"
```
```  1882   shows "fps_deriv (inverse a) = - fps_deriv a / a\<^sup>2"
```
```  1883   using fps_inverse_deriv[OF a0] a0
```
```  1884   by (simp add: fps_divide_unit power2_eq_square fps_inverse_mult)
```
```  1885
```
```  1886 lemma inverse_mult_eq_1':
```
```  1887   assumes f0: "f\$0 \<noteq> (0::'a::field)"
```
```  1888   shows "f * inverse f = 1"
```
```  1889   by (metis mult.commute inverse_mult_eq_1 f0)
```
```  1890
```
```  1891 lemma fps_inverse_minus [simp]: "inverse (-f) = -inverse (f :: 'a :: field fps)"
```
```  1892   by (cases "f\$0 = 0") (auto intro: fps_inverse_unique simp: inverse_mult_eq_1' fps_inverse_eq_0)
```
```  1893
```
```  1894 lemma divide_fps_const [simp]: "f / fps_const (c :: 'a :: field) = fps_const (inverse c) * f"
```
```  1895   by (cases "c = 0") (simp_all add: fps_divide_unit fps_const_inverse)
```
```  1896
```
```  1897 (* FIfps_XME: The last part of this proof should go through by simp once we have a proper
```
```  1898    theorem collection for simplifying division on rings *)
```
```  1899 lemma fps_divide_deriv:
```
```  1900   assumes "b dvd (a :: 'a :: field fps)"
```
```  1901   shows   "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b^2"
```
```  1902 proof -
```
```  1903   have eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b div c" for a b c :: "'a :: field fps"
```
```  1904     by (drule sym) (simp add: mult.assoc)
```
```  1905   from assms have "a = a / b * b" by simp
```
```  1906   also have "fps_deriv (a / b * b) = fps_deriv (a / b) * b + a / b * fps_deriv b" by simp
```
```  1907   finally have "fps_deriv (a / b) * b^2 = fps_deriv a * b - a * fps_deriv b" using assms
```
```  1908     by (simp add: power2_eq_square algebra_simps)
```
```  1909   thus ?thesis by (cases "b = 0") (auto simp: eq_divide_imp)
```
```  1910 qed
```
```  1911
```
```  1912 lemma fps_inverse_gp': "inverse (Abs_fps (\<lambda>n. 1::'a::field)) = 1 - fps_X"
```
```  1913   by (simp add: fps_inverse_gp fps_eq_iff fps_X_def)
```
```  1914
```
```  1915 lemma fps_one_over_one_minus_fps_X_squared:
```
```  1916   "inverse ((1 - fps_X)^2 :: 'a :: field fps) = Abs_fps (\<lambda>n. of_nat (n+1))"
```
```  1917 proof -
```
```  1918   have "inverse ((1 - fps_X)^2 :: 'a fps) = fps_deriv (inverse (1 - fps_X))"
```
```  1919     by (subst fps_inverse_deriv) (simp_all add: fps_inverse_power)
```
```  1920   also have "inverse (1 - fps_X :: 'a fps) = Abs_fps (\<lambda>_. 1)"
```
```  1921     by (subst fps_inverse_gp' [symmetric]) simp
```
```  1922   also have "fps_deriv \<dots> = Abs_fps (\<lambda>n. of_nat (n + 1))"
```
```  1923     by (simp add: fps_deriv_def)
```
```  1924   finally show ?thesis .
```
```  1925 qed
```
```  1926
```
```  1927 lemma fps_nth_deriv_fps_X[simp]: "fps_nth_deriv n fps_X = (if n = 0 then fps_X else if n=1 then 1 else 0)"
```
```  1928   by (cases n) simp_all
```
```  1929
```
```  1930 lemma fps_inverse_fps_X_plus1: "inverse (1 + fps_X) = Abs_fps (\<lambda>n. (- (1::'a::field)) ^ n)"
```
```  1931   (is "_ = ?r")
```
```  1932 proof -
```
```  1933   have eq: "(1 + fps_X) * ?r = 1"
```
```  1934     unfolding minus_one_power_iff
```
```  1935     by (auto simp add: field_simps fps_eq_iff)
```
```  1936   show ?thesis
```
```  1937     by (auto simp add: eq intro: fps_inverse_unique)
```
```  1938 qed
```
```  1939
```
```  1940
```
```  1941 subsection \<open>Integration\<close>
```
```  1942
```
```  1943 definition fps_integral :: "'a::field_char_0 fps \<Rightarrow> 'a \<Rightarrow> 'a fps"
```
```  1944   where "fps_integral a a0 = Abs_fps (\<lambda>n. if n = 0 then a0 else (a\$(n - 1) / of_nat n))"
```
```  1945
```
```  1946 lemma fps_deriv_fps_integral: "fps_deriv (fps_integral a a0) = a"
```
```  1947   unfolding fps_integral_def fps_deriv_def
```
```  1948   by (simp add: fps_eq_iff del: of_nat_Suc)
```
```  1949
```
```  1950 lemma fps_integral_linear:
```
```  1951   "fps_integral (fps_const a * f + fps_const b * g) (a*a0 + b*b0) =
```
```  1952     fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0"
```
```  1953   (is "?l = ?r")
```
```  1954 proof -
```
```  1955   have "fps_deriv ?l = fps_deriv ?r"
```
```  1956     by (simp add: fps_deriv_fps_integral)
```
```  1957   moreover have "?l\$0 = ?r\$0"
```
```  1958     by (simp add: fps_integral_def)
```
```  1959   ultimately show ?thesis
```
```  1960     unfolding fps_deriv_eq_iff by auto
```
```  1961 qed
```
```  1962
```
```  1963
```
```  1964 subsection \<open>Composition of FPSs\<close>
```
```  1965
```
```  1966 definition fps_compose :: "'a::semiring_1 fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps"  (infixl "oo" 55)
```
```  1967   where "a oo b = Abs_fps (\<lambda>n. sum (\<lambda>i. a\$i * (b^i\$n)) {0..n})"
```
```  1968
```
```  1969 lemma fps_compose_nth: "(a oo b)\$n = sum (\<lambda>i. a\$i * (b^i\$n)) {0..n}"
```
```  1970   by (simp add: fps_compose_def)
```
```  1971
```
```  1972 lemma fps_compose_nth_0 [simp]: "(f oo g) \$ 0 = f \$ 0"
```
```  1973   by (simp add: fps_compose_nth)
```
```  1974
```
```  1975 lemma fps_compose_fps_X[simp]: "a oo fps_X = (a :: 'a::comm_ring_1 fps)"
```
```  1976   by (simp add: fps_ext fps_compose_def mult_delta_right sum.delta')
```
```  1977
```
```  1978 lemma fps_const_compose[simp]: "fps_const (a::'a::comm_ring_1) oo b = fps_const a"
```
```  1979   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
```
```  1980
```
```  1981 lemma numeral_compose[simp]: "(numeral k :: 'a::comm_ring_1 fps) oo b = numeral k"
```
```  1982   unfolding numeral_fps_const by simp
```
```  1983
```
```  1984 lemma neg_numeral_compose[simp]: "(- numeral k :: 'a::comm_ring_1 fps) oo b = - numeral k"
```
```  1985   unfolding neg_numeral_fps_const by simp
```
```  1986
```
```  1987 lemma fps_X_fps_compose_startby0[simp]: "a\$0 = 0 \<Longrightarrow> fps_X oo a = (a :: 'a::comm_ring_1 fps)"
```
```  1988   by (simp add: fps_eq_iff fps_compose_def mult_delta_left sum.delta not_le)
```
```  1989
```
```  1990
```
```  1991 subsection \<open>Rules from Herbert Wilf's Generatingfunctionology\<close>
```
```  1992
```
```  1993 subsubsection \<open>Rule 1\<close>
```
```  1994   (* {a_{n+k}}_0^infty Corresponds to (f - sum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
```
```  1995
```
```  1996 lemma fps_power_mult_eq_shift:
```
```  1997   "fps_X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) =
```
```  1998     Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a::comm_ring_1) * fps_X^i) {0 .. k}"
```
```  1999   (is "?lhs = ?rhs")
```
```  2000 proof -
```
```  2001   have "?lhs \$ n = ?rhs \$ n" for n :: nat
```
```  2002   proof -
```
```  2003     have "?lhs \$ n = (if n < Suc k then 0 else a n)"
```
```  2004       unfolding fps_X_power_mult_nth by auto
```
```  2005     also have "\<dots> = ?rhs \$ n"
```
```  2006     proof (induct k)
```
```  2007       case 0
```
```  2008       then show ?case
```
```  2009         by (simp add: fps_sum_nth)
```
```  2010     next
```
```  2011       case (Suc k)
```
```  2012       have "(Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * fps_X^i) {0 .. Suc k})\$n =
```
```  2013         (Abs_fps a - sum (\<lambda>i. fps_const (a i :: 'a) * fps_X^i) {0 .. k} -
```
```  2014           fps_const (a (Suc k)) * fps_X^ Suc k) \$ n"
```
```  2015         by (simp add: field_simps)
```
```  2016       also have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * fps_X^ Suc k)\$n"
```
```  2017         using Suc.hyps[symmetric] unfolding fps_sub_nth by simp
```
```  2018       also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)"
```
```  2019         unfolding fps_X_power_mult_right_nth
```
```  2020         apply (auto simp add: not_less fps_const_def)
```
```  2021         apply (rule cong[of a a, OF refl])
```
```  2022         apply arith
```
```  2023         done
```
```  2024       finally show ?case
```
```  2025         by simp
```
```  2026     qed
```
```  2027     finally show ?thesis .
```
```  2028   qed
```
```  2029   then show ?thesis
```
```  2030     by (simp add: fps_eq_iff)
```
```  2031 qed
```
```  2032
```
```  2033
```
```  2034 subsubsection \<open>Rule 2\<close>
```
```  2035
```
```  2036   (* We can not reach the form of Wilf, but still near to it using rewrite rules*)
```
```  2037   (* If f reprents {a_n} and P is a polynomial, then
```
```  2038         P(xD) f represents {P(n) a_n}*)
```
```  2039
```
```  2040 definition "fps_XD = op * fps_X \<circ> fps_deriv"
```
```  2041
```
```  2042 lemma fps_XD_add[simp]:"fps_XD (a + b) = fps_XD a + fps_XD (b :: 'a::comm_ring_1 fps)"
```
```  2043   by (simp add: fps_XD_def field_simps)
```
```  2044
```
```  2045 lemma fps_XD_mult_const[simp]:"fps_XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * fps_XD a"
```
```  2046   by (simp add: fps_XD_def field_simps)
```
```  2047
```
```  2048 lemma fps_XD_linear[simp]: "fps_XD (fps_const c * a + fps_const d * b) =
```
```  2049     fps_const c * fps_XD a + fps_const d * fps_XD (b :: 'a::comm_ring_1 fps)"
```
```  2050   by simp
```
```  2051
```
```  2052 lemma fps_XDN_linear:
```
```  2053   "(fps_XD ^^ n) (fps_const c * a + fps_const d * b) =
```
```  2054     fps_const c * (fps_XD ^^ n) a + fps_const d * (fps_XD ^^ n) (b :: 'a::comm_ring_1 fps)"
```
```  2055   by (induct n) simp_all
```
```  2056
```
```  2057 lemma fps_mult_fps_X_deriv_shift: "fps_X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a\$n)"
```
```  2058   by (simp add: fps_eq_iff)
```
```  2059
```
```  2060 lemma fps_mult_fps_XD_shift:
```
```  2061   "(fps_XD ^^ k) (a :: 'a::comm_ring_1 fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a\$n)"
```
```  2062   by (induct k arbitrary: a) (simp_all add: fps_XD_def fps_eq_iff field_simps del: One_nat_def)
```
```  2063
```
```  2064
```
```  2065 subsubsection \<open>Rule 3\<close>
```
```  2066
```
```  2067 text \<open>Rule 3 is trivial and is given by \<open>fps_times_def\<close>.\<close>
```
```  2068
```
```  2069
```
```  2070 subsubsection \<open>Rule 5 --- summation and "division" by (1 - fps_X)\<close>
```
```  2071
```
```  2072 lemma fps_divide_fps_X_minus1_sum_lemma:
```
```  2073   "a = ((1::'a::comm_ring_1 fps) - fps_X) * Abs_fps (\<lambda>n. sum (\<lambda>i. a \$ i) {0..n})"
```
```  2074 proof -
```
```  2075   let ?sa = "Abs_fps (\<lambda>n. sum (\<lambda>i. a \$ i) {0..n})"
```
```  2076   have th0: "\<And>i. (1 - (fps_X::'a fps)) \$ i = (if i = 0 then 1 else if i = 1 then - 1 else 0)"
```
```  2077     by simp
```
```  2078   have "a\$n = ((1 - fps_X) * ?sa) \$ n" for n
```
```  2079   proof (cases "n = 0")
```
```  2080     case True
```
```  2081     then show ?thesis
```
```  2082       by (simp add: fps_mult_nth)
```
```  2083   next
```
```  2084     case False
```
```  2085     then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1} \<union> {2..n} = {1..n}"
```
```  2086       "{0..n - 1} \<union> {n} = {0..n}"
```
```  2087       by (auto simp: set_eq_iff)
```
```  2088     have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}" "{0..n - 1} \<inter> {n} = {}"
```
```  2089       using False by simp_all
```
```  2090     have f: "finite {0}" "finite {1}" "finite {2 .. n}"
```
```  2091       "finite {0 .. n - 1}" "finite {n}" by simp_all
```
```  2092     have "((1 - fps_X) * ?sa) \$ n = sum (\<lambda>i. (1 - fps_X)\$ i * ?sa \$ (n - i)) {0 .. n}"
```
```  2093       by (simp add: fps_mult_nth)
```
```  2094     also have "\<dots> = a\$n"
```
```  2095       unfolding th0
```
```  2096       unfolding sum.union_disjoint[OF f(1) finite_UnI[OF f(2,3)] d(1), unfolded u(1)]
```
```  2097       unfolding sum.union_disjoint[OF f(2) f(3) d(2)]
```
```  2098       apply (simp)
```
```  2099       unfolding sum.union_disjoint[OF f(4,5) d(3), unfolded u(3)]
```
```  2100       apply simp
```
```  2101       done
```
```  2102     finally show ?thesis
```
```  2103       by simp
```
```  2104   qed
```
```  2105   then show ?thesis
```
```  2106     unfolding fps_eq_iff by blast
```
```  2107 qed
```
```  2108
```
```  2109 lemma fps_divide_fps_X_minus1_sum:
```
```  2110   "a /((1::'a::field fps) - fps_X) = Abs_fps (\<lambda>n. sum (\<lambda>i. a \$ i) {0..n})"
```
```  2111 proof -
```
```  2112   let ?fps_X = "1 - (fps_X::'a fps)"
```
```  2113   have th0: "?fps_X \$ 0 \<noteq> 0"
```
```  2114     by simp
```
```  2115   have "a /?fps_X = ?fps_X *  Abs_fps (\<lambda>n::nat. sum (op \$ a) {0..n}) * inverse ?fps_X"
```
```  2116     using fps_divide_fps_X_minus1_sum_lemma[of a, symmetric] th0
```
```  2117     by (simp add: fps_divide_def mult.assoc)
```
```  2118   also have "\<dots> = (inverse ?fps_X * ?fps_X) * Abs_fps (\<lambda>n::nat. sum (op \$ a) {0..n}) "
```
```  2119     by (simp add: ac_simps)
```
```  2120   finally show ?thesis
```
```  2121     by (simp add: inverse_mult_eq_1[OF th0])
```
```  2122 qed
```
```  2123
```
```  2124
```
```  2125 subsubsection \<open>Rule 4 in its more general form: generalizes Rule 3 for an arbitrary
```
```  2126   finite product of FPS, also the relvant instance of powers of a FPS\<close>
```
```  2127
```
```  2128 definition "natpermute n k = {l :: nat list. length l = k \<and> sum_list l = n}"
```
```  2129
```
```  2130 lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
```
```  2131   apply (auto simp add: natpermute_def)
```
```  2132   apply (case_tac x)
```
```  2133   apply auto
```
```  2134   done
```
```  2135
```
```  2136 lemma append_natpermute_less_eq:
```
```  2137   assumes "xs @ ys \<in> natpermute n k"
```
```  2138   shows "sum_list xs \<le> n"
```
```  2139     and "sum_list ys \<le> n"
```
```  2140 proof -
```
```  2141   from assms have "sum_list (xs @ ys) = n"
```
```  2142     by (simp add: natpermute_def)
```
```  2143   then have "sum_list xs + sum_list ys = n"
```
```  2144     by simp
```
```  2145   then show "sum_list xs \<le> n" and "sum_list ys \<le> n"
```
```  2146     by simp_all
```
```  2147 qed
```
```  2148
```
```  2149 lemma natpermute_split:
```
```  2150   assumes "h \<le> k"
```
```  2151   shows "natpermute n k =
```
```  2152     (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})"
```
```  2153   (is "?L = ?R" is "_ = (\<Union>m \<in>{0..n}. ?S m)")
```
```  2154 proof
```
```  2155   show "?R \<subseteq> ?L"
```
```  2156   proof
```
```  2157     fix l
```
```  2158     assume l: "l \<in> ?R"
```
```  2159     from l obtain m xs ys where h: "m \<in> {0..n}"
```
```  2160       and xs: "xs \<in> natpermute m h"
```
```  2161       and ys: "ys \<in> natpermute (n - m) (k - h)"
```
```  2162       and leq: "l = xs@ys" by blast
```
```  2163     from xs have xs': "sum_list xs = m"
```
```  2164       by (simp add: natpermute_def)
```
```  2165     from ys have ys': "sum_list ys = n - m"
```
```  2166       by (simp add: natpermute_def)
```
```  2167     show "l \<in> ?L" using leq xs ys h
```
```  2168       apply (clarsimp simp add: natpermute_def)
```
```  2169       unfolding xs' ys'
```
```  2170       using assms xs ys
```
```  2171       unfolding natpermute_def
```
```  2172       apply simp
```
```  2173       done
```
```  2174   qed
```
```  2175   show "?L \<subseteq> ?R"
```
```  2176   proof
```
```  2177     fix l
```
```  2178     assume l: "l \<in> natpermute n k"
```
```  2179     let ?xs = "take h l"
```
```  2180     let ?ys = "drop h l"
```
```  2181     let ?m = "sum_list ?xs"
```
```  2182     from l have ls: "sum_list (?xs @ ?ys) = n"
```
```  2183       by (simp add: natpermute_def)
```
```  2184     have xs: "?xs \<in> natpermute ?m h" using l assms
```
```  2185       by (simp add: natpermute_def)
```
```  2186     have l_take_drop: "sum_list l = sum_list (take h l @ drop h l)"
```
```  2187       by simp
```
```  2188     then have ys: "?ys \<in> natpermute (n - ?m) (k - h)"
```
```  2189       using l assms ls by (auto simp add: natpermute_def simp del: append_take_drop_id)
```
```  2190     from ls have m: "?m \<in> {0..n}"
```
```  2191       by (simp add: l_take_drop del: append_take_drop_id)
```
```  2192     from xs ys ls show "l \<in> ?R"
```
```  2193       apply auto
```
```  2194       apply (rule bexI [where x = "?m"])
```
```  2195       apply (rule exI [where x = "?xs"])
```
```  2196       apply (rule exI [where x = "?ys"])
```
```  2197       using ls l
```
```  2198       apply (auto simp add: natpermute_def l_take_drop simp del: append_take_drop_id)
```
```  2199       apply simp
```
```  2200       done
```
```  2201   qed
```
```  2202 qed
```
```  2203
```
```  2204 lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
```
```  2205   by (auto simp add: natpermute_def)
```
```  2206
```
```  2207 lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
```
```  2208   apply (auto simp add: set_replicate_conv_if natpermute_def)
```
```  2209   apply (rule nth_equalityI)
```
```  2210   apply simp_all
```
```  2211   done
```
```  2212
```
```  2213 lemma natpermute_finite: "finite (natpermute n k)"
```
```  2214 proof (induct k arbitrary: n)
```
```  2215   case 0
```
```  2216   then show ?case
```
```  2217     apply (subst natpermute_split[of 0 0, simplified])
```
```  2218     apply (simp add: natpermute_0)
```
```  2219     done
```
```  2220 next
```
```  2221   case (Suc k)
```
```  2222   then show ?case unfolding natpermute_split [of k "Suc k", simplified]
```
```  2223     apply -
```
```  2224     apply (rule finite_UN_I)
```
```  2225     apply simp
```
```  2226     unfolding One_nat_def[symmetric] natlist_trivial_1
```
```  2227     apply simp
```
```  2228     done
```
```  2229 qed
```
```  2230
```
```  2231 lemma natpermute_contain_maximal:
```
```  2232   "{xs \<in> natpermute n (k + 1). n \<in> set xs} = (\<Union>i\<in>{0 .. k}. {(replicate (k + 1) 0) [i:=n]})"
```
```  2233   (is "?A = ?B")
```
```  2234 proof
```
```  2235   show "?A \<subseteq> ?B"
```
```  2236   proof
```
```  2237     fix xs
```
```  2238     assume "xs \<in> ?A"
```
```  2239     then have H: "xs \<in> natpermute n (k + 1)" and n: "n \<in> set xs"
```
```  2240       by blast+
```
```  2241     then obtain i where i: "i \<in> {0.. k}" "xs!i = n"
```
```  2242       unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def)
```
```  2243     have eqs: "({0..k} - {i}) \<union> {i} = {0..k}"
```
```  2244       using i by auto
```
```  2245     have f: "finite({0..k} - {i})" "finite {i}"
```
```  2246       by auto
```
```  2247     have d: "({0..k} - {i}) \<inter> {i} = {}"
```
```  2248       using i by auto
```
```  2249     from H have "n = sum (nth xs) {0..k}"
```
```  2250       apply (simp add: natpermute_def)
```
```  2251       apply (auto simp add: atLeastLessThanSuc_atLeastAtMost sum_list_sum_nth)
```
```  2252       done
```
```  2253     also have "\<dots> = n + sum (nth xs) ({0..k} - {i})"
```
```  2254       unfolding sum.union_disjoint[OF f d, unfolded eqs] using i by simp
```
```  2255     finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0"
```
```  2256       by auto
```
```  2257     from H have xsl: "length xs = k+1"
```
```  2258       by (simp add: natpermute_def)
```
```  2259     from i have i': "i < length (replicate (k+1) 0)"   "i < k+1"
```
```  2260       unfolding length_replicate by presburger+
```
```  2261     have "xs = replicate (k+1) 0 [i := n]"
```
```  2262       apply (rule nth_equalityI)
```
```  2263       unfolding xsl length_list_update length_replicate
```
```  2264       apply simp
```
```  2265       apply clarify
```
```  2266       unfolding nth_list_update[OF i'(1)]
```
```  2267       using i zxs
```
```  2268       apply (case_tac "ia = i")
```
```  2269       apply (auto simp del: replicate.simps)
```
```  2270       done
```
```  2271     then show "xs \<in> ?B" using i by blast
```
```  2272   qed
```
```  2273   show "?B \<subseteq> ?A"
```
```  2274   proof
```
```  2275     fix xs
```
```  2276     assume "xs \<in> ?B"
```
```  2277     then obtain i where i: "i \<in> {0..k}" and xs: "xs = replicate (k + 1) 0 [i:=n]"
```
```  2278       by auto
```
```  2279     have nxs: "n \<in> set xs"
```
```  2280       unfolding xs
```
```  2281       apply (rule set_update_memI)
```
```  2282       using i apply simp
```
```  2283       done
```
```  2284     have xsl: "length xs = k + 1"
```
```  2285       by (simp only: xs length_replicate length_list_update)
```
```  2286     have "sum_list xs = sum (nth xs) {0..<k+1}"
```
```  2287       unfolding sum_list_sum_nth xsl ..
