2 Author: Tobias Nipkow, based on a theory by David von Oheimb
3 Copyright 1997-2003 TU Muenchen
5 The datatype of `maps' (written ~=>); strongly resembles maps in VDM.
14 type_synonym ('a,'b) "map" = "'a => 'b option" (infixr "~=>" 0)
16 type_notation (xsymbols)
17 "map" (infixr "\<rightharpoonup>" 0)
20 empty :: "'a ~=> 'b" where
24 map_comp :: "('b ~=> 'c) => ('a ~=> 'b) => ('a ~=> 'c)" (infixl "o'_m" 55) where
25 "f o_m g = (\<lambda>k. case g k of None \<Rightarrow> None | Some v \<Rightarrow> f v)"
28 map_comp (infixl "\<circ>\<^sub>m" 55)
31 map_add :: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) where
32 "m1 ++ m2 = (\<lambda>x. case m2 x of None => m1 x | Some y => Some y)"
35 restrict_map :: "('a ~=> 'b) => 'a set => ('a ~=> 'b)" (infixl "|`" 110) where
36 "m|`A = (\<lambda>x. if x : A then m x else None)"
38 notation (latex output)
39 restrict_map ("_\<restriction>\<^bsub>_\<^esub>" [111,110] 110)
42 dom :: "('a ~=> 'b) => 'a set" where
43 "dom m = {a. m a ~= None}"
46 ran :: "('a ~=> 'b) => 'b set" where
47 "ran m = {b. EX a. m a = Some b}"
50 map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) where
51 "(m\<^sub>1 \<subseteq>\<^sub>m m\<^sub>2) = (\<forall>a \<in> dom m\<^sub>1. m\<^sub>1 a = m\<^sub>2 a)"
53 nonterminal maplets and maplet
56 "_maplet" :: "['a, 'a] => maplet" ("_ /|->/ _")
57 "_maplets" :: "['a, 'a] => maplet" ("_ /[|->]/ _")
58 "" :: "maplet => maplets" ("_")
59 "_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")
60 "_MapUpd" :: "['a ~=> 'b, maplets] => 'a ~=> 'b" ("_/'(_')" [900,0]900)
61 "_Map" :: "maplets => 'a ~=> 'b" ("(1[_])")
64 "_maplet" :: "['a, 'a] => maplet" ("_ /\<mapsto>/ _")
65 "_maplets" :: "['a, 'a] => maplet" ("_ /[\<mapsto>]/ _")
68 "_MapUpd m (_Maplets xy ms)" == "_MapUpd (_MapUpd m xy) ms"
69 "_MapUpd m (_maplet x y)" == "m(x := CONST Some y)"
70 "_Map ms" == "_MapUpd (CONST empty) ms"
71 "_Map (_Maplets ms1 ms2)" <= "_MapUpd (_Map ms1) ms2"
72 "_Maplets ms1 (_Maplets ms2 ms3)" <= "_Maplets (_Maplets ms1 ms2) ms3"
75 map_of :: "('a \<times> 'b) list \<Rightarrow> 'a \<rightharpoonup> 'b" where
77 | "map_of (p # ps) = (map_of ps)(fst p \<mapsto> snd p)"
80 map_upds :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'a \<rightharpoonup> 'b" where
81 "map_upds m xs ys = m ++ map_of (rev (zip xs ys))"
84 "_MapUpd m (_maplets x y)" == "CONST map_upds m x y"
86 lemma map_of_Cons_code [code]:
88 "map_of ((l, v) # ps) k = (if l = k then Some v else map_of ps k)"
92 subsection {* @{term [source] empty} *}
94 lemma empty_upd_none [simp]: "empty(x := None) = empty"
98 subsection {* @{term [source] map_upd} *}
100 lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t"
103 lemma map_upd_nonempty [simp]: "t(k|->x) ~= empty"
105 assume "t(k \<mapsto> x) = empty"
106 then have "(t(k \<mapsto> x)) k = None" by simp
107 then show False by simp
111 assumes "m(a\<mapsto>x) = n(a\<mapsto>y)"
114 from assms have "(m(a\<mapsto>x)) a = (n(a\<mapsto>y)) a" by simp
