1 (* Title: HOL/Real_Vector_Spaces.thy
6 header {* Vector Spaces and Algebras over the Reals *}
8 theory Real_Vector_Spaces
9 imports Real Topological_Spaces
12 subsection {* Locale for additive functions *}
15 fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
16 assumes add: "f (x + y) = f x + f y"
21 have "f 0 = f (0 + 0)" by simp
22 also have "\<dots> = f 0 + f 0" by (rule add)
23 finally show "f 0 = 0" by simp
26 lemma minus: "f (- x) = - f x"
28 have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
29 also have "\<dots> = - f x + f x" by (simp add: zero)
30 finally show "f (- x) = - f x" by (rule add_right_imp_eq)
33 lemma diff: "f (x - y) = f x - f y"
34 using add [of x "- y"] by (simp add: minus)
36 lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
37 apply (cases "finite A")
38 apply (induct set: finite)
39 apply (simp add: zero)
41 apply (simp add: zero)
46 subsection {* Vector spaces *}
49 fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
50 assumes scale_right_distrib [algebra_simps]:
51 "scale a (x + y) = scale a x + scale a y"
52 and scale_left_distrib [algebra_simps]:
53 "scale (a + b) x = scale a x + scale b x"
54 and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
55 and scale_one [simp]: "scale 1 x = x"
58 lemma scale_left_commute:
59 "scale a (scale b x) = scale b (scale a x)"
60 by (simp add: mult_commute)
62 lemma scale_zero_left [simp]: "scale 0 x = 0"
63 and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
64 and scale_left_diff_distrib [algebra_simps]:
65 "scale (a - b) x = scale a x - scale b x"
66 and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)"
68 interpret s: additive "\<lambda>a. scale a x"
69 proof qed (rule scale_left_distrib)
70 show "scale 0 x = 0" by (rule s.zero)
71 show "scale (- a) x = - (scale a x)" by (rule s.minus)
72 show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
73 show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum)
76 lemma scale_zero_right [simp]: "scale a 0 = 0"
77 and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
78 and scale_right_diff_distrib [algebra_simps]:
79 "scale a (x - y) = scale a x - scale a y"
80 and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))"
82 interpret s: additive "\<lambda>x. scale a x"
83 proof qed (rule scale_right_distrib)
84 show "scale a 0 = 0" by (rule s.zero)
85 show "scale a (- x) = - (scale a x)" by (rule s.minus)
86 show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
87 show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum)
90 lemma scale_eq_0_iff [simp]:
91 "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
93 assume "a = 0" thus ?thesis by simp
95 assume anz [simp]: "a \<noteq> 0"
96 { assume "scale a x = 0"
97 hence "scale (inverse a) (scale a x) = 0" by simp
98 hence "x = 0" by simp }
102 lemma scale_left_imp_eq:
103 "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
105 assume nonzero: "a \<noteq> 0"
106 assume "scale a x = scale a y"
107 hence "scale a (x - y) = 0"
108 by (simp add: scale_right_diff_distrib)
109 hence "x - y = 0" by (simp add: nonzero)
110 thus "x = y" by (simp only: right_minus_eq)
113 lemma scale_right_imp_eq:
114 "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
116 assume nonzero: "x \<noteq> 0"
117 assume "scale a x = scale b x"
118 hence "scale (a - b) x = 0"
119 by (simp add: scale_left_diff_distrib)
120 hence "a - b = 0" by (simp add: nonzero)
121 thus "a = b" by (simp only: right_minus_eq)
124 lemma scale_cancel_left [simp]:
125 "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
126 by (auto intro: scale_left_imp_eq)
128 lemma scale_cancel_right [simp]:
129 "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
130 by (auto intro: scale_right_imp_eq)
134 subsection {* Real vector spaces *}
137 fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
141 divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
143 "x /\<^sub>R r == scaleR (inverse r) x"
147 class real_vector = scaleR + ab_group_add +
148 assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y"
149 and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x"
150 and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x"
151 and scaleR_one: "scaleR 1 x = x"
153 interpretation real_vector:
154 vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"
156 apply (rule scaleR_add_right)
157 apply (rule scaleR_add_left)
158 apply (rule scaleR_scaleR)
159 apply (rule scaleR_one)
162 text {* Recover original theorem names *}
164 lemmas scaleR_left_commute = real_vector.scale_left_commute
165 lemmas scaleR_zero_left = real_vector.scale_zero_left
166 lemmas scaleR_minus_left = real_vector.scale_minus_left
167 lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib
168 lemmas scaleR_setsum_left = real_vector.scale_setsum_left
169 lemmas scaleR_zero_right = real_vector.scale_zero_right
170 lemmas scaleR_minus_right = real_vector.scale_minus_right
171 lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib
172 lemmas scaleR_setsum_right = real_vector.scale_setsum_right
173 lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
174 lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
175 lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
176 lemmas scaleR_cancel_left = real_vector.scale_cancel_left
177 lemmas scaleR_cancel_right = real_vector.scale_cancel_right
179 text {* Legacy names *}
181 lemmas scaleR_left_distrib = scaleR_add_left
182 lemmas scaleR_right_distrib = scaleR_add_right
183 lemmas scaleR_left_diff_distrib = scaleR_diff_left
184 lemmas scaleR_right_diff_distrib = scaleR_diff_right
186 lemma scaleR_minus1_left [simp]:
187 fixes x :: "'a::real_vector"
188 shows "scaleR (-1) x = - x"
189 using scaleR_minus_left [of 1 x] by simp
191 class real_algebra = real_vector + ring +
192 assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
193 and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
195 class real_algebra_1 = real_algebra + ring_1
197 class real_div_algebra = real_algebra_1 + division_ring
199 class real_field = real_div_algebra + field
201 instantiation real :: real_field
205 real_scaleR_def [simp]: "scaleR a x = a * x"
208 qed (simp_all add: algebra_simps)
212 interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)"
213 proof qed (rule scaleR_left_distrib)
215 interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)"
216 proof qed (rule scaleR_right_distrib)
218 lemma nonzero_inverse_scaleR_distrib:
219 fixes x :: "'a::real_div_algebra" shows
220 "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
221 by (rule inverse_unique, simp)
223 lemma inverse_scaleR_distrib:
224 fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
225 shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
226 apply (case_tac "a = 0", simp)
227 apply (case_tac "x = 0", simp)
228 apply (erule (1) nonzero_inverse_scaleR_distrib)
232 subsection {* Embedding of the Reals into any @{text real_algebra_1}:
236 of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
237 "of_real r = scaleR r 1"
239 lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
240 by (simp add: of_real_def)
242 lemma of_real_0 [simp]: "of_real 0 = 0"
243 by (simp add: of_real_def)
245 lemma of_real_1 [simp]: "of_real 1 = 1"
246 by (simp add: of_real_def)
248 lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
249 by (simp add: of_real_def scaleR_left_distrib)
251 lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
252 by (simp add: of_real_def)
254 lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
255 by (simp add: of_real_def scaleR_left_diff_distrib)
257 lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
258 by (simp add: of_real_def mult_commute)
260 lemma nonzero_of_real_inverse:
261 "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
262 inverse (of_real x :: 'a::real_div_algebra)"
263 by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
265 lemma of_real_inverse [simp]:
266 "of_real (inverse x) =
267 inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
268 by (simp add: of_real_def inverse_scaleR_distrib)
270 lemma nonzero_of_real_divide:
271 "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
272 (of_real x / of_real y :: 'a::real_field)"
273 by (simp add: divide_inverse nonzero_of_real_inverse)
275 lemma of_real_divide [simp]:
277 (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
278 by (simp add: divide_inverse)
280 lemma of_real_power [simp]:
281 "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
282 by (induct n) simp_all
284 lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
285 by (simp add: of_real_def)
289 by (auto intro: injI)
291 lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
293 lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
296 show "of_real r = id r"
297 by (simp add: of_real_def)
300 text{*Collapse nested embeddings*}
301 lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
304 lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
305 by (cases z rule: int_diff_cases, simp)
307 lemma of_real_numeral: "of_real (numeral w) = numeral w"
308 using of_real_of_int_eq [of "numeral w"] by simp
310 lemma of_real_neg_numeral: "of_real (- numeral w) = - numeral w"
311 using of_real_of_int_eq [of "- numeral w"] by simp
313 text{*Every real algebra has characteristic zero*}
315 instance real_algebra_1 < ring_char_0
317 from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp)
318 then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def)
321 instance real_field < field_char_0 ..
