src/Pure/Tools/find_theorems.ML
 author wenzelm Mon Oct 09 21:12:22 2017 +0200 (21 months ago) changeset 66822 4642cf4a7ebb parent 64984 2f72056cf78a child 67147 dea94b1aabc3 permissions -rw-r--r--
tuned signature;
```     1 (*  Title:      Pure/Tools/find_theorems.ML
```
```     2     Author:     Rafal Kolanski and Gerwin Klein, NICTA
```
```     3     Author:     Lars Noschinski and Alexander Krauss, TU Muenchen
```
```     4
```
```     5 Retrieve theorems from proof context.
```
```     6 *)
```
```     7
```
```     8 signature FIND_THEOREMS =
```
```     9 sig
```
```    10   datatype 'term criterion =
```
```    11     Name of string | Intro | Elim | Dest | Solves | Simp of 'term | Pattern of 'term
```
```    12   type 'term query = {
```
```    13     goal: thm option,
```
```    14     limit: int option,
```
```    15     rem_dups: bool,
```
```    16     criteria: (bool * 'term criterion) list
```
```    17   }
```
```    18   val query_parser: (bool * string criterion) list parser
```
```    19   val read_query: Position.T -> string -> (bool * string criterion) list
```
```    20   val find_theorems: Proof.context -> thm option -> int option -> bool ->
```
```    21     (bool * term criterion) list -> int option * (Facts.ref * thm) list
```
```    22   val find_theorems_cmd: Proof.context -> thm option -> int option -> bool ->
```
```    23     (bool * string criterion) list -> int option * (Facts.ref * thm) list
```
```    24   val pretty_thm: Proof.context -> Facts.ref * thm -> Pretty.T
```
```    25   val pretty_theorems: Proof.state ->
```
```    26     int option -> bool -> (bool * string criterion) list -> Pretty.T
```
```    27   val proof_state: Toplevel.state -> Proof.state
```
```    28 end;
```
```    29
```
```    30 structure Find_Theorems: FIND_THEOREMS =
```
```    31 struct
```
```    32
```
```    33 (** search criteria **)
```
```    34
```
```    35 datatype 'term criterion =
```
```    36   Name of string | Intro | Elim | Dest | Solves | Simp of 'term | Pattern of 'term;
```
```    37
```
```    38 fun read_criterion _ (Name name) = Name name
```
```    39   | read_criterion _ Intro = Intro
```
```    40   | read_criterion _ Elim = Elim
```
```    41   | read_criterion _ Dest = Dest
```
```    42   | read_criterion _ Solves = Solves
```
```    43   | read_criterion ctxt (Simp str) = Simp (Proof_Context.read_term_pattern ctxt str)
```
```    44   | read_criterion ctxt (Pattern str) = Pattern (Proof_Context.read_term_pattern ctxt str);
```
```    45
```
```    46 fun pretty_criterion ctxt (b, c) =
```
```    47   let
```
```    48     fun prfx s = if b then s else "-" ^ s;
```
```    49   in
```
```    50     (case c of
```
```    51       Name name => Pretty.str (prfx "name: " ^ quote name)
```
```    52     | Intro => Pretty.str (prfx "intro")
```
```    53     | Elim => Pretty.str (prfx "elim")
```
```    54     | Dest => Pretty.str (prfx "dest")
```
```    55     | Solves => Pretty.str (prfx "solves")
```
```    56     | Simp pat => Pretty.block [Pretty.str (prfx "simp:"), Pretty.brk 1,
```
```    57         Pretty.quote (Syntax.pretty_term ctxt (Term.show_dummy_patterns pat))]
```
```    58     | Pattern pat => Pretty.enclose (prfx "\"") "\""
```
```    59         [Syntax.pretty_term ctxt (Term.show_dummy_patterns pat)])
```
```    60   end;
```
```    61
```
```    62
```
```    63
```
```    64 (** queries **)
```
```    65
```
```    66 type 'term query = {
```
```    67   goal: thm option,
```
```    68   limit: int option,
```
```    69   rem_dups: bool,
```
```    70   criteria: (bool * 'term criterion) list
```
```    71 };
```
```    72
```
```    73 fun map_criteria f {goal, limit, rem_dups, criteria} =
```
```    74   {goal = goal, limit = limit, rem_dups = rem_dups, criteria = f criteria};
```
```    75
```
```    76
```
```    77 (** search criterion filters **)
```
```    78
```
```    79 (*generated filters are to be of the form
```
```    80   input: (Facts.ref * thm)
```
```    81   output: (p:int, s:int, t:int) option, where
```
```    82     NONE indicates no match
```
```    83     p is the primary sorting criterion
```
```    84       (eg. size of term)
```
```    85     s is the secondary sorting criterion
```
```    86       (eg. number of assumptions in the theorem)
```
```    87     t is the tertiary sorting criterion
```
```    88       (eg. size of the substitution for intro, elim and dest)
```
```    89   when applying a set of filters to a thm, fold results in:
```
```    90     (max p, max s, sum of all t)
```
```    91 *)
```
```    92
```
```    93
```
```    94 (* matching theorems *)
```
```    95
```
```    96 fun is_nontrivial ctxt = Term.is_Const o Term.head_of o Object_Logic.drop_judgment ctxt;
```
```    97
```
```    98 (*extract terms from term_src, refine them to the parts that concern us,
```
```    99   if po try match them against obj else vice versa.