```
```  2288     also have "\<dots> = sum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
```
```  2289       by (rule sum.cong) (simp_all add: xs del: replicate.simps)
```
```  2290     also have "\<dots> = n" using i by (simp add: sum.delta)
```
```  2291     finally have "xs \<in> natpermute n (k + 1)"
```
```  2292       using xsl unfolding natpermute_def mem_Collect_eq by blast
```
```  2293     then show "xs \<in> ?A"
```
```  2294       using nxs by blast
```
```  2295   qed
```
```  2296 qed
```
```  2297
```
```  2298 text \<open>The general form.\<close>
```
```  2299 lemma fps_prod_nth:
```
```  2300   fixes m :: nat
```
```  2301     and a :: "nat \<Rightarrow> 'a::comm_ring_1 fps"
```
```  2302   shows "(prod a {0 .. m}) \$ n =
```
```  2303     sum (\<lambda>v. prod (\<lambda>j. (a j) \$ (v!j)) {0..m}) (natpermute n (m+1))"
```
```  2304   (is "?P m n")
```
```  2305 proof (induct m arbitrary: n rule: nat_less_induct)
```
```  2306   fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n"
```
```  2307   show "?P m n"
```
```  2308   proof (cases m)
```
```  2309     case 0
```
```  2310     then show ?thesis
```
```  2311       apply simp
```
```  2312       unfolding natlist_trivial_1[where n = n, unfolded One_nat_def]
```
```  2313       apply simp
```
```  2314       done
```
```  2315   next
```
```  2316     case (Suc k)
```
```  2317     then have km: "k < m" by arith
```
```  2318     have u0: "{0 .. k} \<union> {m} = {0..m}"
```
```  2319       using Suc by (simp add: set_eq_iff) presburger
```
```  2320     have f0: "finite {0 .. k}" "finite {m}" by auto
```
```  2321     have d0: "{0 .. k} \<inter> {m} = {}" using Suc by auto
```
```  2322     have "(prod a {0 .. m}) \$ n = (prod a {0 .. k} * a m) \$ n"
```
```  2323       unfolding prod.union_disjoint[OF f0 d0, unfolded u0] by simp
```
```  2324     also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). \<Prod>j\<in>{0..k}. a j \$ v ! j) * a m \$ (n - i))"
```
```  2325       unfolding fps_mult_nth H[rule_format, OF km] ..
```
```  2326     also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j \$ v ! j)"
```
```  2327       apply (simp add: Suc)
```
```  2328       unfolding natpermute_split[of m "m + 1", simplified, of n,
```
```  2329         unfolded natlist_trivial_1[unfolded One_nat_def] Suc]
```
```  2330       apply (subst sum.UNION_disjoint)
```
```  2331       apply simp
```
```  2332       apply simp
```
```  2333       unfolding image_Collect[symmetric]
```
```  2334       apply clarsimp
```
```  2335       apply (rule finite_imageI)
```
```  2336       apply (rule natpermute_finite)
```
```  2337       apply (clarsimp simp add: set_eq_iff)
```
```  2338       apply auto
```
```  2339       apply (rule sum.cong)
```
```  2340       apply (rule refl)
```
```  2341       unfolding sum_distrib_right
```
```  2342       apply (rule sym)
```
```  2343       apply (rule_tac l = "\<lambda>xs. xs @ [n - x]" in sum.reindex_cong)
```
```  2344       apply (simp add: inj_on_def)
```
```  2345       apply auto
```
```  2346       unfolding prod.union_disjoint[OF f0 d0, unfolded u0, unfolded Suc]
```
```  2347       apply (clarsimp simp add: natpermute_def nth_append)
```
```  2348       done
```
```  2349     finally show ?thesis .
```
```  2350   qed
```
```  2351 qed
```
```  2352
```
```  2353 text \<open>The special form for powers.\<close>
```
```  2354 lemma fps_power_nth_Suc:
```
```  2355   fixes m :: nat
```
```  2356     and a :: "'a::comm_ring_1 fps"
```
```  2357   shows "(a ^ Suc m)\$n = sum (\<lambda>v. prod (\<lambda>j. a \$ (v!j)) {0..m}) (natpermute n (m+1))"
```
```  2358 proof -
```
```  2359   have th0: "a^Suc m = prod (\<lambda>i. a) {0..m}"
```
```  2360     by (simp add: prod_constant)
```
```  2361   show ?thesis unfolding th0 fps_prod_nth ..
```
```  2362 qed
```
```  2363
```
```  2364 lemma fps_power_nth:
```
```  2365   fixes m :: nat
```
```  2366     and a :: "'a::comm_ring_1 fps"
```
```  2367   shows "(a ^m)\$n =
```
```  2368     (if m=0 then 1\$n else sum (\<lambda>v. prod (\<lambda>j. a \$ (v!j)) {0..m - 1}) (natpermute n m))"
```
```  2369   by (cases m) (simp_all add: fps_power_nth_Suc del: power_Suc)
```
```  2370
```
```  2371 lemma fps_nth_power_0:
```
```  2372   fixes m :: nat
```
```  2373     and a :: "'a::comm_ring_1 fps"
```
```  2374   shows "(a ^m)\$0 = (a\$0) ^ m"
```
```  2375 proof (cases m)
```
```  2376   case 0
```
```  2377   then show ?thesis by simp
```
```  2378 next
```
```  2379   case (Suc n)
```
```  2380   then have c: "m = card {0..n}" by simp
```
```  2381   have "(a ^m)\$0 = prod (\<lambda>i. a\$0) {0..n}"
```
```  2382     by (simp add: Suc fps_power_nth del: replicate.simps power_Suc)
```
```  2383   also have "\<dots> = (a\$0) ^ m"
```
```  2384    unfolding c by (rule prod_constant)
```
```  2385  finally show ?thesis .
```
```  2386 qed
```
```  2387
```
```  2388 lemma natpermute_max_card:
```
```  2389   assumes n0: "n \<noteq> 0"
```
```  2390   shows "card {xs \<in> natpermute n (k + 1). n \<in> set xs} = k + 1"
```
```  2391   unfolding natpermute_contain_maximal
```
```  2392 proof -
```
```  2393   let ?A = "\<lambda>i. {replicate (k + 1) 0[i := n]}"
```
```  2394   let ?K = "{0 ..k}"
```
```  2395   have fK: "finite ?K"
```
```  2396     by simp
```
```  2397   have fAK: "\<forall>i\<in>?K. finite (?A i)"
```
```  2398     by auto
```
```  2399   have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow>
```
```  2400     {replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
```
```  2401   proof clarify
```
```  2402     fix i j
```
```  2403     assume i: "i \<in> ?K" and j: "j \<in> ?K" and ij: "i \<noteq> j"
```
```  2404     have False if eq: "replicate (k+1) 0 [i:=n] = replicate (k+1) 0 [j:= n]"
```
```  2405     proof -
```
```  2406       have "(replicate (k+1) 0 [i:=n] ! i) = n"
```
```  2407         using i by (simp del: replicate.simps)
```
```  2408       moreover
```
```  2409       have "(replicate (k+1) 0 [j:=n] ! i) = 0"
```
```  2410         using i ij by (simp del: replicate.simps)
```
```  2411       ultimately show ?thesis
```
```  2412         using eq n0 by (simp del: replicate.simps)
```
```  2413     qed
```
```  2414     then show "{replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
```
```  2415       by auto
```
```  2416   qed
```
```  2417   from card_UN_disjoint[OF fK fAK d]
```
```  2418   show "card (\<Union>i\<in>{0..k}. {replicate (k + 1) 0[i := n]}) = k + 1"
```
```  2419     by simp
```
```  2420 qed
```
```  2421
```
```  2422 lemma fps_power_Suc_nth:
```
```  2423   fixes f :: "'a :: comm_ring_1 fps"
```
```  2424   assumes k: "k > 0"
```
```  2425   shows "(f ^ Suc m) \$ k =
```
```  2426            of_nat (Suc m) * (f \$ k * (f \$ 0) ^ m) +
```
```  2427            (\<Sum>v\<in>{v\<in>natpermute k (m+1). k \<notin> set v}. \<Prod>j = 0..m. f \$ v ! j)"
```
```  2428 proof -
```
```  2429   define A B
```
```  2430     where "A = {v\<in>natpermute k (m+1). k \<in> set v}"
```
```  2431       and  "B = {v\<in>natpermute k (m+1). k \<notin> set v}"
```
```  2432   have [simp]: "finite A" "finite B" "A \<inter> B = {}" by (auto simp: A_def B_def natpermute_finite)
```
```  2433
```
```  2434   from natpermute_max_card[of k m] k have card_A: "card A = m + 1" by (simp add: A_def)
```
```  2435   {
```
```  2436     fix v assume v: "v \<in> A"
```
```  2437     from v have [simp]: "length v = Suc m" by (simp add: A_def natpermute_def)
```
```  2438     from v have "\<exists>j. j \<le> m \<and> v ! j = k"
```
```  2439       by (auto simp: set_conv_nth A_def natpermute_def less_Suc_eq_le)
```
```  2440     then guess j by (elim exE conjE) note j = this
```
```  2441
```
```  2442     from v have "k = sum_list v" by (simp add: A_def natpermute_def)
```
```  2443     also have "\<dots> = (\<Sum>i=0..m. v ! i)"
```
```  2444       by (simp add: sum_list_sum_nth atLeastLessThanSuc_atLeastAtMost del: sum_op_ivl_Suc)
```
```  2445     also from j have "{0..m} = insert j ({0..m}-{j})" by auto
```
```  2446     also from j have "(\<Sum>i\<in>\<dots>. v ! i) = k + (\<Sum>i\<in>{0..m}-{j}. v ! i)"
```
```  2447       by (subst sum.insert) simp_all
```
```  2448     finally have "(\<Sum>i\<in>{0..m}-{j}. v ! i) = 0" by simp
```
```  2449     hence zero: "v ! i = 0" if "i \<in> {0..m}-{j}" for i using that
```
```  2450       by (subst (asm) sum_eq_0_iff) auto
```
```  2451
```
```  2452     from j have "{0..m} = insert j ({0..m} - {j})" by auto
```
```  2453     also from j have "(\<Prod>i\<in>\<dots>. f \$ (v ! i)) = f \$ k * (\<Prod>i\<in>{0..m} - {j}. f \$ (v ! i))"
```
```  2454       by (subst prod.insert) auto
```
```  2455     also have "(\<Prod>i\<in>{0..m} - {j}. f \$ (v ! i)) = (\<Prod>i\<in>{0..m} - {j}. f \$ 0)"
```
```  2456       by (intro prod.cong) (simp_all add: zero)
```
```  2457     also from j have "\<dots> = (f \$ 0) ^ m" by (subst prod_constant) simp_all
```
```  2458     finally have "(\<Prod>j = 0..m. f \$ (v ! j)) = f \$ k * (f \$ 0) ^ m" .
```
```  2459   } note A = this
```
```  2460
```
```  2461   have "(f ^ Suc m) \$ k = (\<Sum>v\<in>natpermute k (m + 1). \<Prod>j = 0..m. f \$ v ! j)"
```
```  2462     by (rule fps_power_nth_Suc)
```
```  2463   also have "natpermute k (m+1) = A \<union> B" unfolding A_def B_def by blast
```
```  2464   also have "(\<Sum>v\<in>\<dots>. \<Prod>j = 0..m. f \$ (v ! j)) =
```
```  2465                (\<Sum>v\<in>A. \<Prod>j = 0..m. f \$ (v ! j)) + (\<Sum>v\<in>B. \<Prod>j = 0..m. f \$ (v ! j))"
```
```  2466     by (intro sum.union_disjoint) simp_all
```
```  2467   also have "(\<Sum>v\<in>A. \<Prod>j = 0..m. f \$ (v ! j)) = of_nat (Suc m) * (f \$ k * (f \$ 0) ^ m)"
```
```  2468     by (simp add: A card_A)
```
```  2469   finally show ?thesis by (simp add: B_def)
```
```  2470 qed
```
```  2471
```
```  2472 lemma fps_power_Suc_eqD:
```
```  2473   fixes f g :: "'a :: {idom,semiring_char_0} fps"
```
```  2474   assumes "f ^ Suc m = g ^ Suc m" "f \$ 0 = g \$ 0" "f \$ 0 \<noteq> 0"
```
```  2475   shows   "f = g"
```
```  2476 proof (rule fps_ext)
```
```  2477   fix k :: nat
```
```  2478   show "f \$ k = g \$ k"
```
```  2479   proof (induction k rule: less_induct)
```
```  2480     case (less k)
```
```  2481     show ?case
```
```  2482     proof (cases "k = 0")
```
```  2483       case False
```
```  2484       let ?h = "\<lambda>f. (\<Sum>v | v \<in> natpermute k (m + 1) \<and> k \<notin> set v. \<Prod>j = 0..m. f \$ v ! j)"
```
```  2485       from False fps_power_Suc_nth[of k f m] fps_power_Suc_nth[of k g m]
```
```  2486         have "f \$ k * (of_nat (Suc m) * (f \$ 0) ^ m) + ?h f =
```
```  2487                 g \$ k * (of_nat (Suc m) * (f \$ 0) ^ m) + ?h g" using assms
```
```  2488         by (simp add: mult_ac del: power_Suc of_nat_Suc)
```
```  2489       also have "v ! i < k" if "v \<in> {v\<in>natpermute k (m+1). k \<notin> set v}" "i \<le> m" for v i
```
```  2490         using that elem_le_sum_list[of i v] unfolding natpermute_def
```
```  2491         by (auto simp: set_conv_nth dest!: spec[of _ i])
```
```  2492       hence "?h f = ?h g"
```
```  2493         by (intro sum.cong refl prod.cong less lessI) (auto simp: natpermute_def)
```
```  2494       finally have "f \$ k * (of_nat (Suc m) * (f \$ 0) ^ m) = g \$ k * (of_nat (Suc m) * (f \$ 0) ^ m)"
```
```  2495         by simp
```
```  2496       with assms show "f \$ k = g \$ k"
```
```  2497         by (subst (asm) mult_right_cancel) (auto simp del: of_nat_Suc)
```
```  2498     qed (simp_all add: assms)
```
```  2499   qed
```
```  2500 qed
```
```  2501
```
```  2502 lemma fps_power_Suc_eqD':
```
```  2503   fixes f g :: "'a :: {idom,semiring_char_0} fps"
```
```  2504   assumes "f ^ Suc m = g ^ Suc m" "f \$ subdegree f = g \$ subdegree g"
```
```  2505   shows   "f = g"
```
```  2506 proof (cases "f = 0")
```
```  2507   case False
```
```  2508   have "Suc m * subdegree f = subdegree (f ^ Suc m)"
```
```  2509     by (rule subdegree_power [symmetric])
```
```  2510   also have "f ^ Suc m = g ^ Suc m" by fact
```
```  2511   also have "subdegree \<dots> = Suc m * subdegree g" by (rule subdegree_power)
```
```  2512   finally have [simp]: "subdegree f = subdegree g"
```
```  2513     by (subst (asm) Suc_mult_cancel1)
```
```  2514   have "fps_shift (subdegree f) f * fps_X ^ subdegree f = f"
```
```  2515     by (rule subdegree_decompose [symmetric])
```
```  2516   also have "\<dots> ^ Suc m = g ^ Suc m" by fact
```
```  2517   also have "g = fps_shift (subdegree g) g * fps_X ^ subdegree g"
```
```  2518     by (rule subdegree_decompose)
```
```  2519   also have "subdegree f = subdegree g" by fact
```
```  2520   finally have "fps_shift (subdegree g) f ^ Suc m = fps_shift (subdegree g) g ^ Suc m"
```
```  2521     by (simp add: algebra_simps power_mult_distrib del: power_Suc)
```
```  2522   hence "fps_shift (subdegree g) f = fps_shift (subdegree g) g"
```
```  2523     by (rule fps_power_Suc_eqD) (insert assms False, auto)
```
```  2524   with subdegree_decompose[of f] subdegree_decompose[of g] show ?thesis by simp
```
```  2525 qed (insert assms, simp_all)
```
```  2526
```
```  2527 lemma fps_power_eqD':
```
```  2528   fixes f g :: "'a :: {idom,semiring_char_0} fps"
```
```  2529   assumes "f ^ m = g ^ m" "f \$ subdegree f = g \$ subdegree g" "m > 0"
```
```  2530   shows   "f = g"
```
```  2531   using fps_power_Suc_eqD'[of f "m-1" g] assms by simp
```
```  2532
```
```  2533 lemma fps_power_eqD:
```
```  2534   fixes f g :: "'a :: {idom,semiring_char_0} fps"
```
```  2535   assumes "f ^ m = g ^ m" "f \$ 0 = g \$ 0" "f \$ 0 \<noteq> 0" "m > 0"
```
```  2536   shows   "f = g"
```
```  2537   by (rule fps_power_eqD'[of f m g]) (insert assms, simp_all)
```
```  2538
```
```  2539 lemma fps_compose_inj_right:
```
```  2540   assumes a0: "a\$0 = (0::'a::idom)"
```
```  2541     and a1: "a\$1 \<noteq> 0"
```
```  2542   shows "(b oo a = c oo a) \<longleftrightarrow> b = c"
```
```  2543   (is "?lhs \<longleftrightarrow>?rhs")
```
```  2544 proof
```
```  2545   show ?lhs if ?rhs using that by simp
```
```  2546   show ?rhs if ?lhs
```
```  2547   proof -
```
```  2548     have "b\$n = c\$n" for n
```
```  2549     proof (induct n rule: nat_less_induct)
```
```  2550       fix n
```
```  2551       assume H: "\<forall>m<n. b\$m = c\$m"
```
```  2552       show "b\$n = c\$n"
```
```  2553       proof (cases n)
```
```  2554         case 0
```
```  2555         from \<open>?lhs\<close> have "(b oo a)\$n = (c oo a)\$n"
```
```  2556           by simp
```
```  2557         then show ?thesis
```
```  2558           using 0 by (simp add: fps_compose_nth)
```
```  2559       next
```
```  2560         case (Suc n1)
```
```  2561         have f: "finite {0 .. n1}" "finite {n}" by simp_all
```
```  2562         have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using Suc by auto
```
```  2563         have d: "{0 .. n1} \<inter> {n} = {}" using Suc by auto
```
```  2564         have seq: "(\<Sum>i = 0..n1. b \$ i * a ^ i \$ n) = (\<Sum>i = 0..n1. c \$ i * a ^ i \$ n)"
```
```  2565           apply (rule sum.cong)
```
```  2566           using H Suc
```
```  2567           apply auto
```
```  2568           done
```
```  2569         have th0: "(b oo a) \$n = (\<Sum>i = 0..n1. c \$ i * a ^ i \$ n) + b\$n * (a\$1)^n"
```
```  2570           unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq] seq
```
```  2571           using startsby_zero_power_nth_same[OF a0]
```
```  2572           by simp
```
```  2573         have th1: "(c oo a) \$n = (\<Sum>i = 0..n1. c \$ i * a ^ i \$ n) + c\$n * (a\$1)^n"
```
```  2574           unfolding fps_compose_nth sum.union_disjoint[OF f d, unfolded eq]
```
```  2575           using startsby_zero_power_nth_same[OF a0]
```
```  2576           by simp
```
```  2577         from \<open>?lhs\<close>[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1
```
```  2578         show ?thesis by auto
```
```  2579       qed
```
```  2580     qed
```
```  2581     then show ?rhs by (simp add: fps_eq_iff)
```
```  2582   qed
```
```  2583 qed
```
```  2584
```
```  2585
```
```  2586 subsection \<open>Radicals\<close>
```
```  2587
```
```  2588 declare prod.cong [fundef_cong]
```
```  2589
```
```  2590 function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a::field fps \<Rightarrow> nat \<Rightarrow> 'a"
```
```  2591 where
```
```  2592   "radical r 0 a 0 = 1"
```
```  2593 | "radical r 0 a (Suc n) = 0"
```
```  2594 | "radical r (Suc k) a 0 = r (Suc k) (a\$0)"
```
```  2595 | "radical r (Suc k) a (Suc n) =
```
```  2596     (a\$ Suc n - sum (\<lambda>xs. prod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k})
```
```  2597       {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) /
```
```  2598     (of_nat (Suc k) * (radical r (Suc k) a 0)^k)"
```
```  2599   by pat_completeness auto
```
```  2600
```
```  2601 termination radical
```
```  2602 proof
```
```  2603   let ?R = "measure (\<lambda>(r, k, a, n). n)"
```
```  2604   {
```
```  2605     show "wf ?R" by auto
```
```  2606   next
```
```  2607     fix r k a n xs i
```
```  2608     assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
```
```  2609     have False if c: "Suc n \<le> xs ! i"
```
```  2610     proof -
```
```  2611       from xs i have "xs !i \<noteq> Suc n"
```
```  2612         by (auto simp add: in_set_conv_nth natpermute_def)
```
```  2613       with c have c': "Suc n < xs!i" by arith
```
```  2614       have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
```
```  2615         by simp_all
```
```  2616       have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
```
```  2617         by auto
```
```  2618       have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
```
```  2619         using i by auto
```
```  2620       from xs have "Suc n = sum_list xs"
```
```  2621         by (simp add: natpermute_def)
```
```  2622       also have "\<dots> = sum (nth xs) {0..<Suc k}" using xs
```
```  2623         by (simp add: natpermute_def sum_list_sum_nth)
```
```  2624       also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
```
```  2625         unfolding eqs  sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
```
```  2626         unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)]
```
```  2627         by simp
```
```  2628       finally show ?thesis using c' by simp
```
```  2629     qed
```
```  2630     then show "((r, Suc k, a, xs!i), r, Suc k, a, Suc n) \<in> ?R"
```
```  2631       apply auto
```
```  2632       apply (metis not_less)
```
```  2633       done
```
```  2634   next
```
```  2635     fix r k a n
```
```  2636     show "((r, Suc k, a, 0), r, Suc k, a, Suc n) \<in> ?R" by simp
```
```  2637   }
```
```  2638 qed
```
```  2639
```
```  2640 definition "fps_radical r n a = Abs_fps (radical r n a)"
```
```  2641
```
```  2642 lemma fps_radical0[simp]: "fps_radical r 0 a = 1"
```
```  2643   apply (auto simp add: fps_eq_iff fps_radical_def)
```
```  2644   apply (case_tac n)
```
```  2645   apply auto
```
```  2646   done
```
```  2647
```
```  2648 lemma fps_radical_nth_0[simp]: "fps_radical r n a \$ 0 = (if n = 0 then 1 else r n (a\$0))"
```
```  2649   by (cases n) (simp_all add: fps_radical_def)
```
```  2650
```
```  2651 lemma fps_radical_power_nth[simp]:
```
```  2652   assumes r: "(r k (a\$0)) ^ k = a\$0"
```
```  2653   shows "fps_radical r k a ^ k \$ 0 = (if k = 0 then 1 else a\$0)"
```
```  2654 proof (cases k)
```
```  2655   case 0
```
```  2656   then show ?thesis by simp
```
```  2657 next
```
```  2658   case (Suc h)
```
```  2659   have eq1: "fps_radical r k a ^ k \$ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a \$ (replicate k 0) ! j)"
```
```  2660     unfolding fps_power_nth Suc by simp
```
```  2661   also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a\$0))"
```
```  2662     apply (rule prod.cong)
```
```  2663     apply simp
```
```  2664     using Suc
```
```  2665     apply (subgoal_tac "replicate k 0 ! x = 0")
```
```  2666     apply (auto intro: nth_replicate simp del: replicate.simps)
```
```  2667     done
```
```  2668   also have "\<dots> = a\$0"
```
```  2669     using r Suc by (simp add: prod_constant)
```
```  2670   finally show ?thesis
```
```  2671     using Suc by simp
```
```  2672 qed
```
```  2673
```
```  2674 lemma power_radical:
```
```  2675   fixes a:: "'a::field_char_0 fps"
```
```  2676   assumes a0: "a\$0 \<noteq> 0"
```
```  2677   shows "(r (Suc k) (a\$0)) ^ Suc k = a\$0 \<longleftrightarrow> (fps_radical r (Suc k) a) ^ (Suc k) = a"
```
```  2678     (is "?lhs \<longleftrightarrow> ?rhs")
```
```  2679 proof
```
```  2680   let ?r = "fps_radical r (Suc k) a"
```
```  2681   show ?rhs if r0: ?lhs
```
```  2682   proof -
```
```  2683     from a0 r0 have r00: "r (Suc k) (a\$0) \<noteq> 0" by auto
```
```  2684     have "?r ^ Suc k \$ z = a\$z" for z
```
```  2685     proof (induct z rule: nat_less_induct)
```
```  2686       fix n
```
```  2687       assume H: "\<forall>m<n. ?r ^ Suc k \$ m = a\$m"
```
```  2688       show "?r ^ Suc k \$ n = a \$n"
```
```  2689       proof (cases n)
```
```  2690         case 0
```
```  2691         then show ?thesis
```
```  2692           using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp
```
```  2693       next
```
```  2694         case (Suc n1)
```
```  2695         then have "n \<noteq> 0" by simp
```
```  2696         let ?Pnk = "natpermute n (k + 1)"
```
```  2697         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
```
```  2698         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
```
```  2699         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
```
```  2700         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
```
```  2701         have f: "finite ?Pnkn" "finite ?Pnknn"
```
```  2702           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
```
```  2703           by (metis natpermute_finite)+
```
```  2704         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r \$ v ! j"
```
```  2705         have "sum ?f ?Pnkn = sum (\<lambda>v. ?r \$ n * r (Suc k) (a \$ 0) ^ k) ?Pnkn"
```
```  2706         proof (rule sum.cong)
```
```  2707           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
```
```  2708           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a \$ v ! j) =
```
```  2709             fps_radical r (Suc k) a \$ n * r (Suc k) (a \$ 0) ^ k"
```
```  2710           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
```
```  2711             unfolding natpermute_contain_maximal by auto
```
```  2712           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a \$ v ! j) =
```
```  2713               (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a \$ n else r (Suc k) (a\$0))"
```
```  2714             apply (rule prod.cong, simp)
```
```  2715             using i r0
```
```  2716             apply (simp del: replicate.simps)
```
```  2717             done
```
```  2718           also have "\<dots> = (fps_radical r (Suc k) a \$ n) * r (Suc k) (a\$0) ^ k"
```
```  2719             using i r0 by (simp add: prod_gen_delta)
```
```  2720           finally show ?ths .