115 then show ?thesis by simp
118 lemma map_upd_Some_unfold:
119 "((m(a|->b)) x = Some y) = (x = a \<and> b = y \<or> x \<noteq> a \<and> m x = Some y)"
122 lemma image_map_upd [simp]: "x \<notin> A \<Longrightarrow> m(x \<mapsto> y) ` A = m ` A"
125 lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))"
127 apply (simp (no_asm_use) add:full_SetCompr_eq)
128 apply (rule finite_subset)
129 prefer 2 apply assumption
134 subsection {* @{term [source] map_of} *}
136 lemma map_of_eq_None_iff:
137 "(map_of xys x = None) = (x \<notin> fst ` (set xys))"
138 by (induct xys) simp_all
140 lemma map_of_is_SomeD: "map_of xys x = Some y \<Longrightarrow> (x,y) \<in> set xys"
143 apply (clarsimp split: if_splits)
146 lemma map_of_eq_Some_iff [simp]:
147 "distinct(map fst xys) \<Longrightarrow> (map_of xys x = Some y) = ((x,y) \<in> set xys)"
150 apply (auto simp: map_of_eq_None_iff [symmetric])
153 lemma Some_eq_map_of_iff [simp]:
154 "distinct(map fst xys) \<Longrightarrow> (Some y = map_of xys x) = ((x,y) \<in> set xys)"
155 by (auto simp del:map_of_eq_Some_iff simp add: map_of_eq_Some_iff [symmetric])
157 lemma map_of_is_SomeI [simp]: "\<lbrakk> distinct(map fst xys); (x,y) \<in> set xys \<rbrakk>
158 \<Longrightarrow> map_of xys x = Some y"
164 lemma map_of_zip_is_None [simp]:
165 "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
166 by (induct rule: list_induct2) simp_all
168 lemma map_of_zip_is_Some:
169 assumes "length xs = length ys"
170 shows "x \<in> set xs \<longleftrightarrow> (\<exists>y. map_of (zip xs ys) x = Some y)"
171 using assms by (induct rule: list_induct2) simp_all
173 lemma map_of_zip_upd:
174 fixes x :: 'a and xs :: "'a list" and ys zs :: "'b list"
175 assumes "length ys = length xs"
176 and "length zs = length xs"
177 and "x \<notin> set xs"
178 and "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)"
179 shows "map_of (zip xs ys) = map_of (zip xs zs)"
182 show "map_of (zip xs ys) x' = map_of (zip xs zs) x'"
183 proof (cases "x = x'")
185 from assms True map_of_zip_is_None [of xs ys x']
186 have "map_of (zip xs ys) x' = None" by simp
187 moreover from assms True map_of_zip_is_None [of xs zs x']
188 have "map_of (zip xs zs) x' = None" by simp
189 ultimately show ?thesis by simp
191 case False from assms
192 have "(map_of (zip xs ys)(x \<mapsto> y)) x' = (map_of (zip xs zs)(x \<mapsto> z)) x'" by auto
193 with False show ?thesis by simp
197 lemma map_of_zip_inject:
198 assumes "length ys = length xs"
199 and "length zs = length xs"
200 and dist: "distinct xs"
201 and map_of: "map_of (zip xs ys) = map_of (zip xs zs)"
203 using assms(1) assms(2)[symmetric] using dist map_of proof (induct ys xs zs rule: list_induct3)
204 case Nil show ?case by simp
206 case (Cons y ys x xs z zs)
207 from `map_of (zip (x#xs) (y#ys)) = map_of (zip (x#xs) (z#zs))`
208 have map_of: "map_of (zip xs ys)(x \<mapsto> y) = map_of (zip xs zs)(x \<mapsto> z)" by simp