324 subsection {* The Set of Real Numbers *}
326 definition Reals :: "'a::real_algebra_1 set" where
327 "Reals = range of_real"
332 lemma Reals_of_real [simp]: "of_real r \<in> Reals"
333 by (simp add: Reals_def)
335 lemma Reals_of_int [simp]: "of_int z \<in> Reals"
336 by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
338 lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
339 by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
341 lemma Reals_numeral [simp]: "numeral w \<in> Reals"
342 by (subst of_real_numeral [symmetric], rule Reals_of_real)
344 lemma Reals_0 [simp]: "0 \<in> Reals"
345 apply (unfold Reals_def)
346 apply (rule range_eqI)
347 apply (rule of_real_0 [symmetric])
350 lemma Reals_1 [simp]: "1 \<in> Reals"
351 apply (unfold Reals_def)
352 apply (rule range_eqI)
353 apply (rule of_real_1 [symmetric])
356 lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
357 apply (auto simp add: Reals_def)
358 apply (rule range_eqI)
359 apply (rule of_real_add [symmetric])
362 lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
363 apply (auto simp add: Reals_def)
364 apply (rule range_eqI)
365 apply (rule of_real_minus [symmetric])
368 lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
369 apply (auto simp add: Reals_def)
370 apply (rule range_eqI)
371 apply (rule of_real_diff [symmetric])
374 lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
375 apply (auto simp add: Reals_def)
376 apply (rule range_eqI)
377 apply (rule of_real_mult [symmetric])
380 lemma nonzero_Reals_inverse:
381 fixes a :: "'a::real_div_algebra"
382 shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
383 apply (auto simp add: Reals_def)
384 apply (rule range_eqI)
385 apply (erule nonzero_of_real_inverse [symmetric])
389 fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
390 shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
391 apply (auto simp add: Reals_def)
392 apply (rule range_eqI)
393 apply (rule of_real_inverse [symmetric])
396 lemma Reals_inverse_iff [simp]:
397 fixes x:: "'a :: {real_div_algebra, division_ring_inverse_zero}"
398 shows "inverse x \<in> \<real> \<longleftrightarrow> x \<in> \<real>"
399 by (metis Reals_inverse inverse_inverse_eq)
401 lemma nonzero_Reals_divide:
402 fixes a b :: "'a::real_field"
403 shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
404 apply (auto simp add: Reals_def)
405 apply (rule range_eqI)
406 apply (erule nonzero_of_real_divide [symmetric])
409 lemma Reals_divide [simp]:
410 fixes a b :: "'a::{real_field, field_inverse_zero}"
411 shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
412 apply (auto simp add: Reals_def)
413 apply (rule range_eqI)
414 apply (rule of_real_divide [symmetric])
417 lemma Reals_power [simp]:
418 fixes a :: "'a::{real_algebra_1}"
419 shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
420 apply (auto simp add: Reals_def)
421 apply (rule range_eqI)
422 apply (rule of_real_power [symmetric])
425 lemma Reals_cases [cases set: Reals]:
426 assumes "q \<in> \<real>"
427 obtains (of_real) r where "q = of_real r"
430 from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
431 then obtain r where "q = of_real r" ..
435 lemma setsum_in_Reals: assumes "\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>" shows "setsum f s \<in> \<real>"
436 proof (cases "finite s")
437 case True then show ?thesis using assms
438 by (induct s rule: finite_induct) auto
440 case False then show ?thesis using assms
441 by (metis Reals_0 setsum_infinite)
444 lemma setprod_in_Reals: assumes "\<And>i. i \<in> s \<Longrightarrow> f i \<in> \<real>" shows "setprod f s \<in> \<real>"
445 proof (cases "finite s")
446 case True then show ?thesis using assms
447 by (induct s rule: finite_induct) auto
449 case False then show ?thesis using assms
450 by (metis Reals_1 setprod_infinite)
453 lemma Reals_induct [case_names of_real, induct set: Reals]:
454 "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
455 by (rule Reals_cases) auto
457 subsection {* Ordered real vector spaces *}
459 class ordered_real_vector = real_vector + ordered_ab_group_add +
460 assumes scaleR_left_mono: "x \<le> y \<Longrightarrow> 0 \<le> a \<Longrightarrow> a *\<^sub>R x \<le> a *\<^sub>R y"
461 assumes scaleR_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R x"
465 "a \<le> b \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> x \<Longrightarrow> a *\<^sub>R x \<le> b *\<^sub>R y"
466 apply (erule scaleR_right_mono [THEN order_trans], assumption)
467 apply (erule scaleR_left_mono, assumption)
471 "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R d"
472 by (rule scaleR_mono) (auto intro: order.trans)
474 lemma pos_le_divideRI:
476 assumes "c *\<^sub>R a \<le> b"
477 shows "a \<le> b /\<^sub>R c"
479 from scaleR_left_mono[OF assms(2)] assms(1)
480 have "c *\<^sub>R a /\<^sub>R c \<le> b /\<^sub>R c"
482 with assms show ?thesis
483 by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide)
486 lemma pos_le_divideR_eq:
488 shows "a \<le> b /\<^sub>R c \<longleftrightarrow> c *\<^sub>R a \<le> b"
490 assume "a \<le> b /\<^sub>R c"
491 from scaleR_left_mono[OF this] assms
492 have "c *\<^sub>R a \<le> c *\<^sub>R (b /\<^sub>R c)"
494 with assms show "c *\<^sub>R a \<le> b"
495 by (simp add: scaleR_one scaleR_scaleR inverse_eq_divide)
496 qed (rule pos_le_divideRI[OF assms])
498 lemma scaleR_image_atLeastAtMost:
499 "c > 0 \<Longrightarrow> scaleR c ` {x..y} = {c *\<^sub>R x..c *\<^sub>R y}"
500 apply (auto intro!: scaleR_left_mono)
501 apply (rule_tac x = "inverse c *\<^sub>R xa" in image_eqI)
502 apply (simp_all add: pos_le_divideR_eq[symmetric] scaleR_scaleR scaleR_one)
507 lemma scaleR_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> (x::'a::ordered_real_vector) \<Longrightarrow> 0 \<le> a *\<^sub>R x"
508 using scaleR_left_mono [of 0 x a]
511 lemma scaleR_nonneg_nonpos: "0 \<le> a \<Longrightarrow> (x::'a::ordered_real_vector) \<le> 0 \<Longrightarrow> a *\<^sub>R x \<le> 0"
512 using scaleR_left_mono [of x 0 a] by simp
514 lemma scaleR_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> (x::'a::ordered_real_vector) \<Longrightarrow> a *\<^sub>R x \<le> 0"
515 using scaleR_right_mono [of a 0 x] by simp
517 lemma split_scaleR_neg_le: "(0 \<le> a & x \<le> 0) | (a \<le> 0 & 0 \<le> x) \<Longrightarrow>
518 a *\<^sub>R (x::'a::ordered_real_vector) \<le> 0"
519 by (auto simp add: scaleR_nonneg_nonpos scaleR_nonpos_nonneg)
522 fixes c d e::"'a::ordered_real_vector"
523 shows "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> (a - b) *\<^sub>R e + c \<le> d"
524 by (simp add: algebra_simps)
527 fixes c d e::"'a::ordered_real_vector"
528 shows "a *\<^sub>R e + c \<le> b *\<^sub>R e + d \<longleftrightarrow> c \<le> (b - a) *\<^sub>R e + d"