```
```   100   trivial matches are ignored.
```
```   101   returns: smallest substitution size*)
```
```   102 fun is_matching_thm (extract_terms, refine_term) ctxt po obj term_src =
```
```   103   let
```
```   104     val thy = Proof_Context.theory_of ctxt;
```
```   105
```
```   106     fun matches pat =
```
```   107       is_nontrivial ctxt pat andalso
```
```   108       Pattern.matches thy (if po then (pat, obj) else (obj, pat));
```
```   109
```
```   110     fun subst_size pat =
```
```   111       let val (_, subst) =
```
```   112         Pattern.match thy (if po then (pat, obj) else (obj, pat)) (Vartab.empty, Vartab.empty)
```
```   113       in Vartab.fold (fn (_, (_, t)) => fn n => size_of_term t + n) subst 0 end;
```
```   114
```
```   115     fun best_match [] = NONE
```
```   116       | best_match xs = SOME (foldl1 Int.min xs);
```
```   117
```
```   118     val match_thm = matches o refine_term;
```
```   119   in
```
```   120     map (subst_size o refine_term) (filter match_thm (extract_terms term_src))
```
```   121     |> best_match
```
```   122   end;
```
```   123
```
```   124
```
```   125 (* filter_name *)
```
```   126
```
```   127 fun filter_name str_pat (thmref, _) =
```
```   128   if match_string str_pat (Facts.name_of_ref thmref)
```
```   129   then SOME (0, 0, 0) else NONE;
```
```   130
```
```   131
```
```   132 (* filter intro/elim/dest/solves rules *)
```
```   133
```
```   134 fun filter_dest ctxt goal (_, thm) =
```
```   135   let
```
```   136     val extract_dest =
```
```   137      (fn thm => if Thm.no_prems thm then [] else [Thm.full_prop_of thm],
```
```   138       hd o Logic.strip_imp_prems);
```
```   139     val prems = Logic.prems_of_goal goal 1;
```
```   140
```
```   141     fun try_subst prem = is_matching_thm extract_dest ctxt true prem thm;
```
```   142     val successful = prems |> map_filter try_subst;
```
```   143   in
```
```   144     (*if possible, keep best substitution (one with smallest size)*)
```
```   145     (*dest rules always have assumptions, so a dest with one
```
```   146       assumption is as good as an intro rule with none*)
```
```   147     if not (null successful) then
```
```   148       SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm - 1, foldl1 Int.min successful)
```
```   149     else NONE
```
```   150   end;
```
```   151
```
```   152 fun filter_intro ctxt goal (_, thm) =
```
```   153   let
```
```   154     val extract_intro = (single o Thm.full_prop_of, Logic.strip_imp_concl);
```
```   155     val concl = Logic.concl_of_goal goal 1;
```
```   156   in
```
```   157     (case is_matching_thm extract_intro ctxt true concl thm of
```
```   158       SOME k => SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm, k)
```
```   159     | NONE => NONE)
```
```   160   end;
```
```   161
```
```   162 fun filter_elim ctxt goal (_, thm) =
```
```   163   if Thm.nprems_of thm > 0 then
```
```   164     let
```
```   165       val rule = Thm.full_prop_of thm;
```
```   166       val prems = Logic.prems_of_goal goal 1;
```
```   167       val goal_concl = Logic.concl_of_goal goal 1;
```
```   168       val rule_mp = hd (Logic.strip_imp_prems rule);
```
```   169       val rule_concl = Logic.strip_imp_concl rule;
```
```   170       fun combine t1 t2 = Const ("*combine*", dummyT --> dummyT) \$ (t1 \$ t2);  (* FIXME ?!? *)
```
```   171       val rule_tree = combine rule_mp rule_concl;
```
```   172       fun goal_tree prem = combine prem goal_concl;
```
```   173       fun try_subst prem = is_matching_thm (single, I) ctxt true (goal_tree prem) rule_tree;