209 from Cons have "length ys = length xs" and "length zs = length xs"
210 and "x \<notin> set xs" by simp_all
211 then have "map_of (zip xs ys) = map_of (zip xs zs)" using map_of by (rule map_of_zip_upd)
212 with Cons.hyps `distinct (x # xs)` have "ys = zs" by simp
213 moreover from map_of have "y = z" by (rule map_upd_eqD1)
214 ultimately show ?case by simp
217 lemma map_of_zip_map:
218 "map_of (zip xs (map f xs)) = (\<lambda>x. if x \<in> set xs then Some (f x) else None)"
219 by (induct xs) (simp_all add: fun_eq_iff)
221 lemma finite_range_map_of: "finite (range (map_of xys))"
223 apply (simp_all add: image_constant)
224 apply (rule finite_subset)
225 prefer 2 apply assumption
229 lemma map_of_SomeD: "map_of xs k = Some y \<Longrightarrow> (k, y) \<in> set xs"
230 by (induct xs) (simp, atomize (full), auto)
232 lemma map_of_mapk_SomeI:
233 "inj f ==> map_of t k = Some x ==>
234 map_of (map (split (%k. Pair (f k))) t) (f k) = Some x"
235 by (induct t) (auto simp add: inj_eq)
237 lemma weak_map_of_SomeI: "(k, x) : set l ==> \<exists>x. map_of l k = Some x"
240 lemma map_of_filter_in:
241 "map_of xs k = Some z \<Longrightarrow> P k z \<Longrightarrow> map_of (filter (split P) xs) k = Some z"
245 "map_of (map (\<lambda>(k, v). (k, f v)) xs) = map_option f \<circ> map_of xs"
246 by (induct xs) (auto simp add: fun_eq_iff)
248 lemma dom_map_option:
249 "dom (\<lambda>k. map_option (f k) (m k)) = dom m"
250 by (simp add: dom_def)
253 subsection {* @{const map_option} related *}
255 lemma map_option_o_empty [simp]: "map_option f o empty = empty"
258 lemma map_option_o_map_upd [simp]:
259 "map_option f o m(a|->b) = (map_option f o m)(a|->f b)"
263 subsection {* @{term [source] map_comp} related *}
265 lemma map_comp_empty [simp]:
266 "m \<circ>\<^sub>m empty = empty"
267 "empty \<circ>\<^sub>m m = empty"
268 by (auto simp add: map_comp_def split: option.splits)
270 lemma map_comp_simps [simp]:
271 "m2 k = None \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = None"
272 "m2 k = Some k' \<Longrightarrow> (m1 \<circ>\<^sub>m m2) k = m1 k'"
273 by (auto simp add: map_comp_def)
275 lemma map_comp_Some_iff:
276 "((m1 \<circ>\<^sub>m m2) k = Some v) = (\<exists>k'. m2 k = Some k' \<and> m1 k' = Some v)"
277 by (auto simp add: map_comp_def split: option.splits)
279 lemma map_comp_None_iff:
280 "((m1 \<circ>\<^sub>m m2) k = None) = (m2 k = None \<or> (\<exists>k'. m2 k = Some k' \<and> m1 k' = None)) "
281 by (auto simp add: map_comp_def split: option.splits)
284 subsection {* @{text "++"} *}
286 lemma map_add_empty[simp]: "m ++ empty = m"
287 by(simp add: map_add_def)
289 lemma empty_map_add[simp]: "empty ++ m = m"
290 by (rule ext) (simp add: map_add_def split: option.split)
292 lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3"
293 by (rule ext) (simp add: map_add_def split: option.split)
295 lemma map_add_Some_iff:
296 "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)"
297 by (simp add: map_add_def split: option.split)