529 by (simp add: algebra_simps)
531 lemma scaleR_left_mono_neg:
532 fixes a b::"'a::ordered_real_vector"
533 shows "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b"
534 apply (drule scaleR_left_mono [of _ _ "- c"])
538 lemma scaleR_right_mono_neg:
539 fixes c::"'a::ordered_real_vector"
540 shows "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a *\<^sub>R c \<le> b *\<^sub>R c"
541 apply (drule scaleR_right_mono [of _ _ "- c"])
545 lemma scaleR_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> (b::'a::ordered_real_vector) \<le> 0 \<Longrightarrow> 0 \<le> a *\<^sub>R b"
546 using scaleR_right_mono_neg [of a 0 b] by simp
548 lemma split_scaleR_pos_le:
549 fixes b::"'a::ordered_real_vector"
550 shows "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a *\<^sub>R b"
551 by (auto simp add: scaleR_nonneg_nonneg scaleR_nonpos_nonpos)
553 lemma zero_le_scaleR_iff:
554 fixes b::"'a::ordered_real_vector"
555 shows "0 \<le> a *\<^sub>R b \<longleftrightarrow> 0 < a \<and> 0 \<le> b \<or> a < 0 \<and> b \<le> 0 \<or> a = 0" (is "?lhs = ?rhs")
557 assume "a \<noteq> 0"
563 with lhs have "inverse a *\<^sub>R 0 \<le> inverse a *\<^sub>R (a *\<^sub>R b)"
564 by (intro scaleR_mono) auto
565 hence ?rhs using `0 < a`
569 with lhs have "- inverse a *\<^sub>R 0 \<le> - inverse a *\<^sub>R (a *\<^sub>R b)"
570 by (intro scaleR_mono) auto
571 hence ?rhs using `0 > a`
573 } ultimately show ?rhs using `a \<noteq> 0` by arith
574 qed (auto simp: not_le `a \<noteq> 0` intro!: split_scaleR_pos_le)
577 lemma scaleR_le_0_iff:
578 fixes b::"'a::ordered_real_vector"
579 shows "a *\<^sub>R b \<le> 0 \<longleftrightarrow> 0 < a \<and> b \<le> 0 \<or> a < 0 \<and> 0 \<le> b \<or> a = 0"
580 by (insert zero_le_scaleR_iff [of "-a" b]) force
582 lemma scaleR_le_cancel_left:
583 fixes b::"'a::ordered_real_vector"
584 shows "c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
585 by (auto simp add: neq_iff scaleR_left_mono scaleR_left_mono_neg
586 dest: scaleR_left_mono[where a="inverse c"] scaleR_left_mono_neg[where c="inverse c"])
588 lemma scaleR_le_cancel_left_pos:
589 fixes b::"'a::ordered_real_vector"
590 shows "0 < c \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> a \<le> b"
591 by (auto simp: scaleR_le_cancel_left)
593 lemma scaleR_le_cancel_left_neg:
594 fixes b::"'a::ordered_real_vector"
595 shows "c < 0 \<Longrightarrow> c *\<^sub>R a \<le> c *\<^sub>R b \<longleftrightarrow> b \<le> a"
596 by (auto simp: scaleR_le_cancel_left)
598 lemma scaleR_left_le_one_le:
599 fixes x::"'a::ordered_real_vector" and a::real
600 shows "0 \<le> x \<Longrightarrow> a \<le> 1 \<Longrightarrow> a *\<^sub>R x \<le> x"
601 using scaleR_right_mono[of a 1 x] by simp
604 subsection {* Real normed vector spaces *}
607 fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real"
610 fixes norm :: "'a \<Rightarrow> real"
612 class sgn_div_norm = scaleR + norm + sgn +
613 assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
615 class dist_norm = dist + norm + minus +
616 assumes dist_norm: "dist x y = norm (x - y)"
618 class open_dist = "open" + dist +
619 assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
621 class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist +
622 assumes norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
623 and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
624 and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
627 lemma norm_ge_zero [simp]: "0 \<le> norm x"
629 have "0 = norm (x + -1 *\<^sub>R x)"
630 using scaleR_add_left[of 1 "-1" x] norm_scaleR[of 0 x] by (simp add: scaleR_one)
631 also have "\<dots> \<le> norm x + norm (-1 *\<^sub>R x)" by (rule norm_triangle_ineq)
632 finally show ?thesis by simp
637 class real_normed_algebra = real_algebra + real_normed_vector +
638 assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
640 class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
641 assumes norm_one [simp]: "norm 1 = 1"
643 class real_normed_div_algebra = real_div_algebra + real_normed_vector +
644 assumes norm_mult: "norm (x * y) = norm x * norm y"
646 class real_normed_field = real_field + real_normed_div_algebra
648 instance real_normed_div_algebra < real_normed_algebra_1
651 show "norm (x * y) \<le> norm x * norm y"
652 by (simp add: norm_mult)
654 have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
656 thus "norm (1::'a) = 1" by simp
659 lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
662 lemma zero_less_norm_iff [simp]:
663 fixes x :: "'a::real_normed_vector"
664 shows "(0 < norm x) = (x \<noteq> 0)"
665 by (simp add: order_less_le)
667 lemma norm_not_less_zero [simp]:
668 fixes x :: "'a::real_normed_vector"
669 shows "\<not> norm x < 0"
670 by (simp add: linorder_not_less)
672 lemma norm_le_zero_iff [simp]:
673 fixes x :: "'a::real_normed_vector"
674 shows "(norm x \<le> 0) = (x = 0)"
675 by (simp add: order_le_less)
677 lemma norm_minus_cancel [simp]:
678 fixes x :: "'a::real_normed_vector"
679 shows "norm (- x) = norm x"
681 have "norm (- x) = norm (scaleR (- 1) x)"
682 by (simp only: scaleR_minus_left scaleR_one)
683 also have "\<dots> = \<bar>- 1\<bar> * norm x"
684 by (rule norm_scaleR)
685 finally show ?thesis by simp
688 lemma norm_minus_commute:
689 fixes a b :: "'a::real_normed_vector"
690 shows "norm (a - b) = norm (b - a)"
692 have "norm (- (b - a)) = norm (b - a)"
693 by (rule norm_minus_cancel)
697 lemma norm_triangle_ineq2:
698 fixes a b :: "'a::real_normed_vector"
699 shows "norm a - norm b \<le> norm (a - b)"
701 have "norm (a - b + b) \<le> norm (a - b) + norm b"
702 by (rule norm_triangle_ineq)
706 lemma norm_triangle_ineq3:
707 fixes a b :: "'a::real_normed_vector"
708 shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
709 apply (subst abs_le_iff)
711 apply (rule norm_triangle_ineq2)
712 apply (subst norm_minus_commute)
713 apply (rule norm_triangle_ineq2)
716 lemma norm_triangle_ineq4:
717 fixes a b :: "'a::real_normed_vector"
718 shows "norm (a - b) \<le> norm a + norm b"
720 have "norm (a + - b) \<le> norm a + norm (- b)"
721 by (rule norm_triangle_ineq)
722 then show ?thesis by simp
725 lemma norm_diff_ineq:
726 fixes a b :: "'a::real_normed_vector"
727 shows "norm a - norm b \<le> norm (a + b)"
729 have "norm a - norm (- b) \<le> norm (a - - b)"
730 by (rule norm_triangle_ineq2)
734 lemma norm_diff_triangle_ineq:
735 fixes a b c d :: "'a::real_normed_vector"
736 shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
738 have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
739 by (simp add: algebra_simps)
740 also have "\<dots> \<le> norm (a - c) + norm (b - d)"
741 by (rule norm_triangle_ineq)
742 finally show ?thesis .