```
```  2721         qed rule
```
```  2722         then have "sum ?f ?Pnkn = of_nat (k+1) * ?r \$ n * r (Suc k) (a \$ 0) ^ k"
```
```  2723           by (simp add: natpermute_max_card[OF \<open>n \<noteq> 0\<close>, simplified])
```
```  2724         also have "\<dots> = a\$n - sum ?f ?Pnknn"
```
```  2725           unfolding Suc using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc)
```
```  2726         finally have fn: "sum ?f ?Pnkn = a\$n - sum ?f ?Pnknn" .
```
```  2727         have "(?r ^ Suc k)\$n = sum ?f ?Pnkn + sum ?f ?Pnknn"
```
```  2728           unfolding fps_power_nth_Suc sum.union_disjoint[OF f d, unfolded eq] ..
```
```  2729         also have "\<dots> = a\$n" unfolding fn by simp
```
```  2730         finally show ?thesis .
```
```  2731       qed
```
```  2732     qed
```
```  2733     then show ?thesis using r0 by (simp add: fps_eq_iff)
```
```  2734   qed
```
```  2735   show ?lhs if ?rhs
```
```  2736   proof -
```
```  2737     from that have "((fps_radical r (Suc k) a) ^ (Suc k))\$0 = a\$0"
```
```  2738       by simp
```
```  2739     then show ?thesis
```
```  2740       unfolding fps_power_nth_Suc
```
```  2741       by (simp add: prod_constant del: replicate.simps)
```
```  2742   qed
```
```  2743 qed
```
```  2744
```
```  2745 (*
```
```  2746 lemma power_radical:
```
```  2747   fixes a:: "'a::field_char_0 fps"
```
```  2748   assumes r0: "(r (Suc k) (a\$0)) ^ Suc k = a\$0" and a0: "a\$0 \<noteq> 0"
```
```  2749   shows "(fps_radical r (Suc k) a) ^ (Suc k) = a"
```
```  2750 proof-
```
```  2751   let ?r = "fps_radical r (Suc k) a"
```
```  2752   from a0 r0 have r00: "r (Suc k) (a\$0) \<noteq> 0" by auto
```
```  2753   {fix z have "?r ^ Suc k \$ z = a\$z"
```
```  2754     proof(induct z rule: nat_less_induct)
```
```  2755       fix n assume H: "\<forall>m<n. ?r ^ Suc k \$ m = a\$m"
```
```  2756       {assume "n = 0" then have "?r ^ Suc k \$ n = a \$n"
```
```  2757           using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp}
```
```  2758       moreover
```
```  2759       {fix n1 assume n1: "n = Suc n1"
```
```  2760         have fK: "finite {0..k}" by simp
```
```  2761         have nz: "n \<noteq> 0" using n1 by arith
```
```  2762         let ?Pnk = "natpermute n (k + 1)"
```
```  2763         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
```
```  2764         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
```
```  2765         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
```
```  2766         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
```
```  2767         have f: "finite ?Pnkn" "finite ?Pnknn"
```
```  2768           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
```
```  2769           by (metis natpermute_finite)+
```
```  2770         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r \$ v ! j"
```
```  2771         have "sum ?f ?Pnkn = sum (\<lambda>v. ?r \$ n * r (Suc k) (a \$ 0) ^ k) ?Pnkn"
```
```  2772         proof(rule sum.cong2)
```
```  2773           fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
```
```  2774           let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a \$ v ! j) = fps_radical r (Suc k) a \$ n * r (Suc k) (a \$ 0) ^ k"
```
```  2775           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
```
```  2776             unfolding natpermute_contain_maximal by auto
```
```  2777           have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a \$ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a \$ n else r (Suc k) (a\$0))"
```
```  2778             apply (rule prod.cong, simp)
```
```  2779             using i r0 by (simp del: replicate.simps)
```
```  2780           also have "\<dots> = (fps_radical r (Suc k) a \$ n) * r (Suc k) (a\$0) ^ k"
```
```  2781             unfolding prod_gen_delta[OF fK] using i r0 by simp
```
```  2782           finally show ?ths .
```
```  2783         qed
```
```  2784         then have "sum ?f ?Pnkn = of_nat (k+1) * ?r \$ n * r (Suc k) (a \$ 0) ^ k"
```
```  2785           by (simp add: natpermute_max_card[OF nz, simplified])
```
```  2786         also have "\<dots> = a\$n - sum ?f ?Pnknn"
```
```  2787           unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc )
```
```  2788         finally have fn: "sum ?f ?Pnkn = a\$n - sum ?f ?Pnknn" .
```
```  2789         have "(?r ^ Suc k)\$n = sum ?f ?Pnkn + sum ?f ?Pnknn"
```
```  2790           unfolding fps_power_nth_Suc sum.union_disjoint[OF f d, unfolded eq] ..
```
```  2791         also have "\<dots> = a\$n" unfolding fn by simp
```
```  2792         finally have "?r ^ Suc k \$ n = a \$n" .}
```
```  2793       ultimately  show "?r ^ Suc k \$ n = a \$n" by (cases n, auto)
```
```  2794   qed }
```
```  2795   then show ?thesis by (simp add: fps_eq_iff)
```
```  2796 qed
```
```  2797
```
```  2798 *)
```
```  2799 lemma eq_divide_imp':
```
```  2800   fixes c :: "'a::field"
```
```  2801   shows "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
```
```  2802   by (simp add: field_simps)
```
```  2803
```
```  2804 lemma radical_unique:
```
```  2805   assumes r0: "(r (Suc k) (b\$0)) ^ Suc k = b\$0"
```
```  2806     and a0: "r (Suc k) (b\$0 ::'a::field_char_0) = a\$0"
```
```  2807     and b0: "b\$0 \<noteq> 0"
```
```  2808   shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b"
```
```  2809     (is "?lhs \<longleftrightarrow> ?rhs" is "_ \<longleftrightarrow> a = ?r")
```
```  2810 proof
```
```  2811   show ?lhs if ?rhs
```
```  2812     using that using power_radical[OF b0, of r k, unfolded r0] by simp
```
```  2813   show ?rhs if ?lhs
```
```  2814   proof -
```
```  2815     have r00: "r (Suc k) (b\$0) \<noteq> 0" using b0 r0 by auto
```
```  2816     have ceq: "card {0..k} = Suc k" by simp
```
```  2817     from a0 have a0r0: "a\$0 = ?r\$0" by simp
```
```  2818     have "a \$ n = ?r \$ n" for n
```
```  2819     proof (induct n rule: nat_less_induct)
```
```  2820       fix n
```
```  2821       assume h: "\<forall>m<n. a\$m = ?r \$m"
```
```  2822       show "a\$n = ?r \$ n"
```
```  2823       proof (cases n)
```
```  2824         case 0
```
```  2825         then show ?thesis using a0 by simp
```
```  2826       next
```
```  2827         case (Suc n1)
```
```  2828         have fK: "finite {0..k}" by simp
```
```  2829         have nz: "n \<noteq> 0" using Suc by simp
```
```  2830         let ?Pnk = "natpermute n (Suc k)"
```
```  2831         let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
```
```  2832         let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
```
```  2833         have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast
```
```  2834         have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
```
```  2835         have f: "finite ?Pnkn" "finite ?Pnknn"
```
```  2836           using finite_Un[of ?Pnkn ?Pnknn, unfolded eq]
```
```  2837           by (metis natpermute_finite)+
```
```  2838         let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r \$ v ! j"
```
```  2839         let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a \$ v ! j"
```
```  2840         have "sum ?g ?Pnkn = sum (\<lambda>v. a \$ n * (?r\$0)^k) ?Pnkn"
```
```  2841         proof (rule sum.cong)
```
```  2842           fix v
```
```  2843           assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
```
```  2844           let ?ths = "(\<Prod>j\<in>{0..k}. a \$ v ! j) = a \$ n * (?r\$0)^k"
```
```  2845           from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
```
```  2846             unfolding Suc_eq_plus1 natpermute_contain_maximal
```
```  2847             by (auto simp del: replicate.simps)
```
```  2848           have "(\<Prod>j\<in>{0..k}. a \$ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a \$ n else r (Suc k) (b\$0))"
```
```  2849             apply (rule prod.cong, simp)
```
```  2850             using i a0
```
```  2851             apply (simp del: replicate.simps)
```
```  2852             done
```
```  2853           also have "\<dots> = a \$ n * (?r \$ 0)^k"
```
```  2854             using i by (simp add: prod_gen_delta)
```
```  2855           finally show ?ths .
```
```  2856         qed rule
```
```  2857         then have th0: "sum ?g ?Pnkn = of_nat (k+1) * a \$ n * (?r \$ 0)^k"
```
```  2858           by (simp add: natpermute_max_card[OF nz, simplified])
```
```  2859         have th1: "sum ?g ?Pnknn = sum ?f ?Pnknn"
```
```  2860         proof (rule sum.cong, rule refl, rule prod.cong, simp)
```
```  2861           fix xs i
```
```  2862           assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
```
```  2863           have False if c: "n \<le> xs ! i"
```
```  2864           proof -
```
```  2865             from xs i have "xs ! i \<noteq> n"
```
```  2866               by (auto simp add: in_set_conv_nth natpermute_def)
```
```  2867             with c have c': "n < xs!i" by arith
```
```  2868             have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}"
```
```  2869               by simp_all
```
```  2870             have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}"
```
```  2871               by auto
```
```  2872             have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})"
```
```  2873               using i by auto
```
```  2874             from xs have "n = sum_list xs"
```
```  2875               by (simp add: natpermute_def)
```
```  2876             also have "\<dots> = sum (nth xs) {0..<Suc k}"
```
```  2877               using xs by (simp add: natpermute_def sum_list_sum_nth)
```
```  2878             also have "\<dots> = xs!i + sum (nth xs) {0..<i} + sum (nth xs) {i+1..<Suc k}"
```
```  2879               unfolding eqs  sum.union_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)]
```
```  2880               unfolding sum.union_disjoint[OF fths(2) fths(3) d(2)]
```
```  2881               by simp
```
```  2882             finally show ?thesis using c' by simp
```
```  2883           qed
```
```  2884           then have thn: "xs!i < n" by presburger
```
```  2885           from h[rule_format, OF thn] show "a\$(xs !i) = ?r\$(xs!i)" .
```
```  2886         qed
```
```  2887         have th00: "\<And>x::'a. of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x"
```
```  2888           by (simp add: field_simps del: of_nat_Suc)
```
```  2889         from \<open>?lhs\<close> have "b\$n = a^Suc k \$ n"
```
```  2890           by (simp add: fps_eq_iff)
```
```  2891         also have "a ^ Suc k\$n = sum ?g ?Pnkn + sum ?g ?Pnknn"
```
```  2892           unfolding fps_power_nth_Suc
```
```  2893           using sum.union_disjoint[OF f d, unfolded Suc_eq_plus1[symmetric],
```
```  2894             unfolded eq, of ?g] by simp
```
```  2895         also have "\<dots> = of_nat (k+1) * a \$ n * (?r \$ 0)^k + sum ?f ?Pnknn"
```
```  2896           unfolding th0 th1 ..
```
```  2897         finally have "of_nat (k+1) * a \$ n * (?r \$ 0)^k = b\$n - sum ?f ?Pnknn"
```
```  2898           by simp
```
```  2899         then have "a\$n = (b\$n - sum ?f ?Pnknn) / (of_nat (k+1) * (?r \$ 0)^k)"
```
```  2900           apply -
```
```  2901           apply (rule eq_divide_imp')
```
```  2902           using r00
```
```  2903           apply (simp del: of_nat_Suc)
```
```  2904           apply (simp add: ac_simps)
```
```  2905           done
```
```  2906         then show ?thesis
```
```  2907           apply (simp del: of_nat_Suc)
```
```  2908           unfolding fps_radical_def Suc
```
```  2909           apply (simp add: field_simps Suc th00 del: of_nat_Suc)
```
```  2910           done
```
```  2911       qed
```
```  2912     qed
```
```  2913     then show ?rhs by (simp add: fps_eq_iff)
```
```  2914   qed
```
```  2915 qed
```
```  2916
```
```  2917
```
```  2918 lemma radical_power:
```
```  2919   assumes r0: "r (Suc k) ((a\$0) ^ Suc k) = a\$0"
```
```  2920     and a0: "(a\$0 :: 'a::field_char_0) \<noteq> 0"
```
```  2921   shows "(fps_radical r (Suc k) (a ^ Suc k)) = a"
```
```  2922 proof -
```
```  2923   let ?ak = "a^ Suc k"
```
```  2924   have ak0: "?ak \$ 0 = (a\$0) ^ Suc k"
```
```  2925     by (simp add: fps_nth_power_0 del: power_Suc)
```
```  2926   from r0 have th0: "r (Suc k) (a ^ Suc k \$ 0) ^ Suc k = a ^ Suc k \$ 0"
```
```  2927     using ak0 by auto
```
```  2928   from r0 ak0 have th1: "r (Suc k) (a ^ Suc k \$ 0) = a \$ 0"
```
```  2929     by auto
```
```  2930   from ak0 a0 have ak00: "?ak \$ 0 \<noteq>0 "
```
```  2931     by auto
```
```  2932   from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis
```
```  2933     by metis
```
```  2934 qed
```
```  2935
```
```  2936 lemma fps_deriv_radical:
```
```  2937   fixes a :: "'a::field_char_0 fps"
```
```  2938   assumes r0: "(r (Suc k) (a\$0)) ^ Suc k = a\$0"
```
```  2939     and a0: "a\$0 \<noteq> 0"
```
```  2940   shows "fps_deriv (fps_radical r (Suc k) a) =
```
```  2941     fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)"
```
```  2942 proof -
```
```  2943   let ?r = "fps_radical r (Suc k) a"
```
```  2944   let ?w = "(fps_const (of_nat (Suc k)) * ?r ^ k)"
```
```  2945   from a0 r0 have r0': "r (Suc k) (a\$0) \<noteq> 0"
```
```  2946     by auto
```
```  2947   from r0' have w0: "?w \$ 0 \<noteq> 0"
```
```  2948     by (simp del: of_nat_Suc)
```
```  2949   note th0 = inverse_mult_eq_1[OF w0]
```
```  2950   let ?iw = "inverse ?w"
```
```  2951   from iffD1[OF power_radical[of a r], OF a0 r0]
```
```  2952   have "fps_deriv (?r ^ Suc k) = fps_deriv a"
```
```  2953     by simp
```
```  2954   then have "fps_deriv ?r * ?w = fps_deriv a"
```
```  2955     by (simp add: fps_deriv_power ac_simps del: power_Suc)
```
```  2956   then have "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a"
```
```  2957     by simp
```
```  2958   with a0 r0 have "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w"
```
```  2959     by (subst fps_divide_unit) (auto simp del: of_nat_Suc)
```
```  2960   then show ?thesis unfolding th0 by simp
```
```  2961 qed
```
```  2962
```
```  2963 lemma radical_mult_distrib:
```
```  2964   fixes a :: "'a::field_char_0 fps"
```
```  2965   assumes k: "k > 0"
```
```  2966     and ra0: "r k (a \$ 0) ^ k = a \$ 0"
```
```  2967     and rb0: "r k (b \$ 0) ^ k = b \$ 0"
```
```  2968     and a0: "a \$ 0 \<noteq> 0"
```
```  2969     and b0: "b \$ 0 \<noteq> 0"
```
```  2970   shows "r k ((a * b) \$ 0) = r k (a \$ 0) * r k (b \$ 0) \<longleftrightarrow>
```
```  2971     fps_radical r k (a * b) = fps_radical r k a * fps_radical r k b"
```
```  2972     (is "?lhs \<longleftrightarrow> ?rhs")
```
```  2973 proof
```
```  2974   show ?rhs if r0': ?lhs
```
```  2975   proof -
```
```  2976     from r0' have r0: "(r k ((a * b) \$ 0)) ^ k = (a * b) \$ 0"
```
```  2977       by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
```
```  2978     show ?thesis
```
```  2979     proof (cases k)
```
```  2980       case 0
```
```  2981       then show ?thesis using r0' by simp
```
```  2982     next
```
```  2983       case (Suc h)
```
```  2984       let ?ra = "fps_radical r (Suc h) a"
```
```  2985       let ?rb = "fps_radical r (Suc h) b"
```
```  2986       have th0: "r (Suc h) ((a * b) \$ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) \$ 0"
```
```  2987         using r0' Suc by (simp add: fps_mult_nth)
```
```  2988       have ab0: "(a*b) \$ 0 \<noteq> 0"
```
```  2989         using a0 b0 by (simp add: fps_mult_nth)
```
```  2990       from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded Suc] th0 ab0, symmetric]
```
```  2991         iffD1[OF power_radical[of _ r], OF a0 ra0[unfolded Suc]] iffD1[OF power_radical[of _ r], OF b0 rb0[unfolded Suc]] Suc r0'
```
```  2992       show ?thesis
```
```  2993         by (auto simp add: power_mult_distrib simp del: power_Suc)
```
```  2994     qed
```
```  2995   qed
```
```  2996   show ?lhs if ?rhs
```
```  2997   proof -
```
```  2998     from that have "(fps_radical r k (a * b)) \$ 0 = (fps_radical r k a * fps_radical r k b) \$ 0"
```
```  2999       by simp
```
```  3000     then show ?thesis
```
```  3001       using k by (simp add: fps_mult_nth)
```
```  3002   qed
```
```  3003 qed
```
```  3004
```
```  3005 (*
```
```  3006 lemma radical_mult_distrib:
```
```  3007   fixes a:: "'a::field_char_0 fps"
```
```  3008   assumes
```
```  3009   ra0: "r k (a \$ 0) ^ k = a \$ 0"
```
```  3010   and rb0: "r k (b \$ 0) ^ k = b \$ 0"
```
```  3011   and r0': "r k ((a * b) \$ 0) = r k (a \$ 0) * r k (b \$ 0)"
```
```  3012   and a0: "a\$0 \<noteq> 0"
```
```  3013   and b0: "b\$0 \<noteq> 0"
```
```  3014   shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)"
```
```  3015 proof-
```
```  3016   from r0' have r0: "(r (k) ((a*b)\$0)) ^ k = (a*b)\$0"
```
```  3017     by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib)
```
```  3018   {assume "k=0" then have ?thesis by simp}
```
```  3019   moreover
```
```  3020   {fix h assume k: "k = Suc h"
```
```  3021   let ?ra = "fps_radical r (Suc h) a"
```
```  3022   let ?rb = "fps_radical r (Suc h) b"
```
```  3023   have th0: "r (Suc h) ((a * b) \$ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) \$ 0"
```
```  3024     using r0' k by (simp add: fps_mult_nth)
```
```  3025   have ab0: "(a*b) \$ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth)
```
```  3026   from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric]
```
```  3027     power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k
```
```  3028   have ?thesis by (auto simp add: power_mult_distrib simp del: power_Suc)}
```
```  3029 ultimately show ?thesis by (cases k, auto)
```
```  3030 qed
```
```  3031 *)
```
```  3032
```
```  3033 lemma fps_divide_1 [simp]: "(a :: 'a::field fps) / 1 = a"
```
```  3034   by (fact div_by_1)
```
```  3035
```
```  3036 lemma radical_divide:
```
```  3037   fixes a :: "'a::field_char_0 fps"
```
```  3038   assumes kp: "k > 0"
```
```  3039     and ra0: "(r k (a \$ 0)) ^ k = a \$ 0"
```
```  3040     and rb0: "(r k (b \$ 0)) ^ k = b \$ 0"
```
```  3041     and a0: "a\$0 \<noteq> 0"
```
```  3042     and b0: "b\$0 \<noteq> 0"
```
```  3043   shows "r k ((a \$ 0) / (b\$0)) = r k (a\$0) / r k (b \$ 0) \<longleftrightarrow>
```
```  3044     fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b"
```
```  3045   (is "?lhs = ?rhs")
```
```  3046 proof
```
```  3047   let ?r = "fps_radical r k"
```
```  3048   from kp obtain h where k: "k = Suc h"
```
```  3049     by (cases k) auto
```
```  3050   have ra0': "r k (a\$0) \<noteq> 0" using a0 ra0 k by auto
```
```  3051   have rb0': "r k (b\$0) \<noteq> 0" using b0 rb0 k by auto
```
```  3052
```
```  3053   show ?lhs if ?rhs
```
```  3054   proof -
```
```  3055     from that have "?r (a/b) \$ 0 = (?r a / ?r b)\$0"
```
```  3056       by simp
```
```  3057     then show ?thesis
```
```  3058       using k a0 b0 rb0' by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse)
```
```  3059   qed
```
```  3060   show ?rhs if ?lhs
```
```  3061   proof -
```
```  3062     from a0 b0 have ab0[simp]: "(a/b)\$0 = a\$0 / b\$0"
```
```  3063       by (simp add: fps_divide_def fps_mult_nth divide_inverse fps_inverse_def)
```
```  3064     have th0: "r k ((a/b)\$0) ^ k = (a/b)\$0"
```
```  3065       by (simp add: \<open>?lhs\<close> power_divide ra0 rb0)
```
```  3066     from a0 b0 ra0' rb0' kp \<open>?lhs\<close>
```
```  3067     have th1: "r k ((a / b) \$ 0) = (fps_radical r k a / fps_radical r k b) \$ 0"
```
```  3068       by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def divide_inverse)
```
```  3069     from a0 b0 ra0' rb0' kp have ab0': "(a / b) \$ 0 \<noteq> 0"
```
```  3070       by (simp add: fps_divide_unit fps_mult_nth fps_inverse_def nonzero_imp_inverse_nonzero)
```
```  3071     note tha[simp] = iffD1[OF power_radical[where r=r and k=h], OF a0 ra0[unfolded k], unfolded k[symmetric]]
```
```  3072     note thb[simp] = iffD1[OF power_radical[where r=r and k=h], OF b0 rb0[unfolded k], unfolded k[symmetric]]
```
```  3073     from b0 rb0' have th2: "(?r a / ?r b)^k = a/b"
```
```  3074       by (simp add: fps_divide_unit power_mult_distrib fps_inverse_power[symmetric])
```
```  3075
```
```  3076     from iffD1[OF radical_unique[where r=r and a="?r a / ?r b" and b="a/b" and k=h], symmetric, unfolded k[symmetric], OF th0 th1 ab0' th2]
```
```  3077     show ?thesis .