299 lemma map_add_SomeD [dest!]:
300 "(m ++ n) k = Some x \<Longrightarrow> n k = Some x \<or> n k = None \<and> m k = Some x"
301 by (rule map_add_Some_iff [THEN iffD1])
303 lemma map_add_find_right [simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx"
304 by (subst map_add_Some_iff) fast
306 lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)"
307 by (simp add: map_add_def split: option.split)
309 lemma map_add_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)"
310 by (rule ext) (simp add: map_add_def)
312 lemma map_add_upds[simp]: "m1 ++ (m2(xs[\<mapsto>]ys)) = (m1++m2)(xs[\<mapsto>]ys)"
313 by (simp add: map_upds_def)
315 lemma map_add_upd_left: "m\<notin>dom e2 \<Longrightarrow> e1(m \<mapsto> u1) ++ e2 = (e1 ++ e2)(m \<mapsto> u1)"
316 by (rule ext) (auto simp: map_add_def dom_def split: option.split)
318 lemma map_of_append[simp]: "map_of (xs @ ys) = map_of ys ++ map_of xs"
319 unfolding map_add_def
323 apply (simp split add: option.split)
326 lemma finite_range_map_of_map_add:
327 "finite (range f) ==> finite (range (f ++ map_of l))"
329 apply (auto simp del: fun_upd_apply)
330 apply (erule finite_range_updI)
333 lemma inj_on_map_add_dom [iff]:
334 "inj_on (m ++ m') (dom m') = inj_on m' (dom m')"
335 by (fastforce simp: map_add_def dom_def inj_on_def split: option.splits)
337 lemma map_upds_fold_map_upd:
338 "m(ks[\<mapsto>]vs) = foldl (\<lambda>m (k, v). m(k \<mapsto> v)) m (zip ks vs)"
339 unfolding map_upds_def proof (rule sym, rule zip_obtain_same_length)
340 fix ks :: "'a list" and vs :: "'b list"
341 assume "length ks = length vs"
342 then show "foldl (\<lambda>m (k, v). m(k\<mapsto>v)) m (zip ks vs) = m ++ map_of (rev (zip ks vs))"
343 by(induct arbitrary: m rule: list_induct2) simp_all
346 lemma map_add_map_of_foldr:
347 "m ++ map_of ps = foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) ps m"
348 by (induct ps) (auto simp add: fun_eq_iff map_add_def)
351 subsection {* @{term [source] restrict_map} *}
353 lemma restrict_map_to_empty [simp]: "m|`{} = empty"
354 by (simp add: restrict_map_def)
356 lemma restrict_map_insert: "f |` (insert a A) = (f |` A)(a := f a)"
357 by (auto simp add: restrict_map_def)
359 lemma restrict_map_empty [simp]: "empty|`D = empty"
360 by (simp add: restrict_map_def)
362 lemma restrict_in [simp]: "x \<in> A \<Longrightarrow> (m|`A) x = m x"
363 by (simp add: restrict_map_def)
365 lemma restrict_out [simp]: "x \<notin> A \<Longrightarrow> (m|`A) x = None"
366 by (simp add: restrict_map_def)
368 lemma ran_restrictD: "y \<in> ran (m|`A) \<Longrightarrow> \<exists>x\<in>A. m x = Some y"
369 by (auto simp: restrict_map_def ran_def split: split_if_asm)
371 lemma dom_restrict [simp]: "dom (m|`A) = dom m \<inter> A"
372 by (auto simp: restrict_map_def dom_def split: split_if_asm)
374 lemma restrict_upd_same [simp]: "m(x\<mapsto>y)|`(-{x}) = m|`(-{x})"
375 by (rule ext) (auto simp: restrict_map_def)