745 lemma norm_triangle_mono:
746 fixes a b :: "'a::real_normed_vector"
747 shows "\<lbrakk>norm a \<le> r; norm b \<le> s\<rbrakk> \<Longrightarrow> norm (a + b) \<le> r + s"
748 by (metis add_mono_thms_linordered_semiring(1) norm_triangle_ineq order.trans)
750 lemma abs_norm_cancel [simp]:
751 fixes a :: "'a::real_normed_vector"
752 shows "\<bar>norm a\<bar> = norm a"
753 by (rule abs_of_nonneg [OF norm_ge_zero])
756 fixes x y :: "'a::real_normed_vector"
757 shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
758 by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
760 lemma norm_mult_less:
761 fixes x y :: "'a::real_normed_algebra"
762 shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
763 apply (rule order_le_less_trans [OF norm_mult_ineq])
764 apply (simp add: mult_strict_mono')
767 lemma norm_of_real [simp]:
768 "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
769 unfolding of_real_def by simp
771 lemma norm_numeral [simp]:
772 "norm (numeral w::'a::real_normed_algebra_1) = numeral w"
773 by (subst of_real_numeral [symmetric], subst norm_of_real, simp)
775 lemma norm_neg_numeral [simp]:
776 "norm (- numeral w::'a::real_normed_algebra_1) = numeral w"
777 by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp)
779 lemma norm_of_int [simp]:
780 "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
781 by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
783 lemma norm_of_nat [simp]:
784 "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
785 apply (subst of_real_of_nat_eq [symmetric])
786 apply (subst norm_of_real, simp)
789 lemma nonzero_norm_inverse:
790 fixes a :: "'a::real_normed_div_algebra"
791 shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
792 apply (rule inverse_unique [symmetric])
793 apply (simp add: norm_mult [symmetric])
797 fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
798 shows "norm (inverse a) = inverse (norm a)"
799 apply (case_tac "a = 0", simp)
800 apply (erule nonzero_norm_inverse)
803 lemma nonzero_norm_divide:
804 fixes a b :: "'a::real_normed_field"
805 shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
806 by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
809 fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
810 shows "norm (a / b) = norm a / norm b"
811 by (simp add: divide_inverse norm_mult norm_inverse)
813 lemma norm_power_ineq:
814 fixes x :: "'a::{real_normed_algebra_1}"
815 shows "norm (x ^ n) \<le> norm x ^ n"
817 case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
820 have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
821 by (rule norm_mult_ineq)
822 also from Suc have "\<dots> \<le> norm x * norm x ^ n"
823 using norm_ge_zero by (rule mult_left_mono)
824 finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
829 fixes x :: "'a::{real_normed_div_algebra}"
830 shows "norm (x ^ n) = norm x ^ n"
831 by (induct n) (simp_all add: norm_mult)
834 fixes f :: "'a \<Rightarrow> 'b::{comm_semiring_1,real_normed_div_algebra}"
835 shows "setprod (\<lambda>x. norm(f x)) A = norm (setprod f A)"
836 proof (cases "finite A")
837 case True then show ?thesis
838 by (induct A rule: finite_induct) (auto simp: norm_mult)
840 case False then show ?thesis
841 by (metis norm_one setprod.infinite)
845 subsection {* Metric spaces *}
847 class metric_space = open_dist +
848 assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y"
849 assumes dist_triangle2: "dist x y \<le> dist x z + dist y z"
852 lemma dist_self [simp]: "dist x x = 0"
855 lemma zero_le_dist [simp]: "0 \<le> dist x y"
856 using dist_triangle2 [of x x y] by simp
858 lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y"
859 by (simp add: less_le)
861 lemma dist_not_less_zero [simp]: "\<not> dist x y < 0"
862 by (simp add: not_less)
864 lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y"
865 by (simp add: le_less)
867 lemma dist_commute: "dist x y = dist y x"
868 proof (rule order_antisym)
869 show "dist x y \<le> dist y x"
870 using dist_triangle2 [of x y x] by simp
871 show "dist y x \<le> dist x y"
872 using dist_triangle2 [of y x y] by simp
875 lemma dist_triangle: "dist x z \<le> dist x y + dist y z"
876 using dist_triangle2 [of x z y] by (simp add: dist_commute)
878 lemma dist_triangle3: "dist x y \<le> dist a x + dist a y"
879 using dist_triangle2 [of x y a] by (simp add: dist_commute)
881 lemma dist_triangle_alt:
882 shows "dist y z <= dist x y + dist x z"
883 by (rule dist_triangle3)
886 shows "x \<noteq> y ==> 0 < dist x y"
887 by (simp add: zero_less_dist_iff)
890 shows "x \<noteq> y \<longleftrightarrow> 0 < dist x y"
891 by (simp add: zero_less_dist_iff)
893 lemma dist_triangle_le:
894 shows "dist x z + dist y z <= e \<Longrightarrow> dist x y <= e"
895 by (rule order_trans [OF dist_triangle2])
897 lemma dist_triangle_lt:
898 shows "dist x z + dist y z < e ==> dist x y < e"
899 by (rule le_less_trans [OF dist_triangle2])
901 lemma dist_triangle_half_l:
902 shows "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e"
903 by (rule dist_triangle_lt [where z=y], simp)
905 lemma dist_triangle_half_r:
906 shows "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e"
907 by (rule dist_triangle_half_l, simp_all add: dist_commute)
909 subclass topological_space
911 have "\<exists>e::real. 0 < e"
912 by (fast intro: zero_less_one)
913 then show "open UNIV"
914 unfolding open_dist by simp
916 fix S T assume "open S" "open T"
917 then show "open (S \<inter> T)"
920 apply (drule (1) bspec)+
921 apply (clarify, rename_tac r s)
922 apply (rule_tac x="min r s" in exI, simp)
925 fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)"
926 unfolding open_dist by fast
929 lemma open_ball: "open {y. dist x y < d}"
930 proof (unfold open_dist, intro ballI)
931 fix y assume *: "y \<in> {y. dist x y < d}"
932 then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
933 by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt)
936 subclass first_countable_topology
939 show "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
940 proof (safe intro!: exI[of _ "\<lambda>n. {y. dist x y < inverse (Suc n)}"])
941 fix S assume "open S" "x \<in> S"
942 then obtain e where e: "0 < e" and "{y. dist x y < e} \<subseteq> S"
943 by (auto simp: open_dist subset_eq dist_commute)
945 from e obtain i where "inverse (Suc i) < e"
946 by (auto dest!: reals_Archimedean)