```
```  3078   qed
```
```  3079 qed
```
```  3080
```
```  3081 lemma radical_inverse:
```
```  3082   fixes a :: "'a::field_char_0 fps"
```
```  3083   assumes k: "k > 0"
```
```  3084     and ra0: "r k (a \$ 0) ^ k = a \$ 0"
```
```  3085     and r1: "(r k 1)^k = 1"
```
```  3086     and a0: "a\$0 \<noteq> 0"
```
```  3087   shows "r k (inverse (a \$ 0)) = r k 1 / (r k (a \$ 0)) \<longleftrightarrow>
```
```  3088     fps_radical r k (inverse a) = fps_radical r k 1 / fps_radical r k a"
```
```  3089   using radical_divide[where k=k and r=r and a=1 and b=a, OF k ] ra0 r1 a0
```
```  3090   by (simp add: divide_inverse fps_divide_def)
```
```  3091
```
```  3092
```
```  3093 subsection \<open>Derivative of composition\<close>
```
```  3094
```
```  3095 lemma fps_compose_deriv:
```
```  3096   fixes a :: "'a::idom fps"
```
```  3097   assumes b0: "b\$0 = 0"
```
```  3098   shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * fps_deriv b"
```
```  3099 proof -
```
```  3100   have "(fps_deriv (a oo b))\$n = (((fps_deriv a) oo b) * (fps_deriv b)) \$n" for n
```
```  3101   proof -
```
```  3102     have "(fps_deriv (a oo b))\$n = sum (\<lambda>i. a \$ i * (fps_deriv (b^i))\$n) {0.. Suc n}"
```
```  3103       by (simp add: fps_compose_def field_simps sum_distrib_left del: of_nat_Suc)
```
```  3104     also have "\<dots> = sum (\<lambda>i. a\$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))\$n) {0.. Suc n}"
```
```  3105       by (simp add: field_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc)
```
```  3106     also have "\<dots> = sum (\<lambda>i. of_nat i * a\$i * (((b^(i - 1)) * fps_deriv b))\$n) {0.. Suc n}"
```
```  3107       unfolding fps_mult_left_const_nth  by (simp add: field_simps)
```
```  3108     also have "\<dots> = sum (\<lambda>i. of_nat i * a\$i * (sum (\<lambda>j. (b^ (i - 1))\$j * (fps_deriv b)\$(n - j)) {0..n})) {0.. Suc n}"
```
```  3109       unfolding fps_mult_nth ..
```
```  3110     also have "\<dots> = sum (\<lambda>i. of_nat i * a\$i * (sum (\<lambda>j. (b^ (i - 1))\$j * (fps_deriv b)\$(n - j)) {0..n})) {1.. Suc n}"
```
```  3111       apply (rule sum.mono_neutral_right)
```
```  3112       apply (auto simp add: mult_delta_left sum.delta not_le)
```
```  3113       done
```
```  3114     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a\$(i+1) * (sum (\<lambda>j. (b^ i)\$j * of_nat (n - j + 1) * b\$(n - j + 1)) {0..n})) {0.. n}"
```
```  3115       unfolding fps_deriv_nth
```
```  3116       by (rule sum.reindex_cong [of Suc]) (auto simp add: mult.assoc)
```
```  3117     finally have th0: "(fps_deriv (a oo b))\$n =
```
```  3118       sum (\<lambda>i. of_nat (i + 1) * a\$(i+1) * (sum (\<lambda>j. (b^ i)\$j * of_nat (n - j + 1) * b\$(n - j + 1)) {0..n})) {0.. n}" .
```
```  3119
```
```  3120     have "(((fps_deriv a) oo b) * (fps_deriv b))\$n = sum (\<lambda>i. (fps_deriv b)\$ (n - i) * ((fps_deriv a) oo b)\$i) {0..n}"
```
```  3121       unfolding fps_mult_nth by (simp add: ac_simps)
```
```  3122     also have "\<dots> = sum (\<lambda>i. sum (\<lambda>j. of_nat (n - i +1) * b\$(n - i + 1) * of_nat (j + 1) * a\$(j+1) * (b^j)\$i) {0..n}) {0..n}"
```
```  3123       unfolding fps_deriv_nth fps_compose_nth sum_distrib_left mult.assoc
```
```  3124       apply (rule sum.cong)
```
```  3125       apply (rule refl)
```
```  3126       apply (rule sum.mono_neutral_left)
```
```  3127       apply (simp_all add: subset_eq)
```
```  3128       apply clarify
```
```  3129       apply (subgoal_tac "b^i\$x = 0")
```
```  3130       apply simp
```
```  3131       apply (rule startsby_zero_power_prefix[OF b0, rule_format])
```
```  3132       apply simp
```
```  3133       done
```
```  3134     also have "\<dots> = sum (\<lambda>i. of_nat (i + 1) * a\$(i+1) * (sum (\<lambda>j. (b^ i)\$j * of_nat (n - j + 1) * b\$(n - j + 1)) {0..n})) {0.. n}"
```
```  3135       unfolding sum_distrib_left
```
```  3136       apply (subst sum.swap)
```
```  3137       apply (rule sum.cong, rule refl)+
```
```  3138       apply simp
```
```  3139       done
```
```  3140     finally show ?thesis
```
```  3141       unfolding th0 by simp
```
```  3142   qed
```
```  3143   then show ?thesis by (simp add: fps_eq_iff)
```
```  3144 qed
```
```  3145
```
```  3146 lemma fps_mult_fps_X_plus_1_nth:
```
```  3147   "((1+fps_X)*a) \$n = (if n = 0 then (a\$n :: 'a::comm_ring_1) else a\$n + a\$(n - 1))"
```
```  3148 proof (cases n)
```
```  3149   case 0
```
```  3150   then show ?thesis
```
```  3151     by (simp add: fps_mult_nth)
```
```  3152 next
```
```  3153   case (Suc m)
```
```  3154   have "((1 + fps_X)*a) \$ n = sum (\<lambda>i. (1 + fps_X) \$ i * a \$ (n - i)) {0..n}"
```
```  3155     by (simp add: fps_mult_nth)
```
```  3156   also have "\<dots> = sum (\<lambda>i. (1+fps_X)\$i * a\$(n-i)) {0.. 1}"
```
```  3157     unfolding Suc by (rule sum.mono_neutral_right) auto
```
```  3158   also have "\<dots> = (if n = 0 then (a\$n :: 'a::comm_ring_1) else a\$n + a\$(n - 1))"
```
```  3159     by (simp add: Suc)
```
```  3160   finally show ?thesis .
```
```  3161 qed
```
```  3162
```
```  3163
```
```  3164 subsection \<open>Finite FPS (i.e. polynomials) and fps_X\<close>
```
```  3165
```
```  3166 lemma fps_poly_sum_fps_X:
```
```  3167   assumes "\<forall>i > n. a\$i = (0::'a::comm_ring_1)"
```
```  3168   shows "a = sum (\<lambda>i. fps_const (a\$i) * fps_X^i) {0..n}" (is "a = ?r")
```
```  3169 proof -
```
```  3170   have "a\$i = ?r\$i" for i
```
```  3171     unfolding fps_sum_nth fps_mult_left_const_nth fps_X_power_nth
```
```  3172     by (simp add: mult_delta_right sum.delta' assms)
```
```  3173   then show ?thesis
```
```  3174     unfolding fps_eq_iff by blast
```
```  3175 qed
```
```  3176
```
```  3177
```
```  3178 subsection \<open>Compositional inverses\<close>
```
```  3179
```
```  3180 fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::field"
```
```  3181 where
```
```  3182   "compinv a 0 = fps_X\$0"
```
```  3183 | "compinv a (Suc n) =
```
```  3184     (fps_X\$ Suc n - sum (\<lambda>i. (compinv a i) * (a^i)\$Suc n) {0 .. n}) / (a\$1) ^ Suc n"
```
```  3185
```
```  3186 definition "fps_inv a = Abs_fps (compinv a)"
```
```  3187
```
```  3188 lemma fps_inv:
```
```  3189   assumes a0: "a\$0 = 0"
```
```  3190     and a1: "a\$1 \<noteq> 0"
```
```  3191   shows "fps_inv a oo a = fps_X"
```
```  3192 proof -
```
```  3193   let ?i = "fps_inv a oo a"
```
```  3194   have "?i \$n = fps_X\$n" for n
```
```  3195   proof (induct n rule: nat_less_induct)
```
```  3196     fix n
```
```  3197     assume h: "\<forall>m<n. ?i\$m = fps_X\$m"
```
```  3198     show "?i \$ n = fps_X\$n"
```
```  3199     proof (cases n)
```
```  3200       case 0
```
```  3201       then show ?thesis using a0
```
```  3202         by (simp add: fps_compose_nth fps_inv_def)
```
```  3203     next
```
```  3204       case (Suc n1)
```
```  3205       have "?i \$ n = sum (\<lambda>i. (fps_inv a \$ i) * (a^i)\$n) {0 .. n1} + fps_inv a \$ Suc n1 * (a \$ 1)^ Suc n1"
```
```  3206         by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc)
```
```  3207       also have "\<dots> = sum (\<lambda>i. (fps_inv a \$ i) * (a^i)\$n) {0 .. n1} +
```
```  3208         (fps_X\$ Suc n1 - sum (\<lambda>i. (fps_inv a \$ i) * (a^i)\$n) {0 .. n1})"
```
```  3209         using a0 a1 Suc by (simp add: fps_inv_def)
```
```  3210       also have "\<dots> = fps_X\$n" using Suc by simp
```
```  3211       finally show ?thesis .
```
```  3212     qed
```
```  3213   qed
```
```  3214   then show ?thesis
```
```  3215     by (simp add: fps_eq_iff)
```
```  3216 qed
```
```  3217
```
```  3218
```
```  3219 fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::field"
```
```  3220 where
```
```  3221   "gcompinv b a 0 = b\$0"
```
```  3222 | "gcompinv b a (Suc n) =
```
```  3223     (b\$ Suc n - sum (\<lambda>i. (gcompinv b a i) * (a^i)\$Suc n) {0 .. n}) / (a\$1) ^ Suc n"
```
```  3224
```
```  3225 definition "fps_ginv b a = Abs_fps (gcompinv b a)"
```
```  3226
```
```  3227 lemma fps_ginv:
```
```  3228   assumes a0: "a\$0 = 0"
```
```  3229     and a1: "a\$1 \<noteq> 0"
```
```  3230   shows "fps_ginv b a oo a = b"
```
```  3231 proof -
```
```  3232   let ?i = "fps_ginv b a oo a"
```
```  3233   have "?i \$n = b\$n" for n
```
```  3234   proof (induct n rule: nat_less_induct)
```
```  3235     fix n
```
```  3236     assume h: "\<forall>m<n. ?i\$m = b\$m"
```
```  3237     show "?i \$ n = b\$n"
```
```  3238     proof (cases n)
```
```  3239       case 0
```
```  3240       then show ?thesis using a0
```
```  3241         by (simp add: fps_compose_nth fps_ginv_def)
```
```  3242     next
```
```  3243       case (Suc n1)
```
```  3244       have "?i \$ n = sum (\<lambda>i. (fps_ginv b a \$ i) * (a^i)\$n) {0 .. n1} + fps_ginv b a \$ Suc n1 * (a \$ 1)^ Suc n1"
```
```  3245         by (simp only: fps_compose_nth) (simp add: Suc startsby_zero_power_nth_same [OF a0] del: power_Suc)
```
```  3246       also have "\<dots> = sum (\<lambda>i. (fps_ginv b a \$ i) * (a^i)\$n) {0 .. n1} +
```
```  3247         (b\$ Suc n1 - sum (\<lambda>i. (fps_ginv b a \$ i) * (a^i)\$n) {0 .. n1})"
```
```  3248         using a0 a1 Suc by (simp add: fps_ginv_def)
```
```  3249       also have "\<dots> = b\$n" using Suc by simp
```
```  3250       finally show ?thesis .
```
```  3251     qed
```
```  3252   qed
```
```  3253   then show ?thesis
```
```  3254     by (simp add: fps_eq_iff)
```
```  3255 qed
```
```  3256
```
```  3257 lemma fps_inv_ginv: "fps_inv = fps_ginv fps_X"
```
```  3258   apply (auto simp add: fun_eq_iff fps_eq_iff fps_inv_def fps_ginv_def)
```
```  3259   apply (induct_tac n rule: nat_less_induct)
```
```  3260   apply auto
```
```  3261   apply (case_tac na)
```
```  3262   apply simp
```
```  3263   apply simp
```
```  3264   done
```
```  3265
```
```  3266 lemma fps_compose_1[simp]: "1 oo a = 1"
```
```  3267   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
```
```  3268
```
```  3269 lemma fps_compose_0[simp]: "0 oo a = 0"
```
```  3270   by (simp add: fps_eq_iff fps_compose_nth)
```
```  3271
```
```  3272 lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a \$ 0)"
```
```  3273   by (auto simp add: fps_eq_iff fps_compose_nth power_0_left sum.neutral)
```
```  3274
```
```  3275 lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)"
```
```  3276   by (simp add: fps_eq_iff fps_compose_nth field_simps sum.distrib)
```
```  3277
```
```  3278 lemma fps_compose_sum_distrib: "(sum f S) oo a = sum (\<lambda>i. f i oo a) S"
```
```  3279 proof (cases "finite S")
```
```  3280   case True
```
```  3281   show ?thesis
```
```  3282   proof (rule finite_induct[OF True])
```
```  3283     show "sum f {} oo a = (\<Sum>i\<in>{}. f i oo a)"
```
```  3284       by simp
```
```  3285   next
```
```  3286     fix x F
```
```  3287     assume fF: "finite F"
```
```  3288       and xF: "x \<notin> F"
```
```  3289       and h: "sum f F oo a = sum (\<lambda>i. f i oo a) F"
```
```  3290     show "sum f (insert x F) oo a  = sum (\<lambda>i. f i oo a) (insert x F)"
```
```  3291       using fF xF h by (simp add: fps_compose_add_distrib)
```
```  3292   qed
```
```  3293 next
```
```  3294   case False
```
```  3295   then show ?thesis by simp
```
```  3296 qed
```
```  3297
```
```  3298 lemma convolution_eq:
```
```  3299   "sum (\<lambda>i. a (i :: nat) * b (n - i)) {0 .. n} =
```
```  3300     sum (\<lambda>(i,j). a i * b j) {(i,j). i \<le> n \<and> j \<le> n \<and> i + j = n}"
```
```  3301   by (rule sum.reindex_bij_witness[where i=fst and j="\<lambda>i. (i, n - i)"]) auto
```
```  3302
```
```  3303 lemma product_composition_lemma:
```
```  3304   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3305     and d0: "d\$0 = 0"
```
```  3306   shows "((a oo c) * (b oo d))\$n =
```
```  3307     sum (\<lambda>(k,m). a\$k * b\$m * (c^k * d^m) \$ n) {(k,m). k + m \<le> n}"  (is "?l = ?r")
```
```  3308 proof -
```
```  3309   let ?S = "{(k::nat, m::nat). k + m \<le> n}"
```
```  3310   have s: "?S \<subseteq> {0..n} \<times> {0..n}" by (auto simp add: subset_eq)
```
```  3311   have f: "finite {(k::nat, m::nat). k + m \<le> n}"
```
```  3312     apply (rule finite_subset[OF s])
```
```  3313     apply auto
```
```  3314     done
```
```  3315   have "?r =  sum (\<lambda>i. sum (\<lambda>(k,m). a\$k * (c^k)\$i * b\$m * (d^m) \$ (n - i)) {(k,m). k + m \<le> n}) {0..n}"
```
```  3316     apply (simp add: fps_mult_nth sum_distrib_left)
```
```  3317     apply (subst sum.swap)
```
```  3318     apply (rule sum.cong)
```
```  3319     apply (auto simp add: field_simps)
```
```  3320     done
```
```  3321   also have "\<dots> = ?l"
```
```  3322     apply (simp add: fps_mult_nth fps_compose_nth sum_product)
```
```  3323     apply (rule sum.cong)
```
```  3324     apply (rule refl)
```
```  3325     apply (simp add: sum.cartesian_product mult.assoc)
```
```  3326     apply (rule sum.mono_neutral_right[OF f])
```
```  3327     apply (simp add: subset_eq)
```
```  3328     apply presburger
```
```  3329     apply clarsimp
```
```  3330     apply (rule ccontr)
```
```  3331     apply (clarsimp simp add: not_le)
```
```  3332     apply (case_tac "x < aa")
```
```  3333     apply simp
```
```  3334     apply (frule_tac startsby_zero_power_prefix[rule_format, OF c0])
```
```  3335     apply blast
```
```  3336     apply simp
```
```  3337     apply (frule_tac startsby_zero_power_prefix[rule_format, OF d0])
```
```  3338     apply blast
```
```  3339     done
```
```  3340   finally show ?thesis by simp
```
```  3341 qed
```
```  3342
```
```  3343 lemma product_composition_lemma':
```
```  3344   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3345     and d0: "d\$0 = 0"
```
```  3346   shows "((a oo c) * (b oo d))\$n =
```
```  3347     sum (\<lambda>k. sum (\<lambda>m. a\$k * b\$m * (c^k * d^m) \$ n) {0..n}) {0..n}"  (is "?l = ?r")
```
```  3348   unfolding product_composition_lemma[OF c0 d0]
```
```  3349   unfolding sum.cartesian_product
```
```  3350   apply (rule sum.mono_neutral_left)
```
```  3351   apply simp
```
```  3352   apply (clarsimp simp add: subset_eq)
```
```  3353   apply clarsimp
```
```  3354   apply (rule ccontr)
```
```  3355   apply (subgoal_tac "(c^aa * d^ba) \$ n = 0")
```
```  3356   apply simp
```
```  3357   unfolding fps_mult_nth
```
```  3358   apply (rule sum.neutral)
```
```  3359   apply (clarsimp simp add: not_le)
```
```  3360   apply (case_tac "x < aa")
```
```  3361   apply (rule startsby_zero_power_prefix[OF c0, rule_format])
```
```  3362   apply simp
```
```  3363   apply (subgoal_tac "n - x < ba")
```
```  3364   apply (frule_tac k = "ba" in startsby_zero_power_prefix[OF d0, rule_format])
```
```  3365   apply simp
```
```  3366   apply arith
```
```  3367   done
```
```  3368
```
```  3369
```
```  3370 lemma sum_pair_less_iff:
```
```  3371   "sum (\<lambda>((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} =
```
```  3372     sum (\<lambda>s. sum (\<lambda>i. a i * b (s - i) * c s) {0..s}) {0..n}"
```
```  3373   (is "?l = ?r")
```
```  3374 proof -
```
```  3375   let ?KM = "{(k,m). k + m \<le> n}"
```
```  3376   let ?f = "\<lambda>s. UNION {(0::nat)..s} (\<lambda>i. {(i,s - i)})"
```
```  3377   have th0: "?KM = UNION {0..n} ?f"
```
```  3378     by auto
```
```  3379   show "?l = ?r "
```
```  3380     unfolding th0
```
```  3381     apply (subst sum.UNION_disjoint)
```
```  3382     apply auto
```
```  3383     apply (subst sum.UNION_disjoint)
```
```  3384     apply auto
```
```  3385     done
```
```  3386 qed
```
```  3387
```
```  3388 lemma fps_compose_mult_distrib_lemma:
```
```  3389   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3390   shows "((a oo c) * (b oo c))\$n = sum (\<lambda>s. sum (\<lambda>i. a\$i * b\$(s - i) * (c^s) \$ n) {0..s}) {0..n}"
```
```  3391   unfolding product_composition_lemma[OF c0 c0] power_add[symmetric]
```
```  3392   unfolding sum_pair_less_iff[where a = "\<lambda>k. a\$k" and b="\<lambda>m. b\$m" and c="\<lambda>s. (c ^ s)\$n" and n = n] ..
