presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
1 (* Title: HOL/Divides.thy
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1999 University of Cambridge
7 header {* The division operators div, mod and the divides relation "dvd" *}
13 (*We use the same class for div and mod;
14 moreover, dvd is defined whenever multiplication is*)
18 instance nat :: div ..
21 div :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a" (infixl 70)
22 mod :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a" (infixl 70)
23 dvd :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool" (infixl 50)
28 mod_def: "m mod n == wfrec (trancl pred_nat)
29 (%f j. if j<n | n=0 then j else f (j-n)) m"
31 div_def: "m div n == wfrec (trancl pred_nat)
32 (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"
34 (*The definition of dvd is polymorphic!*)
35 dvd_def: "m dvd n == \<exists>k. n = m*k"
37 (*This definition helps prove the harder properties of div and mod.
38 It is copied from IntDiv.thy; should it be overloaded?*)
40 quorem :: "(nat*nat) * (nat*nat) => bool"
41 "quorem == %((a,b), (q,r)).
43 (if 0<b then 0\<le>r & r<b else b<r & r \<le>0)"
47 subsection{*Initial Lemmas*}
49 lemmas wf_less_trans =
50 def_wfrec [THEN trans, OF eq_reflection wf_pred_nat [THEN wf_trancl],
53 lemma mod_eq: "(%m. m mod n) =
54 wfrec (trancl pred_nat) (%f j. if j<n | n=0 then j else f (j-n))"
55 by (simp add: mod_def)
57 lemma div_eq: "(%m. m div n) = wfrec (trancl pred_nat)
58 (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
59 by (simp add: div_def)
62 (** Aribtrary definitions for division by zero. Useful to simplify
65 lemma DIVISION_BY_ZERO_DIV [simp]: "a div 0 = (0::nat)"
66 by (rule div_eq [THEN wf_less_trans], simp)
68 lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a::nat)"
69 by (rule mod_eq [THEN wf_less_trans], simp)
72 subsection{*Remainder*}
74 lemma mod_less [simp]: "m<n ==> m mod n = (m::nat)"
75 by (rule mod_eq [THEN wf_less_trans], simp)
77 lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"
78 apply (case_tac "n=0", simp)
79 apply (rule mod_eq [THEN wf_less_trans])
80 apply (simp add: cut_apply less_eq)
83 (*Avoids the ugly ~m<n above*)
84 lemma le_mod_geq: "(n::nat) \<le> m ==> m mod n = (m-n) mod n"
85 by (simp add: mod_geq linorder_not_less)
87 lemma mod_if: "m mod (n::nat) = (if m<n then m else (m-n) mod n)"
88 by (simp add: mod_geq)
90 lemma mod_1 [simp]: "m mod Suc 0 = 0"
92 apply (simp_all (no_asm_simp) add: mod_geq)
95 lemma mod_self [simp]: "n mod n = (0::nat)"
96 apply (case_tac "n=0")
97 apply (simp_all add: mod_geq)
100 lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"
101 apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n")
102 apply (simp add: add_commute)
103 apply (subst mod_geq [symmetric], simp_all)
106 lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"
107 by (simp add: add_commute mod_add_self2)
109 lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"
111 apply (simp_all add: add_left_commute [of _ n])
114 lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"
115 by (simp add: mult_commute mod_mult_self1)
117 lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"
118 apply (case_tac "n=0", simp)
119 apply (case_tac "k=0", simp)
120 apply (induct "m" rule: nat_less_induct)
121 apply (subst mod_if, simp)
122 apply (simp add: mod_geq diff_mult_distrib)
125 lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
126 by (simp add: mult_commute [of k] mod_mult_distrib)
128 lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"
129 apply (case_tac "n=0", simp)
130 apply (induct "m", simp)
131 apply (rename_tac "k")
132 apply (cut_tac m = "k*n" and n = n in mod_add_self2)
133 apply (simp add: add_commute)
136 lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"
137 by (simp add: mult_commute mod_mult_self_is_0)
140 subsection{*Quotient*}
142 lemma div_less [simp]: "m<n ==> m div n = (0::nat)"
143 by (rule div_eq [THEN wf_less_trans], simp)
145 lemma div_geq: "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"
146 apply (rule div_eq [THEN wf_less_trans])
147 apply (simp add: cut_apply less_eq)
150 (*Avoids the ugly ~m<n above*)
151 lemma le_div_geq: "[| 0<n; n\<le>m |] ==> m div n = Suc((m-n) div n)"
152 by (simp add: div_geq linorder_not_less)
154 lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"
155 by (simp add: div_geq)
158 (*Main Result about quotient and remainder.*)
159 lemma mod_div_equality: "(m div n)*n + m mod n = (m::nat)"
160 apply (case_tac "n=0", simp)
161 apply (induct "m" rule: nat_less_induct)
163 apply (simp_all (no_asm_simp) add: add_assoc div_geq add_diff_inverse)
166 lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
167 apply(cut_tac m = m and n = n in mod_div_equality)
168 apply(simp add: mult_commute)
171 subsection{*Simproc for Cancelling Div and Mod*}
173 lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"
174 apply(simp add: mod_div_equality)
177 lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"
178 apply(simp add: mod_div_equality2)
183 val div_mod_equality = thm "div_mod_equality";
184 val div_mod_equality2 = thm "div_mod_equality2";
187 structure CancelDivModData =
190 val div_name = "Divides.op div";
191 val mod_name = "Divides.op mod";
192 val mk_binop = HOLogic.mk_binop;
193 val mk_sum = NatArithUtils.mk_sum;
194 val dest_sum = NatArithUtils.dest_sum;
198 val div_mod_eqs = map mk_meta_eq [div_mod_equality,div_mod_equality2]
203 let val simps = add_0 :: add_0_right :: add_ac