```
```   174       val successful = prems |> map_filter try_subst;
```
```   175     in
```
```   176       (*elim rules always have assumptions, so an elim with one
```
```   177         assumption is as good as an intro rule with none*)
```
```   178       if is_nontrivial ctxt (Thm.major_prem_of thm) andalso not (null successful) then
```
```   179         SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm - 1, foldl1 Int.min successful)
```
```   180       else NONE
```
```   181     end
```
```   182   else NONE;
```
```   183
```
```   184 fun filter_solves ctxt goal =
```
```   185   let
```
```   186     val thy' = Proof_Context.theory_of ctxt
```
```   187       |> Context_Position.set_visible_global false;
```
```   188     val ctxt' = Proof_Context.transfer thy' ctxt
```
```   189       |> Context_Position.set_visible false;
```
```   190     val goal' = Thm.transfer thy' goal;
```
```   191
```
```   192     fun limited_etac thm i =
```
```   193       Seq.take (Options.default_int @{system_option find_theorems_tactic_limit}) o
```
```   194         eresolve_tac ctxt' [thm] i;
```
```   195     fun try_thm thm =
```
```   196       if Thm.no_prems thm then resolve_tac ctxt' [thm] 1 goal'
```
```   197       else
```
```   198         (limited_etac thm THEN_ALL_NEW (Goal.norm_hhf_tac ctxt' THEN' Method.assm_tac ctxt'))
```
```   199           1 goal';
```
```   200   in
```
```   201     fn (_, thm) =>
```
```   202       if is_some (Seq.pull (try_thm thm))
```
```   203       then SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm, 0)
```
```   204       else NONE
```
```   205   end;
```
```   206
```
```   207
```
```   208 (* filter_simp *)
```
```   209
```
```   210 fun filter_simp ctxt t (_, thm) =
```
```   211   let
```
```   212     val mksimps = Simplifier.mksimps ctxt;
```
```   213     val extract_simp =
```
```   214       (map Thm.full_prop_of o mksimps, #1 o Logic.dest_equals o Logic.strip_imp_concl);
```
```   215   in
```
```   216     (case is_matching_thm extract_simp ctxt false t thm of
```
```   217       SOME ss => SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm, ss)
```
```   218     | NONE => NONE)
```
```   219   end;
```
```   220
```
```   221
```
```   222 (* filter_pattern *)
```
```   223
```
```   224 fun expand_abs t =
```
```   225   let
```
```   226     val m = Term.maxidx_of_term t + 1;
```
```   227     val vs = strip_abs_vars t;
```
```   228     val ts = map_index (fn (k, (_, T)) => Var ((Name.aT, m + k), T)) vs;
```
```   229   in betapplys (t, ts) end;
```
```   230
```
```   231 fun get_names t = Term.add_const_names t (Term.add_free_names t []);
```
```   232
```
```   233 (* Does pat match a subterm of obj? *)
```
```   234 fun matches_subterm thy (pat, obj) =
```
```   235   let
```
```   236     fun msub bounds obj = Pattern.matches thy (pat, obj) orelse
```
```   237       (case obj of
```
```   238         Abs (_, T, t) => msub (bounds + 1) (snd (Term.dest_abs (Name.bound bounds, T, t)))
```
```   239       | t \$ u => msub bounds t orelse msub bounds u
```
```   240       | _ => false)
```
```   241   in msub 0 obj end;
```
```   242
```
```   243 (*Including all constants and frees is only sound because matching
```
```   244   uses higher-order patterns. If full matching were used, then
```
```   245   constants that may be subject to beta-reduction after substitution
```
```   246   of frees should not be included for LHS set because they could be
```
```   247   thrown away by the substituted function.  E.g. for (?F 1 2) do not
```
```   248   include 1 or 2, if it were possible for ?F to be (%x y. 3).  The