```
```  3393
```
```  3394 lemma fps_compose_mult_distrib:
```
```  3395   assumes c0: "c \$ 0 = (0::'a::idom)"
```
```  3396   shows "(a * b) oo c = (a oo c) * (b oo c)"
```
```  3397   apply (simp add: fps_eq_iff fps_compose_mult_distrib_lemma [OF c0])
```
```  3398   apply (simp add: fps_compose_nth fps_mult_nth sum_distrib_right)
```
```  3399   done
```
```  3400
```
```  3401 lemma fps_compose_prod_distrib:
```
```  3402   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3403   shows "prod a S oo c = prod (\<lambda>k. a k oo c) S"
```
```  3404   apply (cases "finite S")
```
```  3405   apply simp_all
```
```  3406   apply (induct S rule: finite_induct)
```
```  3407   apply simp
```
```  3408   apply (simp add: fps_compose_mult_distrib[OF c0])
```
```  3409   done
```
```  3410
```
```  3411 lemma fps_compose_divide:
```
```  3412   assumes [simp]: "g dvd f" "h \$ 0 = 0"
```
```  3413   shows   "fps_compose f h = fps_compose (f / g :: 'a :: field fps) h * fps_compose g h"
```
```  3414 proof -
```
```  3415   have "f = (f / g) * g" by simp
```
```  3416   also have "fps_compose \<dots> h = fps_compose (f / g) h * fps_compose g h"
```
```  3417     by (subst fps_compose_mult_distrib) simp_all
```
```  3418   finally show ?thesis .
```
```  3419 qed
```
```  3420
```
```  3421 lemma fps_compose_divide_distrib:
```
```  3422   assumes "g dvd f" "h \$ 0 = 0" "fps_compose g h \<noteq> 0"
```
```  3423   shows   "fps_compose (f / g :: 'a :: field fps) h = fps_compose f h / fps_compose g h"
```
```  3424   using fps_compose_divide[OF assms(1,2)] assms(3) by simp
```
```  3425
```
```  3426 lemma fps_compose_power:
```
```  3427   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3428   shows "(a oo c)^n = a^n oo c"
```
```  3429 proof (cases n)
```
```  3430   case 0
```
```  3431   then show ?thesis by simp
```
```  3432 next
```
```  3433   case (Suc m)
```
```  3434   have th0: "a^n = prod (\<lambda>k. a) {0..m}" "(a oo c) ^ n = prod (\<lambda>k. a oo c) {0..m}"
```
```  3435     by (simp_all add: prod_constant Suc)
```
```  3436   then show ?thesis
```
```  3437     by (simp add: fps_compose_prod_distrib[OF c0])
```
```  3438 qed
```
```  3439
```
```  3440 lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)"
```
```  3441   by (simp add: fps_eq_iff fps_compose_nth field_simps sum_negf[symmetric])
```
```  3442
```
```  3443 lemma fps_compose_sub_distrib: "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)"
```
```  3444   using fps_compose_add_distrib [of a "- b" c] by (simp add: fps_compose_uminus)
```
```  3445
```
```  3446 lemma fps_X_fps_compose: "fps_X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a\$n)"
```
```  3447   by (simp add: fps_eq_iff fps_compose_nth mult_delta_left sum.delta)
```
```  3448
```
```  3449 lemma fps_inverse_compose:
```
```  3450   assumes b0: "(b\$0 :: 'a::field) = 0"
```
```  3451     and a0: "a\$0 \<noteq> 0"
```
```  3452   shows "inverse a oo b = inverse (a oo b)"
```
```  3453 proof -
```
```  3454   let ?ia = "inverse a"
```
```  3455   let ?ab = "a oo b"
```
```  3456   let ?iab = "inverse ?ab"
```
```  3457
```
```  3458   from a0 have ia0: "?ia \$ 0 \<noteq> 0" by simp
```
```  3459   from a0 have ab0: "?ab \$ 0 \<noteq> 0" by (simp add: fps_compose_def)
```
```  3460   have "(?ia oo b) *  (a oo b) = 1"
```
```  3461     unfolding fps_compose_mult_distrib[OF b0, symmetric]
```
```  3462     unfolding inverse_mult_eq_1[OF a0]
```
```  3463     fps_compose_1 ..
```
```  3464
```
```  3465   then have "(?ia oo b) *  (a oo b) * ?iab  = 1 * ?iab" by simp
```
```  3466   then have "(?ia oo b) *  (?iab * (a oo b))  = ?iab" by simp
```
```  3467   then show ?thesis unfolding inverse_mult_eq_1[OF ab0] by simp
```
```  3468 qed
```
```  3469
```
```  3470 lemma fps_divide_compose:
```
```  3471   assumes c0: "(c\$0 :: 'a::field) = 0"
```
```  3472     and b0: "b\$0 \<noteq> 0"
```
```  3473   shows "(a/b) oo c = (a oo c) / (b oo c)"
```
```  3474     using b0 c0 by (simp add: fps_divide_unit fps_inverse_compose fps_compose_mult_distrib)
```
```  3475
```
```  3476 lemma gp:
```
```  3477   assumes a0: "a\$0 = (0::'a::field)"
```
```  3478   shows "(Abs_fps (\<lambda>n. 1)) oo a = 1/(1 - a)"
```
```  3479     (is "?one oo a = _")
```
```  3480 proof -
```
```  3481   have o0: "?one \$ 0 \<noteq> 0" by simp
```
```  3482   have th0: "(1 - fps_X) \$ 0 \<noteq> (0::'a)" by simp
```
```  3483   from fps_inverse_gp[where ?'a = 'a]
```
```  3484   have "inverse ?one = 1 - fps_X" by (simp add: fps_eq_iff)
```
```  3485   then have "inverse (inverse ?one) = inverse (1 - fps_X)" by simp
```
```  3486   then have th: "?one = 1/(1 - fps_X)" unfolding fps_inverse_idempotent[OF o0]
```
```  3487     by (simp add: fps_divide_def)
```
```  3488   show ?thesis
```
```  3489     unfolding th
```
```  3490     unfolding fps_divide_compose[OF a0 th0]
```
```  3491     fps_compose_1 fps_compose_sub_distrib fps_X_fps_compose_startby0[OF a0] ..
```
```  3492 qed
```
```  3493
```
```  3494 lemma fps_const_power [simp]: "fps_const (c::'a::ring_1) ^ n = fps_const (c^n)"
```
```  3495   by (induct n) auto
```
```  3496
```
```  3497 lemma fps_compose_radical:
```
```  3498   assumes b0: "b\$0 = (0::'a::field_char_0)"
```
```  3499     and ra0: "r (Suc k) (a\$0) ^ Suc k = a\$0"
```
```  3500     and a0: "a\$0 \<noteq> 0"
```
```  3501   shows "fps_radical r (Suc k)  a oo b = fps_radical r (Suc k) (a oo b)"
```
```  3502 proof -
```
```  3503   let ?r = "fps_radical r (Suc k)"
```
```  3504   let ?ab = "a oo b"
```
```  3505   have ab0: "?ab \$ 0 = a\$0"
```
```  3506     by (simp add: fps_compose_def)
```
```  3507   from ab0 a0 ra0 have rab0: "?ab \$ 0 \<noteq> 0" "r (Suc k) (?ab \$ 0) ^ Suc k = ?ab \$ 0"
```
```  3508     by simp_all
```
```  3509   have th00: "r (Suc k) ((a oo b) \$ 0) = (fps_radical r (Suc k) a oo b) \$ 0"
```
```  3510     by (simp add: ab0 fps_compose_def)
```
```  3511   have th0: "(?r a oo b) ^ (Suc k) = a  oo b"
```
```  3512     unfolding fps_compose_power[OF b0]
```
```  3513     unfolding iffD1[OF power_radical[of a r k], OF a0 ra0]  ..
```
```  3514   from iffD1[OF radical_unique[where r=r and k=k and b= ?ab and a = "?r a oo b", OF rab0(2) th00 rab0(1)], OF th0]
```
```  3515   show ?thesis  .
```
```  3516 qed
```
```  3517
```
```  3518 lemma fps_const_mult_apply_left: "fps_const c * (a oo b) = (fps_const c * a) oo b"
```
```  3519   by (simp add: fps_eq_iff fps_compose_nth sum_distrib_left mult.assoc)
```
```  3520
```
```  3521 lemma fps_const_mult_apply_right:
```
```  3522   "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b"
```
```  3523   by (auto simp add: fps_const_mult_apply_left mult.commute)
```
```  3524
```
```  3525 lemma fps_compose_assoc:
```
```  3526   assumes c0: "c\$0 = (0::'a::idom)"
```
```  3527     and b0: "b\$0 = 0"
```
```  3528   shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r")
```
```  3529 proof -
```
```  3530   have "?l\$n = ?r\$n" for n
```
```  3531   proof -
```
```  3532     have "?l\$n = (sum (\<lambda>i. (fps_const (a\$i) * b^i) oo c) {0..n})\$n"
```
```  3533       by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left
```
```  3534         sum_distrib_left mult.assoc fps_sum_nth)
```
```  3535     also have "\<dots> = ((sum (\<lambda>i. fps_const (a\$i) * b^i) {0..n}) oo c)\$n"
```
```  3536       by (simp add: fps_compose_sum_distrib)
```
```  3537     also have "\<dots> = ?r\$n"
```
```  3538       apply (simp add: fps_compose_nth fps_sum_nth sum_distrib_right mult.assoc)
```
```  3539       apply (rule sum.cong)
```
```  3540       apply (rule refl)
```
```  3541       apply (rule sum.mono_neutral_right)
```
```  3542       apply (auto simp add: not_le)
```
```  3543       apply (erule startsby_zero_power_prefix[OF b0, rule_format])
```
```  3544       done
```
```  3545     finally show ?thesis .
```
```  3546   qed
```
```  3547   then show ?thesis
```
```  3548     by (simp add: fps_eq_iff)
```
```  3549 qed
```
```  3550
```
```  3551
```
```  3552 lemma fps_X_power_compose:
```
```  3553   assumes a0: "a\$0=0"
```
```  3554   shows "fps_X^k oo a = (a::'a::idom fps)^k"
```
```  3555   (is "?l = ?r")
```
```  3556 proof (cases k)
```
```  3557   case 0
```
```  3558   then show ?thesis by simp
```
```  3559 next
```
```  3560   case (Suc h)
```
```  3561   have "?l \$ n = ?r \$n" for n
```
```  3562   proof -
```
```  3563     consider "k > n" | "k \<le> n" by arith
```
```  3564     then show ?thesis
```
```  3565     proof cases
```
```  3566       case 1
```
```  3567       then show ?thesis
```
```  3568         using a0 startsby_zero_power_prefix[OF a0] Suc
```
```  3569         by (simp add: fps_compose_nth del: power_Suc)
```
```  3570     next
```
```  3571       case 2
```
```  3572       then show ?thesis
```
```  3573         by (simp add: fps_compose_nth mult_delta_left sum.delta)
```
```  3574     qed
```
```  3575   qed
```
```  3576   then show ?thesis
```
```  3577     unfolding fps_eq_iff by blast
```
```  3578 qed
```
```  3579
```
```  3580 lemma fps_inv_right:
```
```  3581   assumes a0: "a\$0 = 0"
```
```  3582     and a1: "a\$1 \<noteq> 0"
```
```  3583   shows "a oo fps_inv a = fps_X"
```
```  3584 proof -
```
```  3585   let ?ia = "fps_inv a"
```
```  3586   let ?iaa = "a oo fps_inv a"
```
```  3587   have th0: "?ia \$ 0 = 0"
```
```  3588     by (simp add: fps_inv_def)
```
```  3589   have th1: "?iaa \$ 0 = 0"
```
```  3590     using a0 a1 by (simp add: fps_inv_def fps_compose_nth)
```
```  3591   have th2: "fps_X\$0 = 0"
```
```  3592     by simp
```
```  3593   from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo fps_X"
```
```  3594     by simp
```
```  3595   then have "(a oo fps_inv a) oo a = fps_X oo a"
```
```  3596     by (simp add: fps_compose_assoc[OF a0 th0] fps_X_fps_compose_startby0[OF a0])
```
```  3597   with fps_compose_inj_right[OF a0 a1] show ?thesis
```
```  3598     by simp
```
```  3599 qed
```
```  3600
```
```  3601 lemma fps_inv_deriv:
```
```  3602   assumes a0: "a\$0 = (0::'a::field)"
```
```  3603     and a1: "a\$1 \<noteq> 0"
```
```  3604   shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)"
```
```  3605 proof -
```
```  3606   let ?ia = "fps_inv a"
```
```  3607   let ?d = "fps_deriv a oo ?ia"
```
```  3608   let ?dia = "fps_deriv ?ia"
```
```  3609   have ia0: "?ia\$0 = 0"
```
```  3610     by (simp add: fps_inv_def)
```
```  3611   have th0: "?d\$0 \<noteq> 0"
```
```  3612     using a1 by (simp add: fps_compose_nth)
```
```  3613   from fps_inv_right[OF a0 a1] have "?d * ?dia = 1"
```
```  3614     by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] )
```
```  3615   then have "inverse ?d * ?d * ?dia = inverse ?d * 1"
```
```  3616     by simp
```
```  3617   with inverse_mult_eq_1 [OF th0] show "?dia = inverse ?d"
```
```  3618     by simp
```
```  3619 qed
```
```  3620
```
```  3621 lemma fps_inv_idempotent:
```
```  3622   assumes a0: "a\$0 = 0"
```
```  3623     and a1: "a\$1 \<noteq> 0"
```
```  3624   shows "fps_inv (fps_inv a) = a"
```
```  3625 proof -
```
```  3626   let ?r = "fps_inv"
```
```  3627   have ra0: "?r a \$ 0 = 0"
```
```  3628     by (simp add: fps_inv_def)
```
```  3629   from a1 have ra1: "?r a \$ 1 \<noteq> 0"
```
```  3630     by (simp add: fps_inv_def field_simps)
```
```  3631   have fps_X0: "fps_X\$0 = 0"
```
```  3632     by simp
```
```  3633   from fps_inv[OF ra0 ra1] have "?r (?r a) oo ?r a = fps_X" .
```
```  3634   then have "?r (?r a) oo ?r a oo a = fps_X oo a"
```
```  3635     by simp
```
```  3636   then have "?r (?r a) oo (?r a oo a) = a"
```
```  3637     unfolding fps_X_fps_compose_startby0[OF a0]
```
```  3638     unfolding fps_compose_assoc[OF a0 ra0, symmetric] .
```
```  3639   then show ?thesis
```
```  3640     unfolding fps_inv[OF a0 a1] by simp
```
```  3641 qed
```
```  3642
```
```  3643 lemma fps_ginv_ginv:
```
```  3644   assumes a0: "a\$0 = 0"
```
```  3645     and a1: "a\$1 \<noteq> 0"
```
```  3646     and c0: "c\$0 = 0"
```
```  3647     and  c1: "c\$1 \<noteq> 0"
```
```  3648   shows "fps_ginv b (fps_ginv c a) = b oo a oo fps_inv c"
```
```  3649 proof -
```
```  3650   let ?r = "fps_ginv"
```
```  3651   from c0 have rca0: "?r c a \$0 = 0"
```
```  3652     by (simp add: fps_ginv_def)
```
```  3653   from a1 c1 have rca1: "?r c a \$ 1 \<noteq> 0"
```
```  3654     by (simp add: fps_ginv_def field_simps)
```
```  3655   from fps_ginv[OF rca0 rca1]
```
```  3656   have "?r b (?r c a) oo ?r c a = b" .
```
```  3657   then have "?r b (?r c a) oo ?r c a oo a = b oo a"
```
```  3658     by simp
```
```  3659   then have "?r b (?r c a) oo (?r c a oo a) = b oo a"
```
```  3660     apply (subst fps_compose_assoc)
```
```  3661     using a0 c0
```
```  3662     apply (auto simp add: fps_ginv_def)
```
```  3663     done
```
```  3664   then have "?r b (?r c a) oo c = b oo a"
```
```  3665     unfolding fps_ginv[OF a0 a1] .
```
```  3666   then have "?r b (?r c a) oo c oo fps_inv c= b oo a oo fps_inv c"
```
```  3667     by simp
```
```  3668   then have "?r b (?r c a) oo (c oo fps_inv c) = b oo a oo fps_inv c"
```
```  3669     apply (subst fps_compose_assoc)
```
```  3670     using a0 c0
```
```  3671     apply (auto simp add: fps_inv_def)
```
```  3672     done
```
```  3673   then show ?thesis
```
```  3674     unfolding fps_inv_right[OF c0 c1] by simp
```
```  3675 qed
```
```  3676
```
```  3677 lemma fps_ginv_deriv:
```
```  3678   assumes a0:"a\$0 = (0::'a::field)"
```
```  3679     and a1: "a\$1 \<noteq> 0"
```
```  3680   shows "fps_deriv (fps_ginv b a) = (fps_deriv b / fps_deriv a) oo fps_ginv fps_X a"
```
```  3681 proof -
```
```  3682   let ?ia = "fps_ginv b a"
```
```  3683   let ?ifps_Xa = "fps_ginv fps_X a"
```
```  3684   let ?d = "fps_deriv"
```
```  3685   let ?dia = "?d ?ia"
```
```  3686   have ifps_Xa0: "?ifps_Xa \$ 0 = 0"
```
```  3687     by (simp add: fps_ginv_def)
```
```  3688   have da0: "?d a \$ 0 \<noteq> 0"
```
```  3689     using a1 by simp
```
```  3690   from fps_ginv[OF a0 a1, of b] have "?d (?ia oo a) = fps_deriv b"
```
```  3691     by simp
```
```  3692   then have "(?d ?ia oo a) * ?d a = ?d b"
```
```  3693     unfolding fps_compose_deriv[OF a0] .
```
```  3694   then have "(?d ?ia oo a) * ?d a * inverse (?d a) = ?d b * inverse (?d a)"
```
```  3695     by simp
```
```  3696   with a1 have "(?d ?ia oo a) * (inverse (?d a) * ?d a) = ?d b / ?d a"
```
```  3697     by (simp add: fps_divide_unit)
```
```  3698   then have "(?d ?ia oo a) oo ?ifps_Xa =  (?d b / ?d a) oo ?ifps_Xa"
```
```  3699     unfolding inverse_mult_eq_1[OF da0] by simp
```
```  3700   then have "?d ?ia oo (a oo ?ifps_Xa) =  (?d b / ?d a) oo ?ifps_Xa"
```
```  3701     unfolding fps_compose_assoc[OF ifps_Xa0 a0] .
```
```  3702   then show ?thesis unfolding fps_inv_ginv[symmetric]
```
```  3703     unfolding fps_inv_right[OF a0 a1] by simp
```
```  3704 qed
```
```  3705
```
```  3706 lemma fps_compose_linear:
```
```  3707   "fps_compose (f :: 'a :: comm_ring_1 fps) (fps_const c * fps_X) = Abs_fps (\<lambda>n. c^n * f \$ n)"
```
```  3708   by (simp add: fps_eq_iff fps_compose_def power_mult_distrib
```
```  3709                 if_distrib sum.delta' cong: if_cong)
```
```  3710
```
```  3711 lemma fps_compose_uminus':
```
```  3712   "fps_compose f (-fps_X :: 'a :: comm_ring_1 fps) = Abs_fps (\<lambda>n. (-1)^n * f \$ n)"
```
```  3713   using fps_compose_linear[of f "-1"]
```
```  3714   by (simp only: fps_const_neg [symmetric] fps_const_1_eq_1) simp
```
```  3715
```
```  3716 subsection \<open>Elementary series\<close>
```
```  3717
```
```  3718 subsubsection \<open>Exponential series\<close>
```
```  3719
```
```  3720 definition "fps_exp x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))"
```
```  3721
```
```  3722 lemma fps_exp_deriv[simp]: "fps_deriv (fps_exp a) = fps_const (a::'a::field_char_0) * fps_exp a"
```
```  3723   (is "?l = ?r")
```
```  3724 proof -
```
```  3725   have "?l\$n = ?r \$ n" for n
```
```  3726     apply (auto simp add: fps_exp_def field_simps power_Suc[symmetric]
```
```  3727       simp del: fact_Suc of_nat_Suc power_Suc)
```
```  3728     apply (simp add: field_simps)
```
```  3729     done
```
```  3730   then show ?thesis
```
```  3731     by (simp add: fps_eq_iff)
```
```  3732 qed
```
```  3733
```
```  3734 lemma fps_exp_unique_ODE:
```
```  3735   "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a\$0) * fps_exp (c::'a::field_char_0)"
```
```  3736   (is "?lhs \<longleftrightarrow> ?rhs")
```
```  3737 proof
```
```  3738   show ?rhs if ?lhs
```
```  3739   proof -
```
```  3740     from that have th: "\<And>n. a \$ Suc n = c * a\$n / of_nat (Suc n)"
```
```  3741       by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc)
```
```  3742     have th': "a\$n = a\$0 * c ^ n/ (fact n)" for n
```
```  3743     proof (induct n)
```
```  3744       case 0
```
```  3745       then show ?case by simp
```
```  3746     next
```
```  3747       case Suc
```
```  3748       then show ?case
```
```  3749         unfolding th
```
```  3750         using fact_gt_zero
```
```  3751         apply (simp add: field_simps del: of_nat_Suc fact_Suc)
```
```  3752         apply simp
```
```  3753         done
```
```  3754     qed
```
```  3755     show ?thesis
```
```  3756       by (auto simp add: fps_eq_iff fps_const_mult_left fps_exp_def intro: th')
```
```  3757   qed
```
```  3758   show ?lhs if ?rhs
```
```  3759     using that by (metis fps_exp_deriv fps_deriv_mult_const_left mult.left_commute)
```
```  3760 qed
```
```  3761
```
```  3762 lemma fps_exp_add_mult: "fps_exp (a + b) = fps_exp (a::'a::field_char_0) * fps_exp b" (is "?l = ?r")
```
```  3763 proof -
```
```  3764   have "fps_deriv ?r = fps_const (a + b) * ?r"
```
```  3765     by (simp add: fps_const_add[symmetric] field_simps del: fps_const_add)
```
```  3766   then have "?r = ?l"
```
```  3767     by (simp only: fps_exp_unique_ODE) (simp add: fps_mult_nth fps_exp_def)
```
```  3768   then show ?thesis ..