204 in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end;
208 structure CancelDivMod = CancelDivModFun(CancelDivModData);
210 val cancel_div_mod_proc = NatArithUtils.prep_simproc
211 ("cancel_div_mod", ["(m::nat) + n"], CancelDivMod.proc);
213 Addsimprocs[cancel_div_mod_proc];
217 (* a simple rearrangement of mod_div_equality: *)
218 lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
219 by (cut_tac m = m and n = n in mod_div_equality2, arith)
221 lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"
222 apply (induct "m" rule: nat_less_induct)
223 apply (case_tac "na<n", simp)
224 txt{*case @{term "n \<le> na"}*}
225 apply (simp add: mod_geq)
228 lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
229 apply(drule mod_less_divisor[where m = m])
233 lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
234 by (cut_tac m = "m*n" and n = n in mod_div_equality, auto)
236 lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
237 by (simp add: mult_commute div_mult_self_is_m)
239 (*mod_mult_distrib2 above is the counterpart for remainder*)
242 subsection{*Proving facts about Quotient and Remainder*}
244 lemma unique_quotient_lemma:
245 "[| b*q' + r' \<le> b*q + r; x < b; r < b |]
246 ==> q' \<le> (q::nat)"
248 apply (subst less_iff_Suc_add)
249 apply (auto simp add: add_mult_distrib2)
252 lemma unique_quotient:
253 "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
255 apply (simp add: split_ifs quorem_def)
256 apply (blast intro: order_antisym
257 dest: order_eq_refl [THEN unique_quotient_lemma] sym)
260 lemma unique_remainder:
261 "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |]
263 apply (subgoal_tac "q = q'")
264 prefer 2 apply (blast intro: unique_quotient)
265 apply (simp add: quorem_def)
268 lemma quorem_div_mod: "0 < b ==> quorem ((a, b), (a div b, a mod b))"
269 by (auto simp add: quorem_def)
271 lemma quorem_div: "[| quorem((a,b),(q,r)); 0 < b |] ==> a div b = q"
272 by (simp add: quorem_div_mod [THEN unique_quotient])
274 lemma quorem_mod: "[| quorem((a,b),(q,r)); 0 < b |] ==> a mod b = r"
275 by (simp add: quorem_div_mod [THEN unique_remainder])
277 (** A dividend of zero **)
279 lemma div_0 [simp]: "0 div m = (0::nat)"
280 by (case_tac "m=0", simp_all)
282 lemma mod_0 [simp]: "0 mod m = (0::nat)"
283 by (case_tac "m=0", simp_all)
285 (** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
287 lemma quorem_mult1_eq:
288 "[| quorem((b,c),(q,r)); 0 < c |]
289 ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
290 apply (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
293 lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"
294 apply (case_tac "c = 0", simp)
295 apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])
298 lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"
299 apply (case_tac "c = 0", simp)
300 apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])
303 lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"
305 apply (rule_tac s = "b*a mod c" in trans)
306 apply (rule_tac [2] mod_mult1_eq)
307 apply (simp_all (no_asm) add: mult_commute)
310 lemma mod_mult_distrib_mod: "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"
311 apply (rule mod_mult1_eq' [THEN trans])
312 apply (rule mod_mult1_eq)
315 (** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
317 lemma quorem_add1_eq:
318 "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); 0 < c |]
319 ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
320 by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
322 (*NOT suitable for rewriting: the RHS has an instance of the LHS*)
324 "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
325 apply (case_tac "c = 0", simp)
326 apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod quorem_div_mod)
329 lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"
330 apply (case_tac "c = 0", simp)
331 apply (blast intro: quorem_div_mod quorem_div_mod
332 quorem_add1_eq [THEN quorem_mod])
336 subsection{*Proving @{term "a div (b*c) = (a div b) div c"}*}
338 (** first, a lemma to bound the remainder **)
340 lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
341 apply (cut_tac m = q and n = c in mod_less_divisor)
342 apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
343 apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
344 apply (simp add: add_mult_distrib2)
347 lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r)); 0 < b; 0 < c |]
348 ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
349 apply (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)
352 lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
353 apply (case_tac "b=0", simp)
354 apply (case_tac "c=0", simp)
355 apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])
358 lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
359 apply (case_tac "b=0", simp)
360 apply (case_tac "c=0", simp)
361 apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])
365 subsection{*Cancellation of Common Factors in Division*}
367 lemma div_mult_mult_lemma:
368 "[| (0::nat) < b; 0 < c |] ==> (c*a) div (c*b) = a div b"
369 by (auto simp add: div_mult2_eq)
371 lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"
372 apply (case_tac "b = 0")
373 apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)
376 lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"
377 apply (drule div_mult_mult1)
378 apply (auto simp add: mult_commute)
382 (*Distribution of Factors over Remainders:
384 Could prove these as in Integ/IntDiv.ML, but we already have
385 mod_mult_distrib and mod_mult_distrib2 above!