```
```   249   largest possible set should always be included on the RHS.*)
```
```   250
```
```   251 fun filter_pattern ctxt pat =
```
```   252   let
```
```   253     val pat' = (expand_abs o Envir.eta_contract) pat;
```
```   254     val pat_consts = get_names pat';
```
```   255     fun check ((x, thm), NONE) = check ((x, thm), SOME (get_names (Thm.full_prop_of thm)))
```
```   256       | check ((_, thm), c as SOME thm_consts) =
```
```   257          (if subset (op =) (pat_consts, thm_consts) andalso
```
```   258             matches_subterm (Proof_Context.theory_of ctxt) (pat', Thm.full_prop_of thm)
```
```   259           then SOME (size_of_term (Thm.prop_of thm), Thm.nprems_of thm, 0) else NONE, c);
```
```   260   in check end;
```
```   261
```
```   262
```
```   263 (* interpret criteria as filters *)
```
```   264
```
```   265 local
```
```   266
```
```   267 fun err_no_goal c =
```
```   268   error ("Current goal required for " ^ c ^ " search criterion");
```
```   269
```
```   270 fun filter_crit _ _ (Name name) = apfst (filter_name name)
```
```   271   | filter_crit _ NONE Intro = err_no_goal "intro"
```
```   272   | filter_crit _ NONE Elim = err_no_goal "elim"
```
```   273   | filter_crit _ NONE Dest = err_no_goal "dest"
```
```   274   | filter_crit _ NONE Solves = err_no_goal "solves"
```
```   275   | filter_crit ctxt (SOME goal) Intro = apfst (filter_intro ctxt (Thm.prop_of goal))
```
```   276   | filter_crit ctxt (SOME goal) Elim = apfst (filter_elim ctxt (Thm.prop_of goal))
```
```   277   | filter_crit ctxt (SOME goal) Dest = apfst (filter_dest ctxt (Thm.prop_of goal))
```
```   278   | filter_crit ctxt (SOME goal) Solves = apfst (filter_solves ctxt goal)
```
```   279   | filter_crit ctxt _ (Simp pat) = apfst (filter_simp ctxt pat)
```
```   280   | filter_crit ctxt _ (Pattern pat) = filter_pattern ctxt pat;
```
```   281
```
```   282 fun opt_not x = if is_some x then NONE else SOME (0, 0, 0);
```
```   283
```
```   284 fun opt_add (SOME (a, c, x)) (SOME (b, d, y)) = SOME (Int.max (a,b), Int.max (c, d), x + y : int)
```
```   285   | opt_add _ _ = NONE;
```
```   286
```
```   287 fun app_filters thm =
```
```   288   let
```
```   289     fun app (NONE, _, _) = NONE
```
```   290       | app (SOME v, _, []) = SOME (v, thm)
```
```   291       | app (r, consts, f :: fs) =
```
```   292           let val (r', consts') = f (thm, consts)
```
```   293           in app (opt_add r r', consts', fs) end;
```
```   294   in app end;
```
```   295
```
```   296 in
```
```   297
```
```   298 fun filter_criterion ctxt opt_goal (b, c) =
```
```   299   (if b then I else (apfst opt_not)) o filter_crit ctxt opt_goal c;
```
```   300
```
```   301 fun sorted_filter filters thms =
```
```   302   let
```
```   303     fun eval_filters thm = app_filters thm (SOME (0, 0, 0), NONE, filters);
```
```   304
```
```   305     (*filters return: (thm size, number of assumptions, substitution size) option, so
```
```   306       sort according to size of thm first, then number of assumptions,
```
```   307       then by the substitution size, then by term order *)
```
```   308     fun result_ord (((p0, s0, t0), (_, thm0)), ((p1, s1, t1), (_, thm1))) =
```
```   309       prod_ord int_ord (prod_ord int_ord (prod_ord int_ord Term_Ord.term_ord))
```
```   310          ((p1, (s1, (t1, Thm.full_prop_of thm1))), (p0, (s0, (t0, Thm.full_prop_of thm0))));
```
```   311   in
```
```   312     grouped 100 Par_List.map eval_filters thms
```
```   313     |> map_filter I |> sort result_ord |> map #2
```
```   314   end;