```
```  3769 qed
```
```  3770
```
```  3771 lemma fps_exp_nth[simp]: "fps_exp a \$ n = a^n / of_nat (fact n)"
```
```  3772   by (simp add: fps_exp_def)
```
```  3773
```
```  3774 lemma fps_exp_0[simp]: "fps_exp (0::'a::field) = 1"
```
```  3775   by (simp add: fps_eq_iff power_0_left)
```
```  3776
```
```  3777 lemma fps_exp_neg: "fps_exp (- a) = inverse (fps_exp (a::'a::field_char_0))"
```
```  3778 proof -
```
```  3779   from fps_exp_add_mult[of a "- a"] have th0: "fps_exp a * fps_exp (- a) = 1" by simp
```
```  3780   from fps_inverse_unique[OF th0] show ?thesis by simp
```
```  3781 qed
```
```  3782
```
```  3783 lemma fps_exp_nth_deriv[simp]:
```
```  3784   "fps_nth_deriv n (fps_exp (a::'a::field_char_0)) = (fps_const a)^n * (fps_exp a)"
```
```  3785   by (induct n) auto
```
```  3786
```
```  3787 lemma fps_X_compose_fps_exp[simp]: "fps_X oo fps_exp (a::'a::field) = fps_exp a - 1"
```
```  3788   by (simp add: fps_eq_iff fps_X_fps_compose)
```
```  3789
```
```  3790 lemma fps_inv_fps_exp_compose:
```
```  3791   assumes a: "a \<noteq> 0"
```
```  3792   shows "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = fps_X"
```
```  3793     and "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_X"
```
```  3794 proof -
```
```  3795   let ?b = "fps_exp a - 1"
```
```  3796   have b0: "?b \$ 0 = 0"
```
```  3797     by simp
```
```  3798   have b1: "?b \$ 1 \<noteq> 0"
```
```  3799     by (simp add: a)
```
```  3800   from fps_inv[OF b0 b1] show "fps_inv (fps_exp a - 1) oo (fps_exp a - 1) = fps_X" .
```
```  3801   from fps_inv_right[OF b0 b1] show "(fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_X" .
```
```  3802 qed
```
```  3803
```
```  3804 lemma fps_exp_power_mult: "(fps_exp (c::'a::field_char_0))^n = fps_exp (of_nat n * c)"
```
```  3805   by (induct n) (auto simp add: field_simps fps_exp_add_mult)
```
```  3806
```
```  3807 lemma radical_fps_exp:
```
```  3808   assumes r: "r (Suc k) 1 = 1"
```
```  3809   shows "fps_radical r (Suc k) (fps_exp (c::'a::field_char_0)) = fps_exp (c / of_nat (Suc k))"
```
```  3810 proof -
```
```  3811   let ?ck = "(c / of_nat (Suc k))"
```
```  3812   let ?r = "fps_radical r (Suc k)"
```
```  3813   have eq0[simp]: "?ck * of_nat (Suc k) = c" "of_nat (Suc k) * ?ck = c"
```
```  3814     by (simp_all del: of_nat_Suc)
```
```  3815   have th0: "fps_exp ?ck ^ (Suc k) = fps_exp c" unfolding fps_exp_power_mult eq0 ..
```
```  3816   have th: "r (Suc k) (fps_exp c \$0) ^ Suc k = fps_exp c \$ 0"
```
```  3817     "r (Suc k) (fps_exp c \$ 0) = fps_exp ?ck \$ 0" "fps_exp c \$ 0 \<noteq> 0" using r by simp_all
```
```  3818   from th0 radical_unique[where r=r and k=k, OF th] show ?thesis
```
```  3819     by auto
```
```  3820 qed
```
```  3821
```
```  3822 lemma fps_exp_compose_linear [simp]:
```
```  3823   "fps_exp (d::'a::field_char_0) oo (fps_const c * fps_X) = fps_exp (c * d)"
```
```  3824   by (simp add: fps_compose_linear fps_exp_def fps_eq_iff power_mult_distrib)
```
```  3825
```
```  3826 lemma fps_fps_exp_compose_minus [simp]:
```
```  3827   "fps_compose (fps_exp c) (-fps_X) = fps_exp (-c :: 'a :: field_char_0)"
```
```  3828   using fps_exp_compose_linear[of c "-1 :: 'a"]
```
```  3829   unfolding fps_const_neg [symmetric] fps_const_1_eq_1 by simp
```
```  3830
```
```  3831 lemma fps_exp_eq_iff [simp]: "fps_exp c = fps_exp d \<longleftrightarrow> c = (d :: 'a :: field_char_0)"
```
```  3832 proof
```
```  3833   assume "fps_exp c = fps_exp d"
```
```  3834   from arg_cong[of _ _ "\<lambda>F. F \$ 1", OF this] show "c = d" by simp
```
```  3835 qed simp_all
```
```  3836
```
```  3837 lemma fps_exp_eq_fps_const_iff [simp]:
```
```  3838   "fps_exp (c :: 'a :: field_char_0) = fps_const c' \<longleftrightarrow> c = 0 \<and> c' = 1"
```
```  3839 proof
```
```  3840   assume "c = 0 \<and> c' = 1"
```
```  3841   thus "fps_exp c = fps_const c'" by (auto simp: fps_eq_iff)
```
```  3842 next
```
```  3843   assume "fps_exp c = fps_const c'"
```
```  3844   from arg_cong[of _ _ "\<lambda>F. F \$ 1", OF this] arg_cong[of _ _ "\<lambda>F. F \$ 0", OF this]
```
```  3845     show "c = 0 \<and> c' = 1" by simp_all
```
```  3846 qed
```
```  3847
```
```  3848 lemma fps_exp_neq_0 [simp]: "\<not>fps_exp (c :: 'a :: field_char_0) = 0"
```
```  3849   unfolding fps_const_0_eq_0 [symmetric] fps_exp_eq_fps_const_iff by simp
```
```  3850
```
```  3851 lemma fps_exp_eq_1_iff [simp]: "fps_exp (c :: 'a :: field_char_0) = 1 \<longleftrightarrow> c = 0"
```
```  3852   unfolding fps_const_1_eq_1 [symmetric] fps_exp_eq_fps_const_iff by simp
```
```  3853
```
```  3854 lemma fps_exp_neq_numeral_iff [simp]:
```
```  3855   "fps_exp (c :: 'a :: field_char_0) = numeral n \<longleftrightarrow> c = 0 \<and> n = Num.One"
```
```  3856   unfolding numeral_fps_const fps_exp_eq_fps_const_iff by simp
```
```  3857
```
```  3858
```
```  3859 subsubsection \<open>Logarithmic series\<close>
```
```  3860
```
```  3861 lemma Abs_fps_if_0:
```
```  3862   "Abs_fps (\<lambda>n. if n = 0 then (v::'a::ring_1) else f n) =
```
```  3863     fps_const v + fps_X * Abs_fps (\<lambda>n. f (Suc n))"
```
```  3864   by (auto simp add: fps_eq_iff)
```
```  3865
```
```  3866 definition fps_ln :: "'a::field_char_0 \<Rightarrow> 'a fps"
```
```  3867   where "fps_ln c = fps_const (1/c) * Abs_fps (\<lambda>n. if n = 0 then 0 else (- 1) ^ (n - 1) / of_nat n)"
```
```  3868
```
```  3869 lemma fps_ln_deriv: "fps_deriv (fps_ln c) = fps_const (1/c) * inverse (1 + fps_X)"
```
```  3870   unfolding fps_inverse_fps_X_plus1
```
```  3871   by (simp add: fps_ln_def fps_eq_iff del: of_nat_Suc)
```
```  3872
```
```  3873 lemma fps_ln_nth: "fps_ln c \$ n = (if n = 0 then 0 else 1/c * ((- 1) ^ (n - 1) / of_nat n))"
```
```  3874   by (simp add: fps_ln_def field_simps)
```
```  3875
```
```  3876 lemma fps_ln_0 [simp]: "fps_ln c \$ 0 = 0" by (simp add: fps_ln_def)
```
```  3877
```
```  3878 lemma fps_ln_fps_exp_inv:
```
```  3879   fixes a :: "'a::field_char_0"
```
```  3880   assumes a: "a \<noteq> 0"
```
```  3881   shows "fps_ln a = fps_inv (fps_exp a - 1)"  (is "?l = ?r")
```
```  3882 proof -
```
```  3883   let ?b = "fps_exp a - 1"
```
```  3884   have b0: "?b \$ 0 = 0" by simp
```
```  3885   have b1: "?b \$ 1 \<noteq> 0" by (simp add: a)
```
```  3886   have "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) =
```
```  3887     (fps_const a * (fps_exp a - 1) + fps_const a) oo fps_inv (fps_exp a - 1)"
```
```  3888     by (simp add: field_simps)
```
```  3889   also have "\<dots> = fps_const a * (fps_X + 1)"
```
```  3890     apply (simp add: fps_compose_add_distrib fps_const_mult_apply_left[symmetric] fps_inv_right[OF b0 b1])
```
```  3891     apply (simp add: field_simps)
```
```  3892     done
```
```  3893   finally have eq: "fps_deriv (fps_exp a - 1) oo fps_inv (fps_exp a - 1) = fps_const a * (fps_X + 1)" .
```
```  3894   from fps_inv_deriv[OF b0 b1, unfolded eq]
```
```  3895   have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (fps_X + 1)"
```
```  3896     using a by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult)
```
```  3897   then have "fps_deriv ?l = fps_deriv ?r"
```
```  3898     by (simp add: fps_ln_deriv add.commute fps_divide_def divide_inverse)
```
```  3899   then show ?thesis unfolding fps_deriv_eq_iff
```
```  3900     by (simp add: fps_ln_nth fps_inv_def)
```
```  3901 qed
```
```  3902
```
```  3903 lemma fps_ln_mult_add:
```
```  3904   assumes c0: "c\<noteq>0"
```
```  3905     and d0: "d\<noteq>0"
```
```  3906   shows "fps_ln c + fps_ln d = fps_const (c+d) * fps_ln (c*d)"
```
```  3907   (is "?r = ?l")
```
```  3908 proof-
```
```  3909   from c0 d0 have eq: "1/c + 1/d = (c+d)/(c*d)" by (simp add: field_simps)
```
```  3910   have "fps_deriv ?r = fps_const (1/c + 1/d) * inverse (1 + fps_X)"
```
```  3911     by (simp add: fps_ln_deriv fps_const_add[symmetric] algebra_simps del: fps_const_add)
```
```  3912   also have "\<dots> = fps_deriv ?l"
```
```  3913     apply (simp add: fps_ln_deriv)
```
```  3914     apply (simp add: fps_eq_iff eq)
```
```  3915     done
```
```  3916   finally show ?thesis
```
```  3917     unfolding fps_deriv_eq_iff by simp
```
```  3918 qed
```
```  3919
```
```  3920 lemma fps_X_dvd_fps_ln [simp]: "fps_X dvd fps_ln c"
```
```  3921 proof -
```
```  3922   have "fps_ln c = fps_X * Abs_fps (\<lambda>n. (-1) ^ n / (of_nat (Suc n) * c))"
```
```  3923     by (intro fps_ext) (auto simp: fps_ln_def of_nat_diff)
```
```  3924   thus ?thesis by simp
```
```  3925 qed
```
```  3926
```
```  3927
```
```  3928 subsubsection \<open>Binomial series\<close>
```
```  3929
```
```  3930 definition "fps_binomial a = Abs_fps (\<lambda>n. a gchoose n)"
```
```  3931
```
```  3932 lemma fps_binomial_nth[simp]: "fps_binomial a \$ n = a gchoose n"
```
```  3933   by (simp add: fps_binomial_def)
```
```  3934
```
```  3935 lemma fps_binomial_ODE_unique:
```
```  3936   fixes c :: "'a::field_char_0"
```
```  3937   shows "fps_deriv a = (fps_const c * a) / (1 + fps_X) \<longleftrightarrow> a = fps_const (a\$0) * fps_binomial c"
```
```  3938   (is "?lhs \<longleftrightarrow> ?rhs")
```
```  3939 proof
```
```  3940   let ?da = "fps_deriv a"
```
```  3941   let ?x1 = "(1 + fps_X):: 'a fps"
```
```  3942   let ?l = "?x1 * ?da"
```
```  3943   let ?r = "fps_const c * a"
```
```  3944
```
```  3945   have eq: "?l = ?r \<longleftrightarrow> ?lhs"
```
```  3946   proof -
```
```  3947     have x10: "?x1 \$ 0 \<noteq> 0" by simp
```
```  3948     have "?l = ?r \<longleftrightarrow> inverse ?x1 * ?l = inverse ?x1 * ?r" by simp
```
```  3949     also have "\<dots> \<longleftrightarrow> ?da = (fps_const c * a) / ?x1"
```
```  3950       apply (simp only: fps_divide_def  mult.assoc[symmetric] inverse_mult_eq_1[OF x10])
```
```  3951       apply (simp add: field_simps)
```
```  3952       done
```
```  3953     finally show ?thesis .
```
```  3954   qed
```
```  3955
```
```  3956   show ?rhs if ?lhs
```
```  3957   proof -
```
```  3958     from eq that have h: "?l = ?r" ..
```
```  3959     have th0: "a\$ Suc n = ((c - of_nat n) / of_nat (Suc n)) * a \$n" for n
```
```  3960     proof -
```
```  3961       from h have "?l \$ n = ?r \$ n" by simp
```
```  3962       then show ?thesis
```
```  3963         apply (simp add: field_simps del: of_nat_Suc)
```
```  3964         apply (cases n)
```
```  3965         apply (simp_all add: field_simps del: of_nat_Suc)
```
```  3966         done
```
```  3967     qed
```
```  3968     have th1: "a \$ n = (c gchoose n) * a \$ 0" for n
```
```  3969     proof (induct n)
```
```  3970       case 0
```
```  3971       then show ?case by simp
```
```  3972     next
```
```  3973       case (Suc m)
```
```  3974       then show ?case
```
```  3975         unfolding th0
```
```  3976         apply (simp add: field_simps del: of_nat_Suc)
```
```  3977         unfolding mult.assoc[symmetric] gbinomial_mult_1
```
```  3978         apply (simp add: field_simps)
```
```  3979         done
```
```  3980     qed
```
```  3981     show ?thesis
```
```  3982       apply (simp add: fps_eq_iff)
```
```  3983       apply (subst th1)
```
```  3984       apply (simp add: field_simps)
```
```  3985       done
```
```  3986   qed
```
```  3987
```
```  3988   show ?lhs if ?rhs
```
```  3989   proof -
```
```  3990     have th00: "x * (a \$ 0 * y) = a \$ 0 * (x * y)" for x y
```
```  3991       by (simp add: mult.commute)
```
```  3992     have "?l = ?r"
```
```  3993       apply (subst \<open>?rhs\<close>)
```
```  3994       apply (subst (2) \<open>?rhs\<close>)
```
```  3995       apply (clarsimp simp add: fps_eq_iff field_simps)
```
```  3996       unfolding mult.assoc[symmetric] th00 gbinomial_mult_1
```
```  3997       apply (simp add: field_simps gbinomial_mult_1)
```
```  3998       done
```
```  3999     with eq show ?thesis ..
```
```  4000   qed
```
```  4001 qed
```
```  4002
```
```  4003 lemma fps_binomial_ODE_unique':
```
```  4004   "(fps_deriv a = fps_const c * a / (1 + fps_X) \<and> a \$ 0 = 1) \<longleftrightarrow> (a = fps_binomial c)"
```
```  4005   by (subst fps_binomial_ODE_unique) auto
```
```  4006
```
```  4007 lemma fps_binomial_deriv: "fps_deriv (fps_binomial c) = fps_const c * fps_binomial c / (1 + fps_X)"
```
```  4008 proof -
```
```  4009   let ?a = "fps_binomial c"
```
```  4010   have th0: "?a = fps_const (?a\$0) * ?a" by (simp)
```
```  4011   from iffD2[OF fps_binomial_ODE_unique, OF th0] show ?thesis .