947 then have "{y. dist x y < inverse (Suc i)} \<subseteq> {y. dist x y < e}"
949 ultimately show "\<exists>i. {y. dist x y < inverse (Suc i)} \<subseteq> S"
951 qed (auto intro: open_ball)
956 instance metric_space \<subseteq> t2_space
958 fix x y :: "'a::metric_space"
959 assume xy: "x \<noteq> y"
960 let ?U = "{y'. dist x y' < dist x y / 2}"
961 let ?V = "{x'. dist y x' < dist x y / 2}"
962 have th0: "\<And>d x y z. (d x z :: real) \<le> d x y + d y z \<Longrightarrow> d y z = d z y
963 \<Longrightarrow> \<not>(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith
964 have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
965 using dist_pos_lt[OF xy] th0[of dist, OF dist_triangle dist_commute]
966 using open_ball[of _ "dist x y / 2"] by auto
967 then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
971 text {* Every normed vector space is a metric space. *}
973 instance real_normed_vector < metric_space
975 fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y"
976 unfolding dist_norm by simp
978 fix x y z :: 'a show "dist x y \<le> dist x z + dist y z"
980 using norm_triangle_ineq4 [of "x - z" "y - z"] by simp
983 subsection {* Class instances for real numbers *}
985 instantiation real :: real_normed_field
988 definition dist_real_def:
989 "dist x y = \<bar>x - y\<bar>"
991 definition open_real_def [code del]:
992 "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
994 definition real_norm_def [simp]:
995 "norm r = \<bar>r\<bar>"
998 apply (intro_classes, unfold real_norm_def real_scaleR_def)
999 apply (rule dist_real_def)
1000 apply (rule open_real_def)
1001 apply (simp add: sgn_real_def)
1002 apply (rule abs_eq_0)
1003 apply (rule abs_triangle_ineq)
1004 apply (rule abs_mult)
1005 apply (rule abs_mult)
1010 declare [[code abort: "open :: real set \<Rightarrow> bool"]]
1012 instance real :: linorder_topology
1014 show "(open :: real set \<Rightarrow> bool) = generate_topology (range lessThan \<union> range greaterThan)"
1015 proof (rule ext, safe)
1016 fix S :: "real set" assume "open S"
1017 then obtain f where "\<forall>x\<in>S. 0 < f x \<and> (\<forall>y. dist y x < f x \<longrightarrow> y \<in> S)"
1018 unfolding open_real_def bchoice_iff ..
1019 then have *: "S = (\<Union>x\<in>S. {x - f x <..} \<inter> {..< x + f x})"
1020 by (fastforce simp: dist_real_def)
1021 show "generate_topology (range lessThan \<union> range greaterThan) S"
1023 apply (intro generate_topology_Union generate_topology.Int)
1024 apply (auto intro: generate_topology.Basis)
1027 fix S :: "real set" assume "generate_topology (range lessThan \<union> range greaterThan) S"
1028 moreover have "\<And>a::real. open {..<a}"
1029 unfolding open_real_def dist_real_def
1031 fix x a :: real assume "x < a"
1032 hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
1033 thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
1035 moreover have "\<And>a::real. open {a <..}"
1036 unfolding open_real_def dist_real_def
1038 fix x a :: real assume "a < x"
1039 hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
1040 thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
1042 ultimately show "open S"
1047 instance real :: linear_continuum_topology ..
1049 lemmas open_real_greaterThan = open_greaterThan[where 'a=real]
1050 lemmas open_real_lessThan = open_lessThan[where 'a=real]
1051 lemmas open_real_greaterThanLessThan = open_greaterThanLessThan[where 'a=real]
1052 lemmas closed_real_atMost = closed_atMost[where 'a=real]
1053 lemmas closed_real_atLeast = closed_atLeast[where 'a=real]
1054 lemmas closed_real_atLeastAtMost = closed_atLeastAtMost[where 'a=real]
1056 subsection {* Extra type constraints *}
1058 text {* Only allow @{term "open"} in class @{text topological_space}. *}
1060 setup {* Sign.add_const_constraint
1061 (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
1063 text {* Only allow @{term dist} in class @{text metric_space}. *}
1065 setup {* Sign.add_const_constraint
1066 (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
1068 text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
1070 setup {* Sign.add_const_constraint
1071 (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
1073 subsection {* Sign function *}
1076 "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
1077 by (simp add: sgn_div_norm)
1079 lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
1080 by (simp add: sgn_div_norm)
1082 lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
1083 by (simp add: sgn_div_norm)
1085 lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
1086 by (simp add: sgn_div_norm)
1089 "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
1090 by (simp add: sgn_div_norm mult_ac)
1092 lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
1093 by (simp add: sgn_div_norm)
1096 "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
1097 unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
1100 fixes x y :: "'a::real_normed_div_algebra"
1101 shows "sgn (x * y) = sgn x * sgn y"
1102 by (simp add: sgn_div_norm norm_mult mult_commute)
1104 lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
1105 by (simp add: sgn_div_norm divide_inverse)
1107 lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
1108 unfolding real_sgn_eq by simp
1110 lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
1111 unfolding real_sgn_eq by simp
1113 lemma norm_conv_dist: "norm x = dist x 0"
1114 unfolding dist_norm by simp
1116 subsection {* Bounded Linear and Bilinear Operators *}
1118 locale linear = additive f for f :: "'a::real_vector \<Rightarrow> 'b::real_vector" +
1119 assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
1122 assumes "\<And>x y. f (x + y) = f x + f y"
1123 assumes "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x"
1125 by default (rule assms)+
1127 locale bounded_linear = linear f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" +
1128 assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
1132 "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
1134 obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
1135 using bounded by fast
1137 proof (intro exI impI conjI allI)
1139 by (rule order_less_le_trans [OF zero_less_one max.cobounded1])
1142 have "norm (f x) \<le> norm x * K" using K .
1143 also have "\<dots> \<le> norm x * max 1 K"
1144 by (rule mult_left_mono [OF max.cobounded2 norm_ge_zero])
1145 finally show "norm (f x) \<le> norm x * max 1 K" .
