src/HOL/Metis.thy
author wenzelm
Fri Mar 07 22:30:58 2014 +0100 (2014-03-07)
changeset 55990 41c6b99c5fb7
parent 55509 bd67ebe275e0
child 56281 03c3d1a7c3b8
permissions -rw-r--r--
more antiquotations;
     1 (*  Title:      HOL/Metis.thy
     2     Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
     3     Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     4     Author:     Jasmin Blanchette, TU Muenchen
     5 *)
     6 
     7 header {* Metis Proof Method *}
     8 
     9 theory Metis
    10 imports ATP
    11 begin
    12 
    13 ML_file "~~/src/Tools/Metis/metis.ML"
    14 
    15 subsection {* Literal selection and lambda-lifting helpers *}
    16 
    17 definition select :: "'a \<Rightarrow> 'a" where
    18 "select = (\<lambda>x. x)"
    19 
    20 lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
    21 by (cut_tac atomize_not [of "\<not> A"]) simp
    22 
    23 lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
    24 unfolding select_def by (rule atomize_not)
    25 
    26 lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
    27 unfolding select_def by (rule not_atomize)
    28 
    29 lemma select_FalseI: "False \<Longrightarrow> select False" by simp
    30 
    31 definition lambda :: "'a \<Rightarrow> 'a" where
    32 "lambda = (\<lambda>x. x)"
    33 
    34 lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
    35 unfolding lambda_def by assumption
    36 
    37 
    38 subsection {* Metis package *}
    39 
    40 ML_file "Tools/Metis/metis_generate.ML"
    41 ML_file "Tools/Metis/metis_reconstruct.ML"
    42 ML_file "Tools/Metis/metis_tactic.ML"
    43 
    44 setup {* Metis_Tactic.setup *}
    45 
    46 hide_const (open) select fFalse fTrue fNot fComp fconj fdisj fimplies fequal
    47     lambda
    48 hide_fact (open) select_def not_atomize atomize_not_select not_atomize_select
    49     select_FalseI fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def
    50     fequal_def fTrue_ne_fFalse fNot_table fconj_table fdisj_table fimplies_table
    51     fequal_table fAll_table fEx_table fNot_law fComp_law fconj_laws fdisj_laws
    52     fimplies_laws fequal_laws fAll_law fEx_law lambda_def eq_lambdaI
    53 
    54 end