```
```  4012 qed
```
```  4013
```
```  4014 lemma fps_binomial_add_mult: "fps_binomial (c+d) = fps_binomial c * fps_binomial d" (is "?l = ?r")
```
```  4015 proof -
```
```  4016   let ?P = "?r - ?l"
```
```  4017   let ?b = "fps_binomial"
```
```  4018   let ?db = "\<lambda>x. fps_deriv (?b x)"
```
```  4019   have "fps_deriv ?P = ?db c * ?b d + ?b c * ?db d - ?db (c + d)"  by simp
```
```  4020   also have "\<dots> = inverse (1 + fps_X) *
```
```  4021       (fps_const c * ?b c * ?b d + fps_const d * ?b c * ?b d - fps_const (c+d) * ?b (c + d))"
```
```  4022     unfolding fps_binomial_deriv
```
```  4023     by (simp add: fps_divide_def field_simps)
```
```  4024   also have "\<dots> = (fps_const (c + d)/ (1 + fps_X)) * ?P"
```
```  4025     by (simp add: field_simps fps_divide_unit fps_const_add[symmetric] del: fps_const_add)
```
```  4026   finally have th0: "fps_deriv ?P = fps_const (c+d) * ?P / (1 + fps_X)"
```
```  4027     by (simp add: fps_divide_def)
```
```  4028   have "?P = fps_const (?P\$0) * ?b (c + d)"
```
```  4029     unfolding fps_binomial_ODE_unique[symmetric]
```
```  4030     using th0 by simp
```
```  4031   then have "?P = 0" by (simp add: fps_mult_nth)
```
```  4032   then show ?thesis by simp
```
```  4033 qed
```
```  4034
```
```  4035 lemma fps_binomial_minus_one: "fps_binomial (- 1) = inverse (1 + fps_X)"
```
```  4036   (is "?l = inverse ?r")
```
```  4037 proof-
```
```  4038   have th: "?r\$0 \<noteq> 0" by simp
```
```  4039   have th': "fps_deriv (inverse ?r) = fps_const (- 1) * inverse ?r / (1 + fps_X)"
```
```  4040     by (simp add: fps_inverse_deriv[OF th] fps_divide_def
```
```  4041       power2_eq_square mult.commute fps_const_neg[symmetric] del: fps_const_neg)
```
```  4042   have eq: "inverse ?r \$ 0 = 1"
```
```  4043     by (simp add: fps_inverse_def)
```
```  4044   from iffD1[OF fps_binomial_ODE_unique[of "inverse (1 + fps_X)" "- 1"] th'] eq
```
```  4045   show ?thesis by (simp add: fps_inverse_def)
```
```  4046 qed
```
```  4047
```
```  4048 lemma fps_binomial_of_nat: "fps_binomial (of_nat n) = (1 + fps_X :: 'a :: field_char_0 fps) ^ n"
```
```  4049 proof (cases "n = 0")
```
```  4050   case [simp]: True
```
```  4051   have "fps_deriv ((1 + fps_X) ^ n :: 'a fps) = 0" by simp
```
```  4052   also have "\<dots> = fps_const (of_nat n) * (1 + fps_X) ^ n / (1 + fps_X)" by (simp add: fps_binomial_def)
```
```  4053   finally show ?thesis by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) simp_all
```
```  4054 next
```
```  4055   case False
```
```  4056   have "fps_deriv ((1 + fps_X) ^ n :: 'a fps) = fps_const (of_nat n) * (1 + fps_X) ^ (n - 1)"
```
```  4057     by (simp add: fps_deriv_power)
```
```  4058   also have "(1 + fps_X :: 'a fps) \$ 0 \<noteq> 0" by simp
```
```  4059   hence "(1 + fps_X :: 'a fps) \<noteq> 0" by (intro notI) (simp only: , simp)
```
```  4060   with False have "(1 + fps_X :: 'a fps) ^ (n - 1) = (1 + fps_X) ^ n / (1 + fps_X)"
```
```  4061     by (cases n) (simp_all )
```
```  4062   also have "fps_const (of_nat n :: 'a) * ((1 + fps_X) ^ n / (1 + fps_X)) =
```
```  4063                fps_const (of_nat n) * (1 + fps_X) ^ n / (1 + fps_X)"
```
```  4064     by (simp add: unit_div_mult_swap)
```
```  4065   finally show ?thesis
```
```  4066     by (subst sym, subst fps_binomial_ODE_unique' [symmetric]) (simp_all add: fps_power_nth)
```
```  4067 qed
```
```  4068
```
```  4069 lemma fps_binomial_0 [simp]: "fps_binomial 0 = 1"
```
```  4070   using fps_binomial_of_nat[of 0] by simp
```
```  4071
```
```  4072 lemma fps_binomial_power: "fps_binomial a ^ n = fps_binomial (of_nat n * a)"
```
```  4073   by (induction n) (simp_all add: fps_binomial_add_mult ring_distribs)
```
```  4074
```
```  4075 lemma fps_binomial_1: "fps_binomial 1 = 1 + fps_X"
```
```  4076   using fps_binomial_of_nat[of 1] by simp
```
```  4077
```
```  4078 lemma fps_binomial_minus_of_nat:
```
```  4079   "fps_binomial (- of_nat n) = inverse ((1 + fps_X :: 'a :: field_char_0 fps) ^ n)"
```
```  4080   by (rule sym, rule fps_inverse_unique)
```
```  4081      (simp add: fps_binomial_of_nat [symmetric] fps_binomial_add_mult [symmetric])
```
```  4082
```
```  4083 lemma one_minus_const_fps_X_power:
```
```  4084   "c \<noteq> 0 \<Longrightarrow> (1 - fps_const c * fps_X) ^ n =
```
```  4085      fps_compose (fps_binomial (of_nat n)) (-fps_const c * fps_X)"
```
```  4086   by (subst fps_binomial_of_nat)
```
```  4087      (simp add: fps_compose_power [symmetric] fps_compose_add_distrib fps_const_neg [symmetric]
```
```  4088            del: fps_const_neg)
```
```  4089
```
```  4090 lemma one_minus_fps_X_const_neg_power:
```
```  4091   "inverse ((1 - fps_const c * fps_X) ^ n) =
```
```  4092        fps_compose (fps_binomial (-of_nat n)) (-fps_const c * fps_X)"
```
```  4093 proof (cases "c = 0")
```
```  4094   case False
```
```  4095   thus ?thesis
```
```  4096   by (subst fps_binomial_minus_of_nat)
```
```  4097      (simp add: fps_compose_power [symmetric] fps_inverse_compose fps_compose_add_distrib
```
```  4098                 fps_const_neg [symmetric] del: fps_const_neg)
```
```  4099 qed simp
```
```  4100
```
```  4101 lemma fps_X_plus_const_power:
```
```  4102   "c \<noteq> 0 \<Longrightarrow> (fps_X + fps_const c) ^ n =
```
```  4103      fps_const (c^n) * fps_compose (fps_binomial (of_nat n)) (fps_const (inverse c) * fps_X)"
```
```  4104   by (subst fps_binomial_of_nat)
```
```  4105      (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib
```
```  4106                 fps_const_power [symmetric] power_mult_distrib [symmetric]
```
```  4107                 algebra_simps inverse_mult_eq_1' del: fps_const_power)
```
```  4108
```
```  4109 lemma fps_X_plus_const_neg_power:
```
```  4110   "c \<noteq> 0 \<Longrightarrow> inverse ((fps_X + fps_const c) ^ n) =
```
```  4111      fps_const (inverse c^n) * fps_compose (fps_binomial (-of_nat n)) (fps_const (inverse c) * fps_X)"
```
```  4112   by (subst fps_binomial_minus_of_nat)
```
```  4113      (simp add: fps_compose_power [symmetric] fps_binomial_of_nat fps_compose_add_distrib
```
```  4114                 fps_const_power [symmetric] power_mult_distrib [symmetric] fps_inverse_compose
```
```  4115                 algebra_simps fps_const_inverse [symmetric] fps_inverse_mult [symmetric]
```
```  4116                 fps_inverse_power [symmetric] inverse_mult_eq_1'
```
```  4117            del: fps_const_power)
```
```  4118
```
```  4119
```
```  4120 lemma one_minus_const_fps_X_neg_power':
```
```  4121   "n > 0 \<Longrightarrow> inverse ((1 - fps_const (c :: 'a :: field_char_0) * fps_X) ^ n) =
```
```  4122        Abs_fps (\<lambda>k. of_nat ((n + k - 1) choose k) * c^k)"
```
```  4123   apply (rule fps_ext)
```
```  4124   apply (subst one_minus_fps_X_const_neg_power, subst fps_const_neg, subst fps_compose_linear)
```
```  4125   apply (simp add: power_mult_distrib [symmetric] mult.assoc [symmetric]
```
```  4126                    gbinomial_minus binomial_gbinomial of_nat_diff)
```
```  4127   done
```
```  4128
```
```  4129 text \<open>Vandermonde's Identity as a consequence.\<close>
```
```  4130 lemma gbinomial_Vandermonde:
```
```  4131   "sum (\<lambda>k. (a gchoose k) * (b gchoose (n - k))) {0..n} = (a + b) gchoose n"
```
```  4132 proof -
```
```  4133   let ?ba = "fps_binomial a"
```
```  4134   let ?bb = "fps_binomial b"
```
```  4135   let ?bab = "fps_binomial (a + b)"
```
```  4136   from fps_binomial_add_mult[of a b] have "?bab \$ n = (?ba * ?bb)\$n" by simp
```
```  4137   then show ?thesis by (simp add: fps_mult_nth)
```
```  4138 qed
```
```  4139
```
```  4140 lemma binomial_Vandermonde:
```
```  4141   "sum (\<lambda>k. (a choose k) * (b choose (n - k))) {0..n} = (a + b) choose n"
```
```  4142   using gbinomial_Vandermonde[of "(of_nat a)" "of_nat b" n]
```
```  4143   by (simp only: binomial_gbinomial[symmetric] of_nat_mult[symmetric]
```
```  4144                  of_nat_sum[symmetric] of_nat_add[symmetric] of_nat_eq_iff)
```
```  4145
```
```  4146 lemma binomial_Vandermonde_same: "sum (\<lambda>k. (n choose k)\<^sup>2) {0..n} = (2 * n) choose n"
```
```  4147   using binomial_Vandermonde[of n n n, symmetric]
```
```  4148   unfolding mult_2
```
```  4149   apply (simp add: power2_eq_square)
```
```  4150   apply (rule sum.cong)
```
```  4151   apply (auto intro:  binomial_symmetric)
```
```  4152   done
```
```  4153
```
```  4154 lemma Vandermonde_pochhammer_lemma:
```
```  4155   fixes a :: "'a::field_char_0"
```
```  4156   assumes b: "\<forall>j\<in>{0 ..<n}. b \<noteq> of_nat j"
```
```  4157   shows "sum (\<lambda>k. (pochhammer (- a) k * pochhammer (- (of_nat n)) k) /
```
```  4158       (of_nat (fact k) * pochhammer (b - of_nat n + 1) k)) {0..n} =
```
```  4159     pochhammer (- (a + b)) n / pochhammer (- b) n"
```
```  4160   (is "?l = ?r")
```
```  4161 proof -
```
```  4162   let ?m1 = "\<lambda>m. (- 1 :: 'a) ^ m"
```
```  4163   let ?f = "\<lambda>m. of_nat (fact m)"
```
```  4164   let ?p = "\<lambda>(x::'a). pochhammer (- x)"
```
```  4165   from b have bn0: "?p b n \<noteq> 0"
```
```  4166     unfolding pochhammer_eq_0_iff by simp
```
```  4167   have th00:
```
```  4168     "b gchoose (n - k) =
```
```  4169         (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
```
```  4170       (is ?gchoose)
```
```  4171     "pochhammer (1 + b - of_nat n) k \<noteq> 0"
```
```  4172       (is ?pochhammer)
```
```  4173     if kn: "k \<in> {0..n}" for k
```
```  4174   proof -
```
```  4175     from kn have "k \<le> n" by simp
```
```  4176     have nz: "pochhammer (1 + b - of_nat n) n \<noteq> 0"
```
```  4177     proof
```
```  4178       assume "pochhammer (1 + b - of_nat n) n = 0"
```
```  4179       then have c: "pochhammer (b - of_nat n + 1) n = 0"
```
```  4180         by (simp add: algebra_simps)
```
```  4181       then obtain j where j: "j < n" "b - of_nat n + 1 = - of_nat j"
```
```  4182         unfolding pochhammer_eq_0_iff by blast
```
```  4183       from j have "b = of_nat n - of_nat j - of_nat 1"
```
```  4184         by (simp add: algebra_simps)
```
```  4185       then have "b = of_nat (n - j - 1)"
```
```  4186         using j kn by (simp add: of_nat_diff)
```
```  4187       with b show False using j by auto
```
```  4188     qed
```
```  4189
```
```  4190     from nz kn [simplified] have nz': "pochhammer (1 + b - of_nat n) k \<noteq> 0"
```
```  4191       by (rule pochhammer_neq_0_mono)
```
```  4192
```
```  4193     consider "k = 0 \<or> n = 0" | "k \<noteq> 0" "n \<noteq> 0"
```
```  4194       by blast
```
```  4195     then have "b gchoose (n - k) =
```
```  4196       (?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k)"
```
```  4197     proof cases
```
```  4198       case 1
```
```  4199       then show ?thesis
```
```  4200         using kn by (cases "k = 0") (simp_all add: gbinomial_pochhammer)
```
```  4201     next
```
```  4202       case neq: 2
```
```  4203       then obtain m where m: "n = Suc m"
```
```  4204         by (cases n) auto
```
```  4205       from neq(1) obtain h where h: "k = Suc h"
```
```  4206         by (cases k) auto
```
```  4207       show ?thesis
```
```  4208       proof (cases "k = n")
```
```  4209         case True
```
```  4210         then show ?thesis
```
```  4211           using pochhammer_minus'[where k=k and b=b]
```
```  4212           apply (simp add: pochhammer_same)
```
```  4213           using bn0
```
```  4214           apply (simp add: field_simps power_add[symmetric])
```
```  4215           done
```
```  4216       next
```
```  4217         case False
```
```  4218         with kn have kn': "k < n"
```
```  4219           by simp
```
```  4220         have m1nk: "?m1 n = prod (\<lambda>i. - 1) {..m}" "?m1 k = prod (\<lambda>i. - 1) {0..h}"
```
```  4221           by (simp_all add: prod_constant m h)
```
```  4222         have bnz0: "pochhammer (b - of_nat n + 1) k \<noteq> 0"
```
```  4223           using bn0 kn
```
```  4224           unfolding pochhammer_eq_0_iff
```
```  4225           apply auto
```
```  4226           apply (erule_tac x= "n - ka - 1" in allE)
```
```  4227           apply (auto simp add: algebra_simps of_nat_diff)
```
```  4228           done
```
```  4229         have eq1: "prod (\<lambda>k. (1::'a) + of_nat m - of_nat k) {..h} =
```
```  4230           prod of_nat {Suc (m - h) .. Suc m}"
```
```  4231           using kn' h m
```
```  4232           by (intro prod.reindex_bij_witness[where i="\<lambda>k. Suc m - k" and j="\<lambda>k. Suc m - k"])
```
```  4233              (auto simp: of_nat_diff)
```
```  4234         have th1: "(?m1 k * ?p (of_nat n) k) / ?f n = 1 / of_nat(fact (n - k))"
```
```  4235           apply (simp add: pochhammer_minus field_simps)
```
```  4236           using \<open>k \<le> n\<close> apply (simp add: fact_split [of k n])
```
```  4237           apply (simp add: pochhammer_prod)
```
```  4238           using prod.atLeast_lessThan_shift_bounds [where ?'a = 'a, of "\<lambda>i. 1 + of_nat i" 0 "n - k" k]
```
```  4239           apply (auto simp add: of_nat_diff field_simps)
```
```  4240           done
```
```  4241         have th20: "?m1 n * ?p b n = prod (\<lambda>i. b - of_nat i) {0..m}"
```
```  4242           apply (simp add: pochhammer_minus field_simps m)
```
```  4243           apply (auto simp add: pochhammer_prod_rev of_nat_diff prod.atLeast_Suc_atMost_Suc_shift)
```
```  4244           done
```
```  4245         have th21:"pochhammer (b - of_nat n + 1) k = prod (\<lambda>i. b - of_nat i) {n - k .. n - 1}"
```
```  4246           using kn apply (simp add: pochhammer_prod_rev m h prod.atLeast_Suc_atMost_Suc_shift)
```
```  4247           using prod.atLeast_atMost_shift_0 [of "m - h" m, where ?'a = 'a]
```
```  4248           apply (auto simp add: of_nat_diff field_simps)
```
```  4249           done
```
```  4250         have "?m1 n * ?p b n =
```
```  4251           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1} * pochhammer (b - of_nat n + 1) k"
```
```  4252           using kn' m h unfolding th20 th21 apply simp
```
```  4253           apply (subst prod.union_disjoint [symmetric])
```
```  4254           apply auto
```
```  4255           apply (rule prod.cong)
```
```  4256           apply auto
```
```  4257           done
```
```  4258         then have th2: "(?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k =
```
```  4259           prod (\<lambda>i. b - of_nat i) {0.. n - k - 1}"
```
```  4260           using nz' by (simp add: field_simps)
```
```  4261         have "(?m1 n * ?p b n * ?m1 k * ?p (of_nat n) k) / (?f n * pochhammer (b - of_nat n + 1) k) =
```
```  4262           ((?m1 k * ?p (of_nat n) k) / ?f n) * ((?m1 n * ?p b n)/pochhammer (b - of_nat n + 1) k)"
```
```  4263           using bnz0
```
```  4264           by (simp add: field_simps)
```
```  4265         also have "\<dots> = b gchoose (n - k)"
```
```  4266           unfolding th1 th2
```
```  4267           using kn' m h
```
```  4268           apply (simp add: field_simps gbinomial_mult_fact)
```
```  4269           apply (rule prod.cong)
```
```  4270           apply auto
```
```  4271           done
```
```  4272         finally show ?thesis by simp
```
```  4273       qed
```
```  4274     qed
```
```  4275     then show ?gchoose and ?pochhammer
```
```  4276       apply (cases "n = 0")
```
```  4277       using nz'
```
```  4278       apply auto
```
```  4279       done
```
```  4280   qed
```
```  4281   have "?r = ((a + b) gchoose n) * (of_nat (fact n) / (?m1 n * pochhammer (- b) n))"
```
```  4282     unfolding gbinomial_pochhammer
```
```  4283     using bn0 by (auto simp add: field_simps)
```
```  4284   also have "\<dots> = ?l"
```
```  4285     unfolding gbinomial_Vandermonde[symmetric]
```
```  4286     apply (simp add: th00)
```
```  4287     unfolding gbinomial_pochhammer
```
```  4288     using bn0
```
```  4289     apply (simp add: sum_distrib_right sum_distrib_left field_simps)
```
```  4290     done
```
```  4291   finally show ?thesis by simp
```
```  4292 qed
```
```  4293
```
```  4294 lemma Vandermonde_pochhammer:
```
```  4295   fixes a :: "'a::field_char_0"
```
```  4296   assumes c: "\<forall>i \<in> {0..< n}. c \<noteq> - of_nat i"
```
```  4297   shows "sum (\<lambda>k. (pochhammer a k * pochhammer (- (of_nat n)) k) /
```
```  4298     (of_nat (fact k) * pochhammer c k)) {0..n} = pochhammer (c - a) n / pochhammer c n"
```
```  4299 proof -
```
```  4300   let ?a = "- a"
```
```  4301   let ?b = "c + of_nat n - 1"
```
```  4302   have h: "\<forall> j \<in>{0..< n}. ?b \<noteq> of_nat j"
```
```  4303     using c
```
```  4304     apply (auto simp add: algebra_simps of_nat_diff)
```
```  4305     apply (erule_tac x = "n - j - 1" in ballE)
```
```  4306     apply (auto simp add: of_nat_diff algebra_simps)
```
```  4307     done
```
```  4308   have th0: "pochhammer (- (?a + ?b)) n = (- 1)^n * pochhammer (c - a) n"
```
```  4309     unfolding pochhammer_minus
```
```  4310     by (simp add: algebra_simps)
```
```  4311   have th1: "pochhammer (- ?b) n = (- 1)^n * pochhammer c n"
```
```  4312     unfolding pochhammer_minus
```
```  4313     by simp
```
```  4314   have nz: "pochhammer c n \<noteq> 0" using c
```
```  4315     by (simp add: pochhammer_eq_0_iff)
```
```  4316   from Vandermonde_pochhammer_lemma[where a = "?a" and b="?b" and n=n, OF h, unfolded th0 th1]
```
```  4317   show ?thesis
```
```  4318     using nz by (simp add: field_simps sum_distrib_left)
```
```  4319 qed
```
```  4320
```
```  4321
```
```  4322 subsubsection \<open>Formal trigonometric functions\<close>
```
```  4323
```
```  4324 definition "fps_sin (c::'a::field_char_0) =
```
```  4325   Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))"
```
```  4326
```
```  4327 definition "fps_cos (c::'a::field_char_0) =
```
```  4328   Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)"
```
```  4329
```
```  4330 lemma fps_sin_0 [simp]: "fps_sin 0 = 0"
```
```  4331   by (intro fps_ext) (auto simp: fps_sin_def elim!: oddE)
```
```  4332
```
```  4333 lemma fps_cos_0 [simp]: "fps_cos 0 = 1"
```
```  4334   by (intro fps_ext) (auto simp: fps_cos_def)
```
```  4335
```
```  4336 lemma fps_sin_deriv:
```
```  4337   "fps_deriv (fps_sin c) = fps_const c * fps_cos c"
```
```  4338   (is "?lhs = ?rhs")
```
```  4339 proof (rule fps_ext)
```
```  4340   fix n :: nat
```
```  4341   show "?lhs \$ n = ?rhs \$ n"
```
```  4342   proof (cases "even n")
```
```  4343     case True
```
```  4344     have "?lhs\$n = of_nat (n+1) * (fps_sin c \$ (n+1))" by simp
```
```  4345     also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))"
```
```  4346       using True by (simp add: fps_sin_def)
```
```  4347     also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
```
```  4348       unfolding fact_Suc of_nat_mult
```
```  4349       by (simp add: field_simps del: of_nat_add of_nat_Suc)
```
```  4350     also have "\<dots> = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)"
```
```  4351       by (simp add: field_simps del: of_nat_add of_nat_Suc)
```
```  4352     finally show ?thesis
```
```  4353       using True by (simp add: fps_cos_def field_simps)
```
```  4354   next
```
```  4355     case False
```
```  4356     then show ?thesis
```
```  4357       by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
```
```  4358   qed
```
```  4359 qed
```
```  4360
```
```  4361 lemma fps_cos_deriv: "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)"
```
```  4362   (is "?lhs = ?rhs")
```
```  4363 proof (rule fps_ext)
```
```  4364   have th0: "- ((- 1::'a) ^ n) = (- 1)^Suc n" for n
```
```  4365     by simp
```
```  4366   show "?lhs \$ n = ?rhs \$ n" for n
```
```  4367   proof (cases "even n")
```
```  4368     case False
```
```  4369     then have n0: "n \<noteq> 0" by presburger
```
```  4370     from False have th1: "Suc ((n - 1) div 2) = Suc n div 2"
```
```  4371       by (cases n) simp_all
```
```  4372     have "?lhs\$n = of_nat (n+1) * (fps_cos c \$ (n+1))" by simp
```
```  4373     also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))"
```
```  4374       using False by (simp add: fps_cos_def)
```
```  4375     also have "\<dots> = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))"
```
```  4376       unfolding fact_Suc of_nat_mult
```
```  4377       by (simp add: field_simps del: of_nat_add of_nat_Suc)
```
```  4378     also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)"
```
```  4379       by (simp add: field_simps del: of_nat_add of_nat_Suc)
```
```  4380     also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)"
```
```  4381       unfolding th0 unfolding th1 by simp
```
```  4382     finally show ?thesis
```
```  4383       using False by (simp add: fps_sin_def field_simps)
```
```  4384   next
```
```  4385     case True
```
```  4386     then show ?thesis
```
```  4387       by (simp_all add: fps_deriv_def fps_sin_def fps_cos_def)
```
```  4388   qed
```
```  4389 qed
```
```  4390
```
```  4391 lemma fps_sin_cos_sum_of_squares: "(fps_cos c)\<^sup>2 + (fps_sin c)\<^sup>2 = 1"
```
```  4392   (is "?lhs = _")
```
```  4393 proof -
```
```  4394   have "fps_deriv ?lhs = 0"
```
```  4395     apply (simp add:  fps_deriv_power fps_sin_deriv fps_cos_deriv)
```
```  4396     apply (simp add: field_simps fps_const_neg[symmetric] del: fps_const_neg)
```
```  4397     done
```
```  4398   then have "?lhs = fps_const (?lhs \$ 0)"
```
```  4399     unfolding fps_deriv_eq_0_iff .
```
```  4400   also have "\<dots> = 1"
```
```  4401     by (auto simp add: fps_eq_iff numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def)
```
```  4402   finally show ?thesis .