1149 lemma nonneg_bounded:
1150 "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
1153 show ?thesis by (auto intro: order_less_imp_le)
1158 lemma bounded_linear_intro:
1159 assumes "\<And>x y. f (x + y) = f x + f y"
1160 assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)"
1161 assumes "\<And>x. norm (f x) \<le> norm x * K"
1162 shows "bounded_linear f"
1163 by default (fast intro: assms)+
1165 locale bounded_bilinear =
1166 fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
1167 \<Rightarrow> 'c::real_normed_vector"
1169 assumes add_left: "prod (a + a') b = prod a b + prod a' b"
1170 assumes add_right: "prod a (b + b') = prod a b + prod a b'"
1171 assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
1172 assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
1173 assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
1177 "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
1178 apply (cut_tac bounded, erule exE)
1179 apply (rule_tac x="max 1 K" in exI, safe)
1180 apply (rule order_less_le_trans [OF zero_less_one max.cobounded1])
1181 apply (drule spec, drule spec, erule order_trans)
1182 apply (rule mult_left_mono [OF max.cobounded2])
1183 apply (intro mult_nonneg_nonneg norm_ge_zero)
1186 lemma nonneg_bounded:
1187 "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
1190 show ?thesis by (auto intro: order_less_imp_le)
1193 lemma additive_right: "additive (\<lambda>b. prod a b)"
1194 by (rule additive.intro, rule add_right)
1196 lemma additive_left: "additive (\<lambda>a. prod a b)"
1197 by (rule additive.intro, rule add_left)
1199 lemma zero_left: "prod 0 b = 0"
1200 by (rule additive.zero [OF additive_left])
1202 lemma zero_right: "prod a 0 = 0"
1203 by (rule additive.zero [OF additive_right])
1205 lemma minus_left: "prod (- a) b = - prod a b"
1206 by (rule additive.minus [OF additive_left])
1208 lemma minus_right: "prod a (- b) = - prod a b"
1209 by (rule additive.minus [OF additive_right])
1212 "prod (a - a') b = prod a b - prod a' b"
1213 by (rule additive.diff [OF additive_left])
1216 "prod a (b - b') = prod a b - prod a b'"
1217 by (rule additive.diff [OF additive_right])
1219 lemma bounded_linear_left:
1220 "bounded_linear (\<lambda>a. a ** b)"
1221 apply (cut_tac bounded, safe)
1222 apply (rule_tac K="norm b * K" in bounded_linear_intro)
1223 apply (rule add_left)
1224 apply (rule scaleR_left)
1225 apply (simp add: mult_ac)
1228 lemma bounded_linear_right:
1229 "bounded_linear (\<lambda>b. a ** b)"
1230 apply (cut_tac bounded, safe)
1231 apply (rule_tac K="norm a * K" in bounded_linear_intro)
1232 apply (rule add_right)
1233 apply (rule scaleR_right)
1234 apply (simp add: mult_ac)
1237 lemma prod_diff_prod:
1238 "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
1239 by (simp add: diff_left diff_right)
1243 lemma bounded_linear_ident[simp]: "bounded_linear (\<lambda>x. x)"
1244 by default (auto intro!: exI[of _ 1])
1246 lemma bounded_linear_zero[simp]: "bounded_linear (\<lambda>x. 0)"
1247 by default (auto intro!: exI[of _ 1])
1249 lemma bounded_linear_add:
1250 assumes "bounded_linear f"
1251 assumes "bounded_linear g"
1252 shows "bounded_linear (\<lambda>x. f x + g x)"
1254 interpret f: bounded_linear f by fact
1255 interpret g: bounded_linear g by fact
1258 from f.bounded obtain Kf where Kf: "\<And>x. norm (f x) \<le> norm x * Kf" by blast
1259 from g.bounded obtain Kg where Kg: "\<And>x. norm (g x) \<le> norm x * Kg" by blast
1260 show "\<exists>K. \<forall>x. norm (f x + g x) \<le> norm x * K"
1261 using add_mono[OF Kf Kg]
1262 by (intro exI[of _ "Kf + Kg"]) (auto simp: field_simps intro: norm_triangle_ineq order_trans)
1263 qed (simp_all add: f.add g.add f.scaleR g.scaleR scaleR_right_distrib)
1266 lemma bounded_linear_minus:
1267 assumes "bounded_linear f"
1268 shows "bounded_linear (\<lambda>x. - f x)"
1270 interpret f: bounded_linear f by fact
1271 show ?thesis apply (unfold_locales)
1272 apply (simp add: f.add)
1273 apply (simp add: f.scaleR)
1274 apply (simp add: f.bounded)
1278 lemma bounded_linear_compose:
1279 assumes "bounded_linear f"
1280 assumes "bounded_linear g"
1281 shows "bounded_linear (\<lambda>x. f (g x))"
1283 interpret f: bounded_linear f by fact
1284 interpret g: bounded_linear g by fact
1285 show ?thesis proof (unfold_locales)
1286 fix x y show "f (g (x + y)) = f (g x) + f (g y)"
1287 by (simp only: f.add g.add)
1289 fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
1290 by (simp only: f.scaleR g.scaleR)
1293 obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
1295 obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
1296 show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
1297 proof (intro exI allI)
1299 have "norm (f (g x)) \<le> norm (g x) * Kf"
1301 also have "\<dots> \<le> (norm x * Kg) * Kf"
1302 using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
1303 also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
1304 by (rule mult_assoc)
1305 finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
1310 lemma bounded_bilinear_mult:
1311 "bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)"
1312 apply (rule bounded_bilinear.intro)
1313 apply (rule distrib_right)
1314 apply (rule distrib_left)
1315 apply (rule mult_scaleR_left)
1316 apply (rule mult_scaleR_right)
1317 apply (rule_tac x="1" in exI)
1318 apply (simp add: norm_mult_ineq)
1321 lemma bounded_linear_mult_left:
1322 "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)"
1323 using bounded_bilinear_mult
1324 by (rule bounded_bilinear.bounded_linear_left)
1326 lemma bounded_linear_mult_right:
1327 "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)"
1328 using bounded_bilinear_mult
1329 by (rule bounded_bilinear.bounded_linear_right)
1331 lemmas bounded_linear_mult_const =
1332 bounded_linear_mult_left [THEN bounded_linear_compose]
1334 lemmas bounded_linear_const_mult =
1335 bounded_linear_mult_right [THEN bounded_linear_compose]
1337 lemma bounded_linear_divide:
1338 "bounded_linear (\<lambda>x::'a::real_normed_field. x / y)"
1339 unfolding divide_inverse by (rule bounded_linear_mult_left)
1341 lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR"
1342 apply (rule bounded_bilinear.intro)
1343 apply (rule scaleR_left_distrib)
1344 apply (rule scaleR_right_distrib)
1346 apply (rule scaleR_left_commute)
1347 apply (rule_tac x="1" in exI, simp)
1350 lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)"
1351 using bounded_bilinear_scaleR
1352 by (rule bounded_bilinear.bounded_linear_left)
1354 lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)"
1355 using bounded_bilinear_scaleR
1356 by (rule bounded_bilinear.bounded_linear_right)
1358 lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)"
1359 unfolding of_real_def by (rule bounded_linear_scaleR_left)
1361 lemma real_bounded_linear:
1362 fixes f :: "real \<Rightarrow> real"
1363 shows "bounded_linear f \<longleftrightarrow> (\<exists>c::real. f = (\<lambda>x. x * c))"
1365 { fix x assume "bounded_linear f"
1366 then interpret bounded_linear f .