377 lemma restrict_restrict [simp]: "m|`A|`B = m|`(A\<inter>B)"
378 by (rule ext) (auto simp: restrict_map_def)
380 lemma restrict_fun_upd [simp]:
381 "m(x := y)|`D = (if x \<in> D then (m|`(D-{x}))(x := y) else m|`D)"
382 by (simp add: restrict_map_def fun_eq_iff)
384 lemma fun_upd_None_restrict [simp]:
385 "(m|`D)(x := None) = (if x:D then m|`(D - {x}) else m|`D)"
386 by (simp add: restrict_map_def fun_eq_iff)
388 lemma fun_upd_restrict: "(m|`D)(x := y) = (m|`(D-{x}))(x := y)"
389 by (simp add: restrict_map_def fun_eq_iff)
391 lemma fun_upd_restrict_conv [simp]:
392 "x \<in> D \<Longrightarrow> (m|`D)(x := y) = (m|`(D-{x}))(x := y)"
393 by (simp add: restrict_map_def fun_eq_iff)
395 lemma map_of_map_restrict:
396 "map_of (map (\<lambda>k. (k, f k)) ks) = (Some \<circ> f) |` set ks"
397 by (induct ks) (simp_all add: fun_eq_iff restrict_map_insert)
399 lemma restrict_complement_singleton_eq:
400 "f |` (- {x}) = f(x := None)"
401 by (simp add: restrict_map_def fun_eq_iff)
404 subsection {* @{term [source] map_upds} *}
406 lemma map_upds_Nil1 [simp]: "m([] [|->] bs) = m"
407 by (simp add: map_upds_def)
409 lemma map_upds_Nil2 [simp]: "m(as [|->] []) = m"
410 by (simp add:map_upds_def)
412 lemma map_upds_Cons [simp]: "m(a#as [|->] b#bs) = (m(a|->b))(as[|->]bs)"
413 by (simp add:map_upds_def)
415 lemma map_upds_append1 [simp]: "\<And>ys m. size xs < size ys \<Longrightarrow>
416 m(xs@[x] [\<mapsto>] ys) = m(xs [\<mapsto>] ys)(x \<mapsto> ys!size xs)"
418 apply (clarsimp simp add: neq_Nil_conv)
424 lemma map_upds_list_update2_drop [simp]:
425 "size xs \<le> i \<Longrightarrow> m(xs[\<mapsto>]ys[i:=y]) = m(xs[\<mapsto>]ys)"
426 apply (induct xs arbitrary: m ys i)
430 apply (simp split: nat.split)
433 lemma map_upd_upds_conv_if:
434 "(f(x|->y))(xs [|->] ys) =
435 (if x : set(take (length ys) xs) then f(xs [|->] ys)
436 else (f(xs [|->] ys))(x|->y))"
437 apply (induct xs arbitrary: x y ys f)
440 apply (auto split: split_if simp: fun_upd_twist)
443 lemma map_upds_twist [simp]:
444 "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)"
445 using set_take_subset by (fastforce simp add: map_upd_upds_conv_if)
447 lemma map_upds_apply_nontin [simp]:
448 "x ~: set xs ==> (f(xs[|->]ys)) x = f x"
449 apply (induct xs arbitrary: ys)
452 apply (auto simp: map_upd_upds_conv_if)
455 lemma fun_upds_append_drop [simp]:
456 "size xs = size ys \<Longrightarrow> m(xs@zs[\<mapsto>]ys) = m(xs[\<mapsto>]ys)"
457 apply (induct xs arbitrary: m ys)
463 lemma fun_upds_append2_drop [simp]:
464 "size xs = size ys \<Longrightarrow> m(xs[\<mapsto>]ys@zs) = m(xs[\<mapsto>]ys)"
465 apply (induct xs arbitrary: m ys)
472 lemma restrict_map_upds[simp]:
473 "\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk>
474 \<Longrightarrow> m(xs [\<mapsto>] ys)|`D = (m|`(D - set xs))(xs [\<mapsto>] ys)"
475 apply (induct xs arbitrary: m ys)
479 apply (simp add: Diff_insert [symmetric] insert_absorb)
480 apply (simp add: map_upd_upds_conv_if)