```
```   315
```
```   316 fun lazy_filter filters =
```
```   317   let
```
```   318     fun lazy_match thms = Seq.make (fn () => first_match thms)
```
```   319     and first_match [] = NONE
```
```   320       | first_match (thm :: thms) =
```
```   321           (case app_filters thm (SOME (0, 0, 0), NONE, filters) of
```
```   322             NONE => first_match thms
```
```   323           | SOME (_, t) => SOME (t, lazy_match thms));
```
```   324   in lazy_match end;
```
```   325
```
```   326 end;
```
```   327
```
```   328
```
```   329 (* removing duplicates, preferring nicer names, roughly O(n log n) *)
```
```   330
```
```   331 local
```
```   332
```
```   333 val index_ord = option_ord (K EQUAL);
```
```   334 val hidden_ord = bool_ord o apply2 Long_Name.is_hidden;
```
```   335 val qual_ord = int_ord o apply2 Long_Name.qualification;
```
```   336 val txt_ord = int_ord o apply2 size;
```
```   337
```
```   338 fun nicer_name ((a, x), i) ((b, y), j) =
```
```   339   (case bool_ord (a, b) of EQUAL =>
```
```   340     (case hidden_ord (x, y) of EQUAL =>
```
```   341       (case index_ord (i, j) of EQUAL =>
```
```   342         (case qual_ord (x, y) of EQUAL => txt_ord (x, y) | ord => ord)
```
```   343       | ord => ord)
```
```   344     | ord => ord)
```
```   345   | ord => ord) <> GREATER;
```
```   346
```
```   347 fun rem_cdups nicer xs =
```
```   348   let
```
```   349     fun rem_c rev_seen [] = rev rev_seen
```
```   350       | rem_c rev_seen [x] = rem_c (x :: rev_seen) []
```
```   351       | rem_c rev_seen ((x as ((n, thm), _)) :: (y as ((n', thm'), _)) :: rest) =
```
```   352           if Thm.eq_thm_prop (thm, thm')
```
```   353           then rem_c rev_seen ((if nicer n n' then x else y) :: rest)
```
```   354           else rem_c (x :: rev_seen) (y :: rest);
```
```   355   in rem_c [] xs end;
```
```   356
```
```   357 in
```
```   358
```
```   359 fun nicer_shortest ctxt =
```
```   360   let
```
```   361     fun extern_shortest name =
```
```   362       let
```
```   363         val facts = Proof_Context.facts_of_fact ctxt name;
```
```   364         val space = Facts.space_of facts;
```
```   365       in (Facts.is_dynamic facts name, Name_Space.extern_shortest ctxt space name) end;
```
```   366
```
```   367     fun nicer (Facts.Named ((x, _), i)) (Facts.Named ((y, _), j)) =
```
```   368           nicer_name (extern_shortest x, i) (extern_shortest y, j)
```
```   369       | nicer (Facts.Fact _) (Facts.Named _) = true
```
```   370       | nicer (Facts.Named _) (Facts.Fact _) = false
```
```   371       | nicer (Facts.Fact _) (Facts.Fact _) = true;
```
```   372   in nicer end;
```
```   373
```
```   374 fun rem_thm_dups nicer xs =
```
```   375   (xs ~~ (1 upto length xs))
```
```   376   |> sort (Term_Ord.fast_term_ord o apply2 (Thm.full_prop_of o #2 o #1))
```
```   377   |> rem_cdups nicer
```
```   378   |> sort (int_ord o apply2 #2)
```
```   379   |> map #1;
```
```   380
```
```   381 end;
```
```   382
```
```   383
```
```   384
```
```   385 (** main operations **)
```
```   386
```
```   387 (* filter_theorems *)
```
```   388
```
```   389 fun all_facts_of ctxt =
```
```   390   let
```
```   391     val thy = Proof_Context.theory_of ctxt;
```
```   392     val transfer = Global_Theory.transfer_theories thy;
```
```   393     val local_facts = Proof_Context.facts_of ctxt;
```
```   394     val global_facts = Global_Theory.facts_of thy;
```
```   395   in
```
```   396    (Facts.dest_all (Context.Proof ctxt) false [global_facts] local_facts @
```
```   397      Facts.dest_all (Context.Proof ctxt) false [] global_facts)