387 Goal "(c*a) mod (c*b) = (c::nat) * (a mod b)"
388 qed "mod_mult_mult1";
390 Goal "(a*c) mod (b*c) = (a mod b) * (c::nat)";
391 qed "mod_mult_mult2";
394 subsection{*Further Facts about Quotient and Remainder*}
396 lemma div_1 [simp]: "m div Suc 0 = m"
398 apply (simp_all (no_asm_simp) add: div_geq)
401 lemma div_self [simp]: "0<n ==> n div n = (1::nat)"
402 by (simp add: div_geq)
404 lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"
405 apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ")
406 apply (simp add: add_commute)
407 apply (subst div_geq [symmetric], simp_all)
410 lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"
411 by (simp add: add_commute div_add_self2)
413 lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"
414 apply (subst div_add1_eq)
415 apply (subst div_mult1_eq, simp)
418 lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"
419 by (simp add: mult_commute div_mult_self1)
422 (* Monotonicity of div in first argument *)
423 lemma div_le_mono [rule_format (no_asm)]:
424 "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
425 apply (case_tac "k=0", simp)
426 apply (induct "n" rule: nat_less_induct, clarify)
427 apply (case_tac "n<k")
431 apply (case_tac "m<k")
435 apply (simp add: div_geq diff_le_mono)
438 (* Antimonotonicity of div in second argument *)
439 lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
440 apply (subgoal_tac "0<n")
442 apply (induct_tac k rule: nat_less_induct)
443 apply (rename_tac "k")
444 apply (case_tac "k<n", simp)
445 apply (subgoal_tac "~ (k<m) ")
447 apply (simp add: div_geq)
448 apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
450 apply (blast intro: div_le_mono diff_le_mono2)
451 apply (rule le_trans, simp)
455 lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
456 apply (case_tac "n=0", simp)
457 apply (subgoal_tac "m div n \<le> m div 1", simp)
458 apply (rule div_le_mono2)
459 apply (simp_all (no_asm_simp))
462 (* Similar for "less than" *)
463 lemma div_less_dividend [rule_format]:
464 "!!n::nat. 1<n ==> 0 < m --> m div n < m"
465 apply (induct_tac m rule: nat_less_induct)
466 apply (rename_tac "m")
467 apply (case_tac "m<n", simp)
468 apply (subgoal_tac "0<n")
470 apply (simp add: div_geq)
471 apply (case_tac "n<m")
472 apply (subgoal_tac "(m-n) div n < (m-n) ")
473 apply (rule impI less_trans_Suc)+
478 declare div_less_dividend [simp]
480 text{*A fact for the mutilated chess board*}
481 lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
482 apply (case_tac "n=0", simp)
483 apply (induct "m" rule: nat_less_induct)
484 apply (case_tac "Suc (na) <n")
485 (* case Suc(na) < n *)
486 apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
487 (* case n \<le> Suc(na) *)
488 apply (simp add: linorder_not_less le_Suc_eq mod_geq)
489 apply (auto simp add: Suc_diff_le le_mod_geq)
492 lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)"
493 by (case_tac "n=0", auto)
495 lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)"
496 by (case_tac "n=0", auto)
499 subsection{*The Divides Relation*}
501 lemma dvdI [intro?]: "n = m * k ==> m dvd n"
502 by (unfold dvd_def, blast)
504 lemma dvdE [elim?]: "!!P. [|m dvd n; !!k. n = m*k ==> P|] ==> P"
505 by (unfold dvd_def, blast)
507 lemma dvd_0_right [iff]: "m dvd (0::nat)"
508 apply (unfold dvd_def)
509 apply (blast intro: mult_0_right [symmetric])
512 lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"
513 by (force simp add: dvd_def)
515 lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"
516 by (blast intro: dvd_0_left)
518 lemma dvd_1_left [iff]: "Suc 0 dvd k"
519 by (unfold dvd_def, simp)
521 lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
522 by (simp add: dvd_def)
524 lemma dvd_refl [simp]: "m dvd (m::nat)"
525 apply (unfold dvd_def)
526 apply (blast intro: mult_1_right [symmetric])
529 lemma dvd_trans [trans]: "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"
530 apply (unfold dvd_def)
531 apply (blast intro: mult_assoc)
534 lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
535 apply (unfold dvd_def)
536 apply (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