484 subsection {* @{term [source] dom} *}
486 lemma dom_eq_empty_conv [simp]: "dom f = {} \<longleftrightarrow> f = empty"
487 by (auto simp: dom_def)
489 lemma domI: "m a = Some b ==> a : dom m"
491 (* declare domI [intro]? *)
493 lemma domD: "a : dom m ==> \<exists>b. m a = Some b"
494 by (cases "m a") (auto simp add: dom_def)
496 lemma domIff [iff, simp del]: "(a : dom m) = (m a ~= None)"
499 lemma dom_empty [simp]: "dom empty = {}"
502 lemma dom_fun_upd [simp]:
503 "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))"
504 by(auto simp add:dom_def)
507 "dom (\<lambda>x. if P x then f x else g x) = dom f \<inter> {x. P x} \<union> dom g \<inter> {x. \<not> P x}"
508 by (auto split: if_splits)
510 lemma dom_map_of_conv_image_fst:
511 "dom (map_of xys) = fst ` set xys"
512 by (induct xys) (auto simp add: dom_if)
514 lemma dom_map_of_zip [simp]: "length xs = length ys ==> dom (map_of (zip xs ys)) = set xs"
515 by (induct rule: list_induct2) (auto simp add: dom_if)
517 lemma finite_dom_map_of: "finite (dom (map_of l))"
518 by (induct l) (auto simp add: dom_def insert_Collect [symmetric])
520 lemma dom_map_upds [simp]:
521 "dom(m(xs[|->]ys)) = set(take (length ys) xs) Un dom m"
522 apply (induct xs arbitrary: m ys)
528 lemma dom_map_add [simp]: "dom(m++n) = dom n Un dom m"
529 by(auto simp:dom_def)
531 lemma dom_override_on [simp]:
532 "dom(override_on f g A) =
533 (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}"
534 by(auto simp: dom_def override_on_def)
536 lemma map_add_comm: "dom m1 \<inter> dom m2 = {} \<Longrightarrow> m1++m2 = m2++m1"
537 by (rule ext) (force simp: map_add_def dom_def split: option.split)
539 lemma map_add_dom_app_simps:
540 "\<lbrakk> m\<in>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"
541 "\<lbrakk> m\<notin>dom l1 \<rbrakk> \<Longrightarrow> (l1++l2) m = l2 m"
542 "\<lbrakk> m\<notin>dom l2 \<rbrakk> \<Longrightarrow> (l1++l2) m = l1 m"
543 by (auto simp add: map_add_def split: option.split_asm)
545 lemma dom_const [simp]:
546 "dom (\<lambda>x. Some (f x)) = UNIV"
549 (* Due to John Matthews - could be rephrased with dom *)
550 lemma finite_map_freshness:
551 "finite (dom (f :: 'a \<rightharpoonup> 'b)) \<Longrightarrow> \<not> finite (UNIV :: 'a set) \<Longrightarrow>
552 \<exists>x. f x = None"
553 by(bestsimp dest:ex_new_if_finite)
556 "f x = None \<Longrightarrow> dom f - insert x A = dom f - A"
557 unfolding dom_def by simp
560 "f x = Some y \<Longrightarrow> insert x (dom f) = dom f"
561 unfolding dom_def by auto
563 lemma map_of_map_keys:
564 "set xs = dom m \<Longrightarrow> map_of (map (\<lambda>k. (k, the (m k))) xs) = m"
565 by (rule ext) (auto simp add: map_of_map_restrict restrict_map_def)
568 assumes set_eq: "set (map fst xs) = set (map fst ys)"
569 assumes map_eq: "\<forall>k\<in>set (map fst xs). map_of xs k = map_of ys k"
570 shows "map_of xs = map_of ys"
572 fix k show "map_of xs k = map_of ys k"
573 proof (cases "map_of xs k")