1367 from scaleR[of x 1] have "f x = x * f 1"
1370 by (auto intro: exI[of _ "f 1"] bounded_linear_mult_left)
1373 instance real_normed_algebra_1 \<subseteq> perfect_space
1376 show "\<not> open {x}"
1377 unfolding open_dist dist_norm
1378 by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp)
1381 subsection {* Filters and Limits on Metric Space *}
1383 lemma eventually_nhds_metric:
1384 fixes a :: "'a :: metric_space"
1385 shows "eventually P (nhds a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. dist x a < d \<longrightarrow> P x)"
1386 unfolding eventually_nhds open_dist
1389 apply (rule_tac x="{x. dist x a < d}" in exI, simp)
1391 apply (rule_tac x="d - dist x a" in exI, clarsimp)
1392 apply (simp only: less_diff_eq)
1393 apply (erule le_less_trans [OF dist_triangle])
1396 lemma eventually_at:
1397 fixes a :: "'a :: metric_space"
1398 shows "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a < d \<longrightarrow> P x)"
1399 unfolding eventually_at_filter eventually_nhds_metric by (auto simp: dist_nz)
1401 lemma eventually_at_le:
1402 fixes a :: "'a::metric_space"
1403 shows "eventually P (at a within S) \<longleftrightarrow> (\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<and> dist x a \<le> d \<longrightarrow> P x)"
1404 unfolding eventually_at_filter eventually_nhds_metric
1406 apply (rule_tac x="d / 2" in exI)
1411 fixes l :: "'a :: metric_space"
1412 assumes "\<And>e. 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F"
1413 shows "(f ---> l) F"
1414 apply (rule topological_tendstoI)
1415 apply (simp add: open_dist)
1416 apply (drule (1) bspec, clarify)
1418 apply (erule eventually_elim1, simp)
1422 fixes l :: "'a :: metric_space"
1423 shows "(f ---> l) F \<Longrightarrow> 0 < e \<Longrightarrow> eventually (\<lambda>x. dist (f x) l < e) F"
1424 apply (drule_tac S="{x. dist x l < e}" in topological_tendstoD)
1425 apply (clarsimp simp add: open_dist)
1426 apply (rule_tac x="e - dist x l" in exI, clarsimp)
1427 apply (simp only: less_diff_eq)
1428 apply (erule le_less_trans [OF dist_triangle])
1434 fixes l :: "'a :: metric_space"
1435 shows "(f ---> l) F \<longleftrightarrow> (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) F)"
1436 using tendstoI tendstoD by fast
1438 lemma metric_tendsto_imp_tendsto:
1439 fixes a :: "'a :: metric_space" and b :: "'b :: metric_space"
1440 assumes f: "(f ---> a) F"
1441 assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F"
1442 shows "(g ---> b) F"
1443 proof (rule tendstoI)
1444 fix e :: real assume "0 < e"
1445 with f have "eventually (\<lambda>x. dist (f x) a < e) F" by (rule tendstoD)
1446 with le show "eventually (\<lambda>x. dist (g x) b < e) F"
1447 using le_less_trans by (rule eventually_elim2)
1450 lemma filterlim_real_sequentially: "LIM x sequentially. real x :> at_top"
1451 unfolding filterlim_at_top
1453 apply (rule_tac c="natceiling (Z + 1)" in eventually_sequentiallyI)
1454 apply (auto simp: natceiling_le_eq)
1457 subsubsection {* Limits of Sequences *}
1459 lemma LIMSEQ_def: "X ----> (L::'a::metric_space) \<longleftrightarrow> (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. dist (X n) L < r)"
1460 unfolding tendsto_iff eventually_sequentially ..
1462 lemma LIMSEQ_iff_nz: "X ----> (L::'a::metric_space) = (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)"
1463 unfolding LIMSEQ_def by (metis Suc_leD zero_less_Suc)
1465 lemma metric_LIMSEQ_I:
1466 "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r) \<Longrightarrow> X ----> (L::'a::metric_space)"
1467 by (simp add: LIMSEQ_def)
1469 lemma metric_LIMSEQ_D:
1470 "\<lbrakk>X ----> (L::'a::metric_space); 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r"
1471 by (simp add: LIMSEQ_def)
1474 subsubsection {* Limits of Functions *}
1476 lemma LIM_def: "f -- (a::'a::metric_space) --> (L::'b::metric_space) =
1477 (\<forall>r > 0. \<exists>s > 0. \<forall>x. x \<noteq> a & dist x a < s
1478 --> dist (f x) L < r)"
1479 unfolding tendsto_iff eventually_at by simp
1482 "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r)
1483 \<Longrightarrow> f -- (a::'a::metric_space) --> (L::'b::metric_space)"
1484 by (simp add: LIM_def)
1487 "\<lbrakk>f -- (a::'a::metric_space) --> (L::'b::metric_space); 0 < r\<rbrakk>
1488 \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> dist x a < s \<longrightarrow> dist (f x) L < r"
1489 by (simp add: LIM_def)
1491 lemma metric_LIM_imp_LIM:
1492 assumes f: "f -- a --> (l::'a::metric_space)"
1493 assumes le: "\<And>x. x \<noteq> a \<Longrightarrow> dist (g x) m \<le> dist (f x) l"
1494 shows "g -- a --> (m::'b::metric_space)"
1495 by (rule metric_tendsto_imp_tendsto [OF f]) (auto simp add: eventually_at_topological le)
1497 lemma metric_LIM_equal2:
1499 assumes 2: "\<And>x. \<lbrakk>x \<noteq> a; dist x a < R\<rbrakk> \<Longrightarrow> f x = g x"
1500 shows "g -- a --> l \<Longrightarrow> f -- (a::'a::metric_space) --> l"
1501 apply (rule topological_tendstoI)
1502 apply (drule (2) topological_tendstoD)
1503 apply (simp add: eventually_at, safe)
1504 apply (rule_tac x="min d R" in exI, safe)
1509 lemma metric_LIM_compose2:
1510 assumes f: "f -- (a::'a::metric_space) --> b"
1511 assumes g: "g -- b --> c"
1512 assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> b"
1513 shows "(\<lambda>x. g (f x)) -- a --> c"
1515 by (intro tendsto_compose_eventually[OF g f]) (auto simp: eventually_at)
1517 lemma metric_isCont_LIM_compose2:
1518 fixes f :: "'a :: metric_space \<Rightarrow> _"
1519 assumes f [unfolded isCont_def]: "isCont f a"
1520 assumes g: "g -- f a --> l"
1521 assumes inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> dist x a < d \<longrightarrow> f x \<noteq> f a"
1522 shows "(\<lambda>x. g (f x)) -- a --> l"
1523 by (rule metric_LIM_compose2 [OF f g inj])
1525 subsection {* Complete metric spaces *}
1527 subsection {* Cauchy sequences *}
1529 definition (in metric_space) Cauchy :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
1530 "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < e)"
1532 subsection {* Cauchy Sequences *}
1534 lemma metric_CauchyI:
1535 "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X"
1536 by (simp add: Cauchy_def)
1538 lemma metric_CauchyD:
1539 "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e"
1540 by (simp add: Cauchy_def)
1542 lemma metric_Cauchy_iff2:
1543 "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < inverse(real (Suc j))))"
1544 apply (simp add: Cauchy_def, auto)
1545 apply (drule reals_Archimedean, safe)
1546 apply (drule_tac x = n in spec, auto)
1547 apply (rule_tac x = M in exI, auto)
1548 apply (drule_tac x = m in spec, simp)
1549 apply (drule_tac x = na in spec, auto)
1553 "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))"
1554 unfolding metric_Cauchy_iff2 dist_real_def ..
1556 lemma Cauchy_subseq_Cauchy:
1557 "\<lbrakk> Cauchy X; subseq f \<rbrakk> \<Longrightarrow> Cauchy (X o f)"
1558 apply (auto simp add: Cauchy_def)
1559 apply (drule_tac x=e in spec, clarify)
1560 apply (rule_tac x=M in exI, clarify)
1561 apply (blast intro: le_trans [OF _ seq_suble] dest!: spec)
1564 theorem LIMSEQ_imp_Cauchy:
1565 assumes X: "X ----> a" shows "Cauchy X"
1566 proof (rule metric_CauchyI)
1567 fix e::real assume "0 < e"
1568 hence "0 < e/2" by simp
1569 with X have "\<exists>N. \<forall>n\<ge>N. dist (X n) a < e/2" by (rule metric_LIMSEQ_D)
1570 then obtain N where N: "\<forall>n\<ge>N. dist (X n) a < e/2" ..