```
```   398    |> maps Facts.selections
```
```   399    |> map (apsnd transfer)
```
```   400   end;
```
```   401
```
```   402 fun filter_theorems ctxt theorems query =
```
```   403   let
```
```   404     val {goal = opt_goal, limit = opt_limit, rem_dups, criteria} = query;
```
```   405     val filters = map (filter_criterion ctxt opt_goal) criteria;
```
```   406
```
```   407     fun find_all theorems =
```
```   408       let
```
```   409         val raw_matches = sorted_filter filters theorems;
```
```   410
```
```   411         val matches =
```
```   412           if rem_dups
```
```   413           then rem_thm_dups (nicer_shortest ctxt) raw_matches
```
```   414           else raw_matches;
```
```   415
```
```   416         val len = length matches;
```
```   417         val lim = the_default (Options.default_int @{system_option find_theorems_limit}) opt_limit;
```
```   418       in (SOME len, drop (Int.max (len - lim, 0)) matches) end;
```
```   419
```
```   420     val find =
```
```   421       if rem_dups orelse is_none opt_limit
```
```   422       then find_all
```
```   423       else pair NONE o Seq.list_of o Seq.take (the opt_limit) o lazy_filter filters;
```
```   424
```
```   425   in find theorems end;
```
```   426
```
```   427 fun filter_theorems_cmd ctxt theorems raw_query =
```
```   428   filter_theorems ctxt theorems (map_criteria (map (apsnd (read_criterion ctxt))) raw_query);
```
```   429
```
```   430
```
```   431 (* find_theorems *)
```
```   432
```
```   433 local
```
```   434
```
```   435 fun gen_find_theorems filter ctxt opt_goal opt_limit rem_dups raw_criteria =
```
```   436   let
```
```   437     val assms =
```
```   438       Proof_Context.get_fact ctxt (Facts.named "local.assms")
```
```   439         handle ERROR _ => [];
```
```   440     val add_prems = Seq.hd o TRY (Method.insert_tac ctxt assms 1);
```
```   441     val opt_goal' = Option.map add_prems opt_goal;
```
```   442   in
```
```   443     filter ctxt (all_facts_of ctxt)
```
```   444       {goal = opt_goal', limit = opt_limit, rem_dups = rem_dups, criteria = raw_criteria}
```
```   445   end;
```
```   446
```
```   447 in
```
```   448
```
```   449 val find_theorems = gen_find_theorems filter_theorems;
```
```   450 val find_theorems_cmd = gen_find_theorems filter_theorems_cmd;
```
```   451
```
```   452 end;
```
```   453
```
```   454
```
```   455 (* pretty_theorems *)
```
```   456
```
```   457 local
```
```   458
```
```   459 fun pretty_ref ctxt thmref =
```
```   460   let
```
```   461     val (name, sel) =
```
```   462       (case thmref of
```
```   463         Facts.Named ((name, _), sel) => (name, sel)
```
```   464       | Facts.Fact _ => raise Fail "Illegal literal fact");
```
```   465   in
```
```   466     [Pretty.marks_str (#1 (Proof_Context.markup_extern_fact ctxt name), name),
```
```   467       Pretty.str (Facts.string_of_selection sel), Pretty.str ":", Pretty.brk 1]
```
```   468   end;
```
```   469
```
```   470 in
```
```   471
```
```   472 fun pretty_thm ctxt (thmref, thm) =
```
```   473   Pretty.block (pretty_ref ctxt thmref @ [Thm.pretty_thm ctxt thm]);
```
```   474
```
```   475 fun pretty_theorems state opt_limit rem_dups raw_criteria =
```
```   476   let
```
```   477     val ctxt = Proof.context_of state;
```
```   478     val opt_goal = try (#goal o Proof.simple_goal) state;
```
```   479     val criteria = map (apsnd (read_criterion ctxt)) raw_criteria;
```
```   480
```
```   481     val (opt_found, theorems) =
```
```   482       filter_theorems ctxt (all_facts_of ctxt)