574 case None then have "k \<notin> set (map fst xs)" by (simp add: map_of_eq_None_iff)
575 with set_eq have "k \<notin> set (map fst ys)" by simp
576 then have "map_of ys k = None" by (simp add: map_of_eq_None_iff)
577 with None show ?thesis by simp
579 case (Some v) then have "k \<in> set (map fst xs)" by (auto simp add: dom_map_of_conv_image_fst [symmetric])
580 with map_eq show ?thesis by auto
585 assumes "map_of xs = map_of ys"
586 shows "fst ` set xs = fst ` set ys"
588 from assms have "dom (map_of xs) = dom (map_of ys)" by simp
589 then show ?thesis by (simp add: dom_map_of_conv_image_fst)
592 lemma finite_set_of_finite_maps:
593 assumes "finite A" "finite B"
594 shows "finite {m. dom m = A \<and> ran m \<subseteq> B}" (is "finite ?S")
596 let ?S' = "{m. \<forall>x. (x \<in> A \<longrightarrow> m x \<in> Some ` B) \<and> (x \<notin> A \<longrightarrow> m x = None)}"
599 show "?S \<subseteq> ?S'" by(auto simp: dom_def ran_def image_def)
600 show "?S' \<subseteq> ?S"
602 fix m assume "m \<in> ?S'"
603 hence 1: "dom m = A" by force
604 hence 2: "ran m \<subseteq> B" using `m \<in> ?S'` by(auto simp: dom_def ran_def)
605 from 1 2 show "m \<in> ?S" by blast
608 with assms show ?thesis by(simp add: finite_set_of_finite_funs)
611 subsection {* @{term [source] ran} *}
613 lemma ranI: "m a = Some b ==> b : ran m"
614 by(auto simp: ran_def)
615 (* declare ranI [intro]? *)
617 lemma ran_empty [simp]: "ran empty = {}"
618 by(auto simp: ran_def)
620 lemma ran_map_upd [simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)"
623 apply (subgoal_tac "aa ~= a")
628 assumes dist: "distinct (map fst al)"
629 shows "ran (map_of al) = snd ` set al"
630 using assms proof (induct al)
631 case Nil then show ?case by simp
634 then have "ran (map_of al) = snd ` set al" by simp
635 moreover from Cons.prems have "map_of al (fst kv) = None"
636 by (simp add: map_of_eq_None_iff)
637 ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
641 subsection {* @{text "map_le"} *}
643 lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g"
644 by (simp add: map_le_def)
646 lemma upd_None_map_le [simp]: "f(x := None) \<subseteq>\<^sub>m f"
647 by (force simp add: map_le_def)
649 lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)"
650 by (fastforce simp add: map_le_def)
652 lemma map_le_imp_upd_le [simp]: "m1 \<subseteq>\<^sub>m m2 \<Longrightarrow> m1(x := None) \<subseteq>\<^sub>m m2(x \<mapsto> y)"
653 by (force simp add: map_le_def)
655 lemma map_le_upds [simp]:
656 "f \<subseteq>\<^sub>m g ==> f(as [|->] bs) \<subseteq>\<^sub>m g(as [|->] bs)"
657 apply (induct as arbitrary: f g bs)
663 lemma map_le_implies_dom_le: "(f \<subseteq>\<^sub>m g) \<Longrightarrow> (dom f \<subseteq> dom g)"
664 by (fastforce simp add: map_le_def dom_def)
666 lemma map_le_refl [simp]: "f \<subseteq>\<^sub>m f"
667 by (simp add: map_le_def)
669 lemma map_le_trans[trans]: "\<lbrakk> m1 \<subseteq>\<^sub>m m2; m2 \<subseteq>\<^sub>m m3\<rbrakk> \<Longrightarrow> m1 \<subseteq>\<^sub>m m3"