1571 show "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < e"
1572 proof (intro exI allI impI)
1573 fix m assume "N \<le> m"
1574 hence m: "dist (X m) a < e/2" using N by fast
1575 fix n assume "N \<le> n"
1576 hence n: "dist (X n) a < e/2" using N by fast
1577 have "dist (X m) (X n) \<le> dist (X m) a + dist (X n) a"
1578 by (rule dist_triangle2)
1579 also from m n have "\<dots> < e" by simp
1580 finally show "dist (X m) (X n) < e" .
1584 lemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X"
1585 unfolding convergent_def
1586 by (erule exE, erule LIMSEQ_imp_Cauchy)
1588 subsubsection {* Cauchy Sequences are Convergent *}
1590 class complete_space = metric_space +
1591 assumes Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X"
1593 lemma Cauchy_convergent_iff:
1594 fixes X :: "nat \<Rightarrow> 'a::complete_space"
1595 shows "Cauchy X = convergent X"
1596 by (fast intro: Cauchy_convergent convergent_Cauchy)
1598 subsection {* The set of real numbers is a complete metric space *}
1601 Proof that Cauchy sequences converge based on the one from
1602 @{url "http://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html"}
1606 If sequence @{term "X"} is Cauchy, then its limit is the lub of
1607 @{term "{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}"}
1610 lemma increasing_LIMSEQ:
1611 fixes f :: "nat \<Rightarrow> real"
1612 assumes inc: "\<And>n. f n \<le> f (Suc n)"
1613 and bdd: "\<And>n. f n \<le> l"
1614 and en: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e"
1616 proof (rule increasing_tendsto)
1617 fix x assume "x < l"
1618 with dense[of 0 "l - x"] obtain e where "0 < e" "e < l - x"
1620 from en[OF `0 < e`] obtain n where "l - e \<le> f n"
1621 by (auto simp: field_simps)
1622 with `e < l - x` `0 < e` have "x < f n" by simp
1623 with incseq_SucI[of f, OF inc] show "eventually (\<lambda>n. x < f n) sequentially"
1624 by (auto simp: eventually_sequentially incseq_def intro: less_le_trans)
1625 qed (insert bdd, auto)
1627 lemma real_Cauchy_convergent:
1628 fixes X :: "nat \<Rightarrow> real"
1629 assumes X: "Cauchy X"
1630 shows "convergent X"
1632 def S \<equiv> "{x::real. \<exists>N. \<forall>n\<ge>N. x < X n}"
1633 then have mem_S: "\<And>N x. \<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S" by auto
1635 { fix N x assume N: "\<forall>n\<ge>N. X n < x"
1636 fix y::real assume "y \<in> S"
1637 hence "\<exists>M. \<forall>n\<ge>M. y < X n"
1638 by (simp add: S_def)
1639 then obtain M where "\<forall>n\<ge>M. y < X n" ..
1640 hence "y < X (max M N)" by simp
1641 also have "\<dots> < x" using N by simp
1642 finally have "y \<le> x"
1643 by (rule order_less_imp_le) }
1644 note bound_isUb = this
1646 obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < 1"
1647 using X[THEN metric_CauchyD, OF zero_less_one] by auto
1648 hence N: "\<forall>n\<ge>N. dist (X n) (X N) < 1" by simp
1649 have [simp]: "S \<noteq> {}"
1650 proof (intro exI ex_in_conv[THEN iffD1])
1651 from N have "\<forall>n\<ge>N. X N - 1 < X n"
1652 by (simp add: abs_diff_less_iff dist_real_def)
1653 thus "X N - 1 \<in> S" by (rule mem_S)
1655 have [simp]: "bdd_above S"
1657 from N have "\<forall>n\<ge>N. X n < X N + 1"
1658 by (simp add: abs_diff_less_iff dist_real_def)
1659 thus "\<And>s. s \<in> S \<Longrightarrow> s \<le> X N + 1"
1660 by (rule bound_isUb)
1662 have "X ----> Sup S"
1663 proof (rule metric_LIMSEQ_I)
1664 fix r::real assume "0 < r"
1665 hence r: "0 < r/2" by simp
1666 obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. dist (X n) (X m) < r/2"
1667 using metric_CauchyD [OF X r] by auto
1668 hence "\<forall>n\<ge>N. dist (X n) (X N) < r/2" by simp
1669 hence N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2"
1670 by (simp only: dist_real_def abs_diff_less_iff)
1672 from N have "\<forall>n\<ge>N. X N - r/2 < X n" by fast
1673 hence "X N - r/2 \<in> S" by (rule mem_S)
1674 hence 1: "X N - r/2 \<le> Sup S" by (simp add: cSup_upper)
1676 from N have "\<forall>n\<ge>N. X n < X N + r/2" by fast
1677 from bound_isUb[OF this]
1678 have 2: "Sup S \<le> X N + r/2"
1679 by (intro cSup_least) simp_all
1681 show "\<exists>N. \<forall>n\<ge>N. dist (X n) (Sup S) < r"
1682 proof (intro exI allI impI)
1683 fix n assume n: "N \<le> n"
1684 from N n have "X n < X N + r/2" and "X N - r/2 < X n" by simp+
1685 thus "dist (X n) (Sup S) < r" using 1 2
1686 by (simp add: abs_diff_less_iff dist_real_def)
1689 then show ?thesis unfolding convergent_def by auto
1692 instance real :: complete_space
1693 by intro_classes (rule real_Cauchy_convergent)
1695 class banach = real_normed_vector + complete_space
1697 instance real :: banach by default
1699 lemma tendsto_at_topI_sequentially:
1700 fixes f :: "real \<Rightarrow> real"
1701 assumes mono: "mono f"
1702 assumes limseq: "(\<lambda>n. f (real n)) ----> y"
1703 shows "(f ---> y) at_top"
1704 proof (rule tendstoI)
1705 fix e :: real assume "0 < e"
1706 with limseq obtain N :: nat where N: "\<And>n. N \<le> n \<Longrightarrow> \<bar>f (real n) - y\<bar> < e"
1707 by (auto simp: LIMSEQ_def dist_real_def)
1709 obtain n where "x \<le> real_of_nat n"
1710 using ex_le_of_nat[of x] ..
1711 note monoD[OF mono this]
1712 also have "f (real_of_nat n) \<le> y"
1713 by (rule LIMSEQ_le_const[OF limseq])
1714 (auto intro: exI[of _ n] monoD[OF mono] simp: real_eq_of_nat[symmetric])
1715 finally have "f x \<le> y" . }
1717 have "eventually (\<lambda>x. real N \<le> x) at_top"
1718 by (rule eventually_ge_at_top)
1719 then show "eventually (\<lambda>x. dist (f x) y < e) at_top"
1720 proof eventually_elim
1721 fix x assume N': "real N \<le> x"
1722 with N[of N] le have "y - f (real N) < e" by auto
1723 moreover note monoD[OF mono N']
1724 ultimately show "dist (f x) y < e"
1725 using le[of x] by (auto simp: dist_real_def field_simps)