```
```   483         {goal = opt_goal, limit = opt_limit, rem_dups = rem_dups, criteria = criteria};
```
```   484     val returned = length theorems;
```
```   485
```
```   486     val tally_msg =
```
```   487       (case opt_found of
```
```   488         NONE => "displaying " ^ string_of_int returned ^ " theorem(s)"
```
```   489       | SOME found =>
```
```   490           "found " ^ string_of_int found ^ " theorem(s)" ^
```
```   491             (if returned < found
```
```   492              then " (" ^ string_of_int returned ^ " displayed)"
```
```   493              else ""));
```
```   494     val position_markup = Position.markup (Position.thread_data ()) Markup.position;
```
```   495   in
```
```   496     Pretty.block
```
```   497       (Pretty.fbreaks
```
```   498         (Pretty.mark position_markup (Pretty.keyword1 "find_theorems") ::
```
```   499           map (pretty_criterion ctxt) criteria)) ::
```
```   500     Pretty.str "" ::
```
```   501     (if null theorems then [Pretty.str "found nothing"]
```
```   502      else
```
```   503        Pretty.str (tally_msg ^ ":") ::
```
```   504        grouped 10 Par_List.map (Pretty.item o single o pretty_thm ctxt) (rev theorems))
```
```   505   end |> Pretty.fbreaks |> curry Pretty.blk 0;
```
```   506
```
```   507 end;
```
```   508
```
```   509
```
```   510
```
```   511 (** Isar command syntax **)
```
```   512
```
```   513 local
```
```   514
```
```   515 val criterion =
```
```   516   Parse.reserved "name" |-- Parse.!!! (Parse.\$\$\$ ":" |-- Parse.name) >> Name ||
```
```   517   Parse.reserved "intro" >> K Intro ||
```
```   518   Parse.reserved "elim" >> K Elim ||
```
```   519   Parse.reserved "dest" >> K Dest ||
```
```   520   Parse.reserved "solves" >> K Solves ||
```
```   521   Parse.reserved "simp" |-- Parse.!!! (Parse.\$\$\$ ":" |-- Parse.term) >> Simp ||
```
```   522   Parse.term >> Pattern;
```
```   523
```
```   524 val query_keywords =
```
```   525   Keyword.add_keywords [((":", \<^here>), Keyword.no_spec)] Keyword.empty_keywords;
```
```   526
```
```   527 in
```
```   528
```
```   529 val query_parser = Scan.repeat ((Scan.option Parse.minus >> is_none) -- criterion);
```
```   530
```
```   531 fun read_query pos str =
```
```   532   Token.explode query_keywords pos str
```
```   533   |> filter Token.is_proper
```
```   534   |> Scan.error (Scan.finite Token.stopper (Parse.!!! (query_parser --| Scan.ahead Parse.eof)))
```
```   535   |> #1;
```
```   536
```
```   537 end;
```
```   538
```
```   539
```
```   540
```
```   541 (** PIDE query operation **)
```
```   542
```
```   543 fun proof_state st =
```
```   544   (case try Toplevel.proof_of st of
```
```   545     SOME state => state
```
```   546   | NONE => Proof.init (Toplevel.context_of st));
```
```   547
```
```   548 val _ =
```
```   549   Query_Operation.register {name = "find_theorems", pri = Task_Queue.urgent_pri}
```
```   550     (fn {state = st, args, writeln_result, ...} =>
```
```   551       if can Toplevel.context_of st then
```
```   552         let
```
```   553           val [limit_arg, allow_dups_arg, query_arg] = args;
```
```   554           val state = proof_state st;
```
```   555           val opt_limit = Int.fromString limit_arg;
```
```   556           val rem_dups = allow_dups_arg = "false";
```
```   557           val criteria = read_query Position.none query_arg;
```
```   558         in writeln_result (Pretty.string_of (pretty_theorems state opt_limit rem_dups criteria)) end
```
```   559       else error "Unknown context");
```
```   560
```
```   561 end;
```