670 by (auto simp add: map_le_def dom_def)
672 lemma map_le_antisym: "\<lbrakk> f \<subseteq>\<^sub>m g; g \<subseteq>\<^sub>m f \<rbrakk> \<Longrightarrow> f = g"
675 apply (case_tac "x \<in> dom f", simp)
676 apply (case_tac "x \<in> dom g", simp, fastforce)
679 lemma map_le_map_add [simp]: "f \<subseteq>\<^sub>m (g ++ f)"
680 by (fastforce simp add: map_le_def)
682 lemma map_le_iff_map_add_commute: "(f \<subseteq>\<^sub>m f ++ g) = (f++g = g++f)"
683 by(fastforce simp: map_add_def map_le_def fun_eq_iff split: option.splits)
685 lemma map_add_le_mapE: "f++g \<subseteq>\<^sub>m h \<Longrightarrow> g \<subseteq>\<^sub>m h"
686 by (fastforce simp add: map_le_def map_add_def dom_def)
688 lemma map_add_le_mapI: "\<lbrakk> f \<subseteq>\<^sub>m h; g \<subseteq>\<^sub>m h \<rbrakk> \<Longrightarrow> f++g \<subseteq>\<^sub>m h"
689 by (clarsimp simp add: map_le_def map_add_def dom_def split: option.splits)
691 lemma dom_eq_singleton_conv: "dom f = {x} \<longleftrightarrow> (\<exists>v. f = [x \<mapsto> v])"
693 assume "\<exists>v. f = [x \<mapsto> v]"
694 thus "dom f = {x}" by(auto split: split_if_asm)
697 then obtain v where "f x = Some v" by auto
698 hence "[x \<mapsto> v] \<subseteq>\<^sub>m f" by(auto simp add: map_le_def)
699 moreover have "f \<subseteq>\<^sub>m [x \<mapsto> v]" using `dom f = {x}` `f x = Some v`
700 by(auto simp add: map_le_def)
701 ultimately have "f = [x \<mapsto> v]" by-(rule map_le_antisym)
702 thus "\<exists>v. f = [x \<mapsto> v]" by blast
706 subsection {* Various *}
708 lemma set_map_of_compr:
709 assumes distinct: "distinct (map fst xs)"
710 shows "set xs = {(k, v). map_of xs k = Some v}"
711 using assms proof (induct xs)
712 case Nil then show ?case by simp
715 obtain k v where "x = (k, v)" by (cases x) blast
716 with Cons.prems have "k \<notin> dom (map_of xs)"
717 by (simp add: dom_map_of_conv_image_fst)
718 then have *: "insert (k, v) {(k, v). map_of xs k = Some v} =
719 {(k', v'). (map_of xs(k \<mapsto> v)) k' = Some v'}"
720 by (auto split: if_splits)
721 from Cons have "set xs = {(k, v). map_of xs k = Some v}" by simp
722 with * `x = (k, v)` show ?case by simp
725 lemma map_of_inject_set:
726 assumes distinct: "distinct (map fst xs)" "distinct (map fst ys)"
727 shows "map_of xs = map_of ys \<longleftrightarrow> set xs = set ys" (is "?lhs \<longleftrightarrow> ?rhs")
730 moreover from `distinct (map fst xs)` have "set xs = {(k, v). map_of xs k = Some v}"
731 by (rule set_map_of_compr)
732 moreover from `distinct (map fst ys)` have "set ys = {(k, v). map_of ys k = Some v}"
733 by (rule set_map_of_compr)
734 ultimately show ?rhs by simp
736 assume ?rhs show ?lhs
739 show "map_of xs k = map_of ys k" proof (cases "map_of xs k")
741 with `?rhs` have "map_of ys k = None"
742 by (simp add: map_of_eq_None_iff)
743 with None show ?thesis by simp
746 with distinct `?rhs` have "map_of ys k = Some v"
748 with Some show ?thesis by simp