```
```  4403 qed
```
```  4404
```
```  4405 lemma fps_sin_nth_0 [simp]: "fps_sin c \$ 0 = 0"
```
```  4406   unfolding fps_sin_def by simp
```
```  4407
```
```  4408 lemma fps_sin_nth_1 [simp]: "fps_sin c \$ 1 = c"
```
```  4409   unfolding fps_sin_def by simp
```
```  4410
```
```  4411 lemma fps_sin_nth_add_2:
```
```  4412     "fps_sin c \$ (n + 2) = - (c * c * fps_sin c \$ n / (of_nat (n + 1) * of_nat (n + 2)))"
```
```  4413   unfolding fps_sin_def
```
```  4414   apply (cases n)
```
```  4415   apply simp
```
```  4416   apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq del: of_nat_Suc fact_Suc)
```
```  4417   apply simp
```
```  4418   done
```
```  4419
```
```  4420 lemma fps_cos_nth_0 [simp]: "fps_cos c \$ 0 = 1"
```
```  4421   unfolding fps_cos_def by simp
```
```  4422
```
```  4423 lemma fps_cos_nth_1 [simp]: "fps_cos c \$ 1 = 0"
```
```  4424   unfolding fps_cos_def by simp
```
```  4425
```
```  4426 lemma fps_cos_nth_add_2:
```
```  4427   "fps_cos c \$ (n + 2) = - (c * c * fps_cos c \$ n / (of_nat (n + 1) * of_nat (n + 2)))"
```
```  4428   unfolding fps_cos_def
```
```  4429   apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq del: of_nat_Suc fact_Suc)
```
```  4430   apply simp
```
```  4431   done
```
```  4432
```
```  4433 lemma nat_induct2: "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P (n::nat)"
```
```  4434   unfolding One_nat_def numeral_2_eq_2
```
```  4435   apply (induct n rule: nat_less_induct)
```
```  4436   apply (case_tac n)
```
```  4437   apply simp
```
```  4438   apply (rename_tac m)
```
```  4439   apply (case_tac m)
```
```  4440   apply simp
```
```  4441   apply (rename_tac k)
```
```  4442   apply (case_tac k)
```
```  4443   apply simp_all
```
```  4444   done
```
```  4445
```
```  4446 lemma nat_add_1_add_1: "(n::nat) + 1 + 1 = n + 2"
```
```  4447   by simp
```
```  4448
```
```  4449 lemma eq_fps_sin:
```
```  4450   assumes 0: "a \$ 0 = 0"
```
```  4451     and 1: "a \$ 1 = c"
```
```  4452     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
```
```  4453   shows "a = fps_sin c"
```
```  4454   apply (rule fps_ext)
```
```  4455   apply (induct_tac n rule: nat_induct2)
```
```  4456   apply (simp add: 0)
```
```  4457   apply (simp add: 1 del: One_nat_def)
```
```  4458   apply (rename_tac m, cut_tac f="\<lambda>a. a \$ m" in arg_cong [OF 2])
```
```  4459   apply (simp add: nat_add_1_add_1 fps_sin_nth_add_2
```
```  4460               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
```
```  4461   apply (subst minus_divide_left)
```
```  4462   apply (subst nonzero_eq_divide_eq)
```
```  4463   apply (simp del: of_nat_add of_nat_Suc)
```
```  4464   apply (simp only: ac_simps)
```
```  4465   done
```
```  4466
```
```  4467 lemma eq_fps_cos:
```
```  4468   assumes 0: "a \$ 0 = 1"
```
```  4469     and 1: "a \$ 1 = 0"
```
```  4470     and 2: "fps_deriv (fps_deriv a) = - (fps_const c * fps_const c * a)"
```
```  4471   shows "a = fps_cos c"
```
```  4472   apply (rule fps_ext)
```
```  4473   apply (induct_tac n rule: nat_induct2)
```
```  4474   apply (simp add: 0)
```
```  4475   apply (simp add: 1 del: One_nat_def)
```
```  4476   apply (rename_tac m, cut_tac f="\<lambda>a. a \$ m" in arg_cong [OF 2])
```
```  4477   apply (simp add: nat_add_1_add_1 fps_cos_nth_add_2
```
```  4478               del: One_nat_def of_nat_Suc of_nat_add add_2_eq_Suc')
```
```  4479   apply (subst minus_divide_left)
```
```  4480   apply (subst nonzero_eq_divide_eq)
```
```  4481   apply (simp del: of_nat_add of_nat_Suc)
```
```  4482   apply (simp only: ac_simps)
```
```  4483   done
```
```  4484
```
```  4485 lemma mult_nth_0 [simp]: "(a * b) \$ 0 = a \$ 0 * b \$ 0"
```
```  4486   by (simp add: fps_mult_nth)
```
```  4487
```
```  4488 lemma mult_nth_1 [simp]: "(a * b) \$ 1 = a \$ 0 * b \$ 1 + a \$ 1 * b \$ 0"
```
```  4489   by (simp add: fps_mult_nth)
```
```  4490
```
```  4491 lemma fps_sin_add: "fps_sin (a + b) = fps_sin a * fps_cos b + fps_cos a * fps_sin b"
```
```  4492   apply (rule eq_fps_sin [symmetric], simp, simp del: One_nat_def)
```
```  4493   apply (simp del: fps_const_neg fps_const_add fps_const_mult
```
```  4494               add: fps_const_add [symmetric] fps_const_neg [symmetric]
```
```  4495                    fps_sin_deriv fps_cos_deriv algebra_simps)
```
```  4496   done
```
```  4497
```
```  4498 lemma fps_cos_add: "fps_cos (a + b) = fps_cos a * fps_cos b - fps_sin a * fps_sin b"
```
```  4499   apply (rule eq_fps_cos [symmetric], simp, simp del: One_nat_def)
```
```  4500   apply (simp del: fps_const_neg fps_const_add fps_const_mult
```
```  4501               add: fps_const_add [symmetric] fps_const_neg [symmetric]
```
```  4502                    fps_sin_deriv fps_cos_deriv algebra_simps)
```
```  4503   done
```
```  4504
```
```  4505 lemma fps_sin_even: "fps_sin (- c) = - fps_sin c"
```
```  4506   by (auto simp add: fps_eq_iff fps_sin_def)
```
```  4507
```
```  4508 lemma fps_cos_odd: "fps_cos (- c) = fps_cos c"
```
```  4509   by (auto simp add: fps_eq_iff fps_cos_def)
```
```  4510
```
```  4511 definition "fps_tan c = fps_sin c / fps_cos c"
```
```  4512
```
```  4513 lemma fps_tan_0 [simp]: "fps_tan 0 = 0"
```
```  4514   by (simp add: fps_tan_def)
```
```  4515
```
```  4516 lemma fps_tan_deriv: "fps_deriv (fps_tan c) = fps_const c / (fps_cos c)\<^sup>2"
```
```  4517 proof -
```
```  4518   have th0: "fps_cos c \$ 0 \<noteq> 0" by (simp add: fps_cos_def)
```
```  4519   from this have "fps_cos c \<noteq> 0" by (intro notI) simp
```
```  4520   hence "fps_deriv (fps_tan c) =
```
```  4521            fps_const c * (fps_cos c^2 + fps_sin c^2) / (fps_cos c^2)"
```
```  4522     by (simp add: fps_tan_def fps_divide_deriv power2_eq_square algebra_simps
```
```  4523                   fps_sin_deriv fps_cos_deriv fps_const_neg[symmetric] div_mult_swap
```
```  4524              del: fps_const_neg)
```
```  4525   also note fps_sin_cos_sum_of_squares
```
```  4526   finally show ?thesis by simp
```
```  4527 qed
```
```  4528
```
```  4529 text \<open>Connection to @{const "fps_exp"} over the complex numbers --- Euler and de Moivre.\<close>
```
```  4530
```
```  4531 lemma fps_exp_ii_sin_cos: "fps_exp (\<i> * c) = fps_cos c + fps_const \<i> * fps_sin c"
```
```  4532   (is "?l = ?r")
```
```  4533 proof -
```
```  4534   have "?l \$ n = ?r \$ n" for n
```
```  4535   proof (cases "even n")
```
```  4536     case True
```
```  4537     then obtain m where m: "n = 2 * m" ..
```
```  4538     show ?thesis
```
```  4539       by (simp add: m fps_sin_def fps_cos_def power_mult_distrib power_mult power_minus [of "c ^ 2"])
```
```  4540   next
```
```  4541     case False
```
```  4542     then obtain m where m: "n = 2 * m + 1" ..
```
```  4543     show ?thesis
```
```  4544       by (simp add: m fps_sin_def fps_cos_def power_mult_distrib
```
```  4545         power_mult power_minus [of "c ^ 2"])
```
```  4546   qed
```
```  4547   then show ?thesis
```
```  4548     by (simp add: fps_eq_iff)
```
```  4549 qed
```
```  4550
```
```  4551 lemma fps_exp_minus_ii_sin_cos: "fps_exp (- (\<i> * c)) = fps_cos c - fps_const \<i> * fps_sin c"
```
```  4552   unfolding minus_mult_right fps_exp_ii_sin_cos by (simp add: fps_sin_even fps_cos_odd)
```
```  4553
```
```  4554 lemma fps_const_minus: "fps_const (c::'a::group_add) - fps_const d = fps_const (c - d)"
```
```  4555   by (fact fps_const_sub)
```
```  4556
```
```  4557 lemma fps_of_int: "fps_const (of_int c) = of_int c"
```
```  4558   by (induction c) (simp_all add: fps_const_minus [symmetric] fps_of_nat fps_const_neg [symmetric]
```
```  4559                              del: fps_const_minus fps_const_neg)
```
```  4560
```
```  4561 lemma fps_deriv_of_int [simp]: "fps_deriv (of_int n) = 0"
```
```  4562   by (simp add: fps_of_int [symmetric])
```
```  4563
```
```  4564 lemma fps_numeral_fps_const: "numeral i = fps_const (numeral i :: 'a::comm_ring_1)"
```
```  4565   by (fact numeral_fps_const) (* FIfps_XME: duplicate *)
```
```  4566
```
```  4567 lemma fps_cos_fps_exp_ii: "fps_cos c = (fps_exp (\<i> * c) + fps_exp (- \<i> * c)) / fps_const 2"
```
```  4568 proof -
```
```  4569   have th: "fps_cos c + fps_cos c = fps_cos c * fps_const 2"
```
```  4570     by (simp add: numeral_fps_const)
```
```  4571   show ?thesis
```
```  4572     unfolding fps_exp_ii_sin_cos minus_mult_commute
```
```  4573     by (simp add: fps_sin_even fps_cos_odd numeral_fps_const fps_divide_unit fps_const_inverse th)
```
```  4574 qed
```
```  4575
```
```  4576 lemma fps_sin_fps_exp_ii: "fps_sin c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) / fps_const (2*\<i>)"
```
```  4577 proof -
```
```  4578   have th: "fps_const \<i> * fps_sin c + fps_const \<i> * fps_sin c = fps_sin c * fps_const (2 * \<i>)"
```
```  4579     by (simp add: fps_eq_iff numeral_fps_const)
```
```  4580   show ?thesis
```
```  4581     unfolding fps_exp_ii_sin_cos minus_mult_commute
```
```  4582     by (simp add: fps_sin_even fps_cos_odd fps_divide_unit fps_const_inverse th)
```
```  4583 qed
```
```  4584
```
```  4585 lemma fps_tan_fps_exp_ii:
```
```  4586   "fps_tan c = (fps_exp (\<i> * c) - fps_exp (- \<i> * c)) /
```
```  4587       (fps_const \<i> * (fps_exp (\<i> * c) + fps_exp (- \<i> * c)))"
```
```  4588   unfolding fps_tan_def fps_sin_fps_exp_ii fps_cos_fps_exp_ii mult_minus_left fps_exp_neg
```
```  4589   apply (simp add: fps_divide_unit fps_inverse_mult fps_const_mult[symmetric] fps_const_inverse del: fps_const_mult)
```
```  4590   apply simp
```
```  4591   done
```
```  4592
```
```  4593 lemma fps_demoivre:
```
```  4594   "(fps_cos a + fps_const \<i> * fps_sin a)^n =
```
```  4595     fps_cos (of_nat n * a) + fps_const \<i> * fps_sin (of_nat n * a)"
```
```  4596   unfolding fps_exp_ii_sin_cos[symmetric] fps_exp_power_mult
```
```  4597   by (simp add: ac_simps)
```
```  4598
```
```  4599
```
```  4600 subsection \<open>Hypergeometric series\<close>
```
```  4601
```
```  4602 definition "fps_hypergeo as bs (c::'a::{field_char_0,field}) =
```
```  4603   Abs_fps (\<lambda>n. (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) /
```
```  4604     (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n)))"
```
```  4605
```
```  4606 lemma fps_hypergeo_nth[simp]: "fps_hypergeo as bs c \$ n =
```
```  4607   (foldl (\<lambda>r a. r* pochhammer a n) 1 as * c^n) /
```
```  4608     (foldl (\<lambda>r b. r * pochhammer b n) 1 bs * of_nat (fact n))"
```
```  4609   by (simp add: fps_hypergeo_def)
```
```  4610
```
```  4611 lemma foldl_mult_start:
```
```  4612   fixes v :: "'a::comm_ring_1"
```
```  4613   shows "foldl (\<lambda>r x. r * f x) v as * x = foldl (\<lambda>r x. r * f x) (v * x) as "
```
```  4614   by (induct as arbitrary: x v) (auto simp add: algebra_simps)
```
```  4615
```
```  4616 lemma foldr_mult_foldl:
```
```  4617   fixes v :: "'a::comm_ring_1"
```
```  4618   shows "foldr (\<lambda>x r. r * f x) as v = foldl (\<lambda>r x. r * f x) v as"
```
```  4619   by (induct as arbitrary: v) (auto simp add: foldl_mult_start)
```
```  4620
```
```  4621 lemma fps_hypergeo_nth_alt:
```
```  4622   "fps_hypergeo as bs c \$ n = foldr (\<lambda>a r. r * pochhammer a n) as (c ^ n) /
```
```  4623     foldr (\<lambda>b r. r * pochhammer b n) bs (of_nat (fact n))"
```
```  4624   by (simp add: foldl_mult_start foldr_mult_foldl)
```
```  4625
```
```  4626 lemma fps_hypergeo_fps_exp[simp]: "fps_hypergeo [] [] c = fps_exp c"
```
```  4627   by (simp add: fps_eq_iff)
```
```  4628
```
```  4629 lemma fps_hypergeo_1_0[simp]: "fps_hypergeo [1] [] c = 1/(1 - fps_const c * fps_X)"
```
```  4630 proof -
```
```  4631   let ?a = "(Abs_fps (\<lambda>n. 1)) oo (fps_const c * fps_X)"
```
```  4632   have th0: "(fps_const c * fps_X) \$ 0 = 0" by simp
```
```  4633   show ?thesis unfolding gp[OF th0, symmetric]
```
```  4634     by (auto simp add: fps_eq_iff pochhammer_fact[symmetric]
```
```  4635       fps_compose_nth power_mult_distrib cond_value_iff sum.delta' cong del: if_weak_cong)
```
```  4636 qed
```
```  4637
```
```  4638 lemma fps_hypergeo_B[simp]: "fps_hypergeo [-a] [] (- 1) = fps_binomial a"
```
```  4639   by (simp add: fps_eq_iff gbinomial_pochhammer algebra_simps)
```
```  4640
```
```  4641 lemma fps_hypergeo_0[simp]: "fps_hypergeo as bs c \$ 0 = 1"
```
```  4642   apply simp
```
```  4643   apply (subgoal_tac "\<forall>as. foldl (\<lambda>(r::'a) (a::'a). r) 1 as = 1")
```
```  4644   apply auto
```
```  4645   apply (induct_tac as)
```
```  4646   apply auto
```
```  4647   done
```
```  4648
```
```  4649 lemma foldl_prod_prod:
```
```  4650   "foldl (\<lambda>(r::'b::comm_ring_1) (x::'a::comm_ring_1). r * f x) v as * foldl (\<lambda>r x. r * g x) w as =
```
```  4651     foldl (\<lambda>r x. r * f x * g x) (v * w) as"
```
```  4652   by (induct as arbitrary: v w) (auto simp add: algebra_simps)
```
```  4653
```
```  4654
```
```  4655 lemma fps_hypergeo_rec:
```
```  4656   "fps_hypergeo as bs c \$ Suc n = ((foldl (\<lambda>r a. r* (a + of_nat n)) c as) /
```
```  4657     (foldl (\<lambda>r b. r * (b + of_nat n)) (of_nat (Suc n)) bs )) * fps_hypergeo as bs c \$ n"
```
```  4658   apply (simp del: of_nat_Suc of_nat_add fact_Suc)
```
```  4659   apply (simp add: foldl_mult_start del: fact_Suc of_nat_Suc)
```
```  4660   unfolding foldl_prod_prod[unfolded foldl_mult_start] pochhammer_Suc
```
```  4661   apply (simp add: algebra_simps)
```
```  4662   done
```
```  4663
```
```  4664 lemma fps_XD_nth[simp]: "fps_XD a \$ n = (if n = 0 then 0 else of_nat n * a\$n)"
```
```  4665   by (simp add: fps_XD_def)
```
```  4666
```
```  4667 lemma fps_XD_0th[simp]: "fps_XD a \$ 0 = 0"
```
```  4668   by simp
```
```  4669 lemma fps_XD_Suc[simp]:" fps_XD a \$ Suc n = of_nat (Suc n) * a \$ Suc n"
```
```  4670   by simp
```
```  4671
```
```  4672 definition "fps_XDp c a = fps_XD a + fps_const c * a"
```
```  4673
```
```  4674 lemma fps_XDp_nth[simp]: "fps_XDp c a \$ n = (c + of_nat n) * a\$n"
```
```  4675   by (simp add: fps_XDp_def algebra_simps)
```
```  4676
```
```  4677 lemma fps_XDp_commute: "fps_XDp b \<circ> fps_XDp (c::'a::comm_ring_1) = fps_XDp c \<circ> fps_XDp b"
```
```  4678   by (auto simp add: fps_XDp_def fun_eq_iff fps_eq_iff algebra_simps)
```
```  4679
```
```  4680 lemma fps_XDp0 [simp]: "fps_XDp 0 = fps_XD"
```
```  4681   by (simp add: fun_eq_iff fps_eq_iff)
```
```  4682
```
```  4683 lemma fps_XDp_fps_integral [simp]: "fps_XDp 0 (fps_integral a c) = fps_X * a"
```
```  4684   by (simp add: fps_eq_iff fps_integral_def)
```
```  4685
```
```  4686 lemma fps_hypergeo_minus_nat:
```
```  4687   "fps_hypergeo [- of_nat n] [- of_nat (n + m)] (c::'a::{field_char_0,field}) \$ k =
```
```  4688     (if k \<le> n then
```
```  4689       pochhammer (- of_nat n) k * c ^ k / (pochhammer (- of_nat (n + m)) k * of_nat (fact k))
```
```  4690      else 0)"
```
```  4691   "fps_hypergeo [- of_nat m] [- of_nat (m + n)] (c::'a::{field_char_0,field}) \$ k =
```
```  4692     (if k \<le> m then
```
```  4693       pochhammer (- of_nat m) k * c ^ k / (pochhammer (- of_nat (m + n)) k * of_nat (fact k))
```
```  4694      else 0)"
```
```  4695   by (auto simp add: pochhammer_eq_0_iff)
```
```  4696
```
```  4697 lemma sum_eq_if: "sum f {(n::nat) .. m} = (if m < n then 0 else f n + sum f {n+1 .. m})"
```
```  4698   apply simp
```
```  4699   apply (subst sum.insert[symmetric])
```
```  4700   apply (auto simp add: not_less sum_head_Suc)
```
```  4701   done
```
```  4702
```
```  4703 lemma pochhammer_rec_if: "pochhammer a n = (if n = 0 then 1 else a * pochhammer (a + 1) (n - 1))"
```
```  4704   by (cases n) (simp_all add: pochhammer_rec)
```
```  4705
```
```  4706 lemma fps_XDp_foldr_nth [simp]: "foldr (\<lambda>c r. fps_XDp c \<circ> r) cs (\<lambda>c. fps_XDp c a) c0 \$ n =
```
```  4707     foldr (\<lambda>c r. (c + of_nat n) * r) cs (c0 + of_nat n) * a\$n"
```
```  4708   by (induct cs arbitrary: c0) (auto simp add: algebra_simps)
```
```  4709
```
```  4710 lemma genric_fps_XDp_foldr_nth:
```
```  4711   assumes f: "\<forall>n c a. f c a \$ n = (of_nat n + k c) * a\$n"
```
```  4712   shows "foldr (\<lambda>c r. f c \<circ> r) cs (\<lambda>c. g c a) c0 \$ n =
```
```  4713     foldr (\<lambda>c r. (k c + of_nat n) * r) cs (g c0 a \$ n)"
```
```  4714   by (induct cs arbitrary: c0) (auto simp add: algebra_simps f)
```
```  4715
```
```  4716 lemma dist_less_imp_nth_equal:
```
```  4717   assumes "dist f g < inverse (2 ^ i)"
```
```  4718     and"j \<le> i"
```
```  4719   shows "f \$ j = g \$ j"
```
```  4720 proof (rule ccontr)
```
```  4721   assume "f \$ j \<noteq> g \$ j"
```
```  4722   hence "f \<noteq> g" by auto
```
```  4723   with assms have "i < subdegree (f - g)"
```
```  4724     by (simp add: if_split_asm dist_fps_def)
```
```  4725   also have "\<dots> \<le> j"
```
```  4726     using \<open>f \$ j \<noteq> g \$ j\<close> by (intro subdegree_leI) simp_all
```
```  4727   finally show False using \<open>j \<le> i\<close> by simp
```
```  4728 qed
```
```  4729
```
```  4730 lemma nth_equal_imp_dist_less:
```
```  4731   assumes "\<And>j. j \<le> i \<Longrightarrow> f \$ j = g \$ j"
```
```  4732   shows "dist f g < inverse (2 ^ i)"
```
```  4733 proof (cases "f = g")
```
```  4734   case True
```
```  4735   then show ?thesis by simp
```
```  4736 next
```
```  4737   case False
```
```  4738   with assms have "dist f g = inverse (2 ^ subdegree (f - g))"
```
```  4739     by (simp add: if_split_asm dist_fps_def)
```
```  4740   moreover
```
```  4741   from assms and False have "i < subdegree (f - g)"
```
```  4742     by (intro subdegree_greaterI) simp_all
```
```  4743   ultimately show ?thesis by simp
```
```  4744 qed
```
```  4745
```
```  4746 lemma dist_less_eq_nth_equal: "dist f g < inverse (2 ^ i) \<longleftrightarrow> (\<forall>j \<le> i. f \$ j = g \$ j)"
```
```  4747   using dist_less_imp_nth_equal nth_equal_imp_dist_less by blast
```
```  4748
```
```  4749 instance fps :: (comm_ring_1) complete_space
```
```  4750 proof
```
```  4751   fix fps_X :: "nat \<Rightarrow> 'a fps"
```
```  4752   assume "Cauchy fps_X"
```
```  4753   obtain M where M: "\<forall>i. \<forall>m \<ge> M i. \<forall>j \<le> i. fps_X (M i) \$ j = fps_X m \$ j"
```
```  4754   proof -
```
```  4755     have "\<exists>M. \<forall>m \<ge> M. \<forall>j\<le>i. fps_X M \$ j = fps_X m \$ j" for i
```
```  4756     proof -
```
```  4757       have "0 < inverse ((2::real)^i)" by simp
```
```  4758       from metric_CauchyD[OF \<open>Cauchy fps_X\<close> this] dist_less_imp_nth_equal
```
```  4759       show ?thesis by blast
```
```  4760     qed
```
```  4761     then show ?thesis using that by metis
```
```  4762   qed
```
```  4763
```
```  4764   show "convergent fps_X"
```
```  4765   proof (rule convergentI)
```
```  4766     show "fps_X \<longlonglongrightarrow> Abs_fps (\<lambda>i. fps_X (M i) \$ i)"
```
```  4767       unfolding tendsto_iff
```
```  4768     proof safe
```
```  4769       fix e::real assume e: "0 < e"
```
```  4770       have "(\<lambda>n. inverse (2 ^ n) :: real) \<longlonglongrightarrow> 0" by (rule LIMSEQ_inverse_realpow_zero) simp_all
```
```  4771       from this and e have "eventually (\<lambda>i. inverse (2 ^ i) < e) sequentially"
```
```  4772         by (rule order_tendstoD)
```
```  4773       then obtain i where "inverse (2 ^ i) < e"
```
```  4774         by (auto simp: eventually_sequentially)
```
```  4775       have "eventually (\<lambda>x. M i \<le> x) sequentially"
```
```  4776         by (auto simp: eventually_sequentially)
```
```  4777       then show "eventually (\<lambda>x. dist (fps_X x) (Abs_fps (\<lambda>i. fps_X (M i) \$ i)) < e) sequentially"
```
```  4778       proof eventually_elim
```
```  4779         fix x
```
```  4780         assume x: "M i \<le> x"
```
```  4781         have "fps_X (M i) \$ j = fps_X (M j) \$ j" if "j \<le> i" for j
```
```  4782           using M that by (metis nat_le_linear)
```
```  4783         with x have "dist (fps_X x) (Abs_fps (\<lambda>j. fps_X (M j) \$ j)) < inverse (2 ^ i)"
```
```  4784           using M by (force simp: dist_less_eq_nth_equal)
```
```  4785         also note \<open>inverse (2 ^ i) < e\<close>
```
```  4786         finally show "dist (fps_X x) (Abs_fps (\<lambda>j. fps_X (M j) \$ j)) < e" .
```
```  4787       qed
```
```  4788     qed
```
```  4789   qed
```
```  4790 qed
```
```  4791
```
```  4792 (* TODO: Figure out better notation for this thing *)
```
```  4793 no_notation fps_nth (infixl "\$" 75)
```
```  4794
```
```  4795 bundle fps_notation
```
```  4796 begin
```
```  4797 notation fps_nth (infixl "\$" 75)
```
```  4798 end
```
```  4799
```
```  4800 end
```