539 lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"
540 apply (unfold dvd_def)
541 apply (blast intro: add_mult_distrib2 [symmetric])
544 lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
545 apply (unfold dvd_def)
546 apply (blast intro: diff_mult_distrib2 [symmetric])
549 lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
550 apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
551 apply (blast intro: dvd_add)
554 lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
555 by (drule_tac m = m in dvd_diff, auto)
557 lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"
558 apply (unfold dvd_def)
559 apply (blast intro: mult_left_commute)
562 lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"
563 apply (subst mult_commute)
564 apply (erule dvd_mult)
567 lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)"
568 by (rule dvd_refl [THEN dvd_mult])
570 lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)"
571 by (rule dvd_refl [THEN dvd_mult2])
573 lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
575 apply (erule_tac [2] dvd_add)
576 apply (rule_tac [2] dvd_refl)
577 apply (subgoal_tac "n = (n+k) -k")
580 apply (erule dvd_diff)
581 apply (rule dvd_refl)
584 lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"
585 apply (unfold dvd_def)
586 apply (case_tac "n=0", auto)
587 apply (blast intro: mod_mult_distrib2 [symmetric])
590 lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n; k dvd n |] ==> k dvd m"
591 apply (subgoal_tac "k dvd (m div n) *n + m mod n")
592 apply (simp add: mod_div_equality)
593 apply (simp only: dvd_add dvd_mult)
596 lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"
597 by (blast intro: dvd_mod_imp_dvd dvd_mod)
599 lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
600 apply (unfold dvd_def)
602 apply (simp add: mult_ac)
605 lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
607 apply (subgoal_tac "m*n dvd m*1")
608 apply (drule dvd_mult_cancel, auto)
611 lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
612 apply (subst mult_commute)
613 apply (erule dvd_mult_cancel1)
616 lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"
617 apply (unfold dvd_def, clarify)
618 apply (rule_tac x = "k*ka" in exI)
619 apply (simp add: mult_ac)
622 lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"
623 by (simp add: dvd_def mult_assoc, blast)
625 lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"
626 apply (unfold dvd_def, clarify)
627 apply (rule_tac x = "i*k" in exI)
628 apply (simp add: mult_ac)
631 lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
632 apply (unfold dvd_def, clarify)
633 apply (simp_all (no_asm_use) add: zero_less_mult_iff)
635 apply (rule le_trans)
636 apply (rule_tac [2] le_refl [THEN mult_le_mono])
637 apply (erule_tac [2] Suc_leI, simp)
640 lemma dvd_eq_mod_eq_0: "!!k::nat. (k dvd n) = (n mod k = 0)"
641 apply (unfold dvd_def)
642 apply (case_tac "k=0", simp, safe)
643 apply (simp add: mult_commute)
644 apply (rule_tac t = n and n1 = k in mod_div_equality [THEN subst])
645 apply (subst mult_commute, simp)
648 lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
649 apply (subgoal_tac "m mod n = 0")
650 apply (simp add: mult_div_cancel)
651 apply (simp only: dvd_eq_mod_eq_0)
654 lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
655 by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
657 lemmas mod_eq_0D = mod_eq_0_iff [THEN iffD1]
658 declare mod_eq_0D [dest!]
660 (*Loses information, namely we also have r<d provided d is nonzero*)
661 lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
662 apply (cut_tac m = m in mod_div_equality)
663 apply (simp only: add_ac)
664 apply (blast intro: sym)
670 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
671 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
677 with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)
679 assume not0: "k \<noteq> 0"
681 proof (simp, intro allI impI)
683 assume n: "n = k*i + j" and j: "j < k"
687 with n j P show "P i" by simp
689 assume "i \<noteq> 0"
690 with not0 n j P show "P i" by(simp add:add_ac)
699 with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)
701 assume not0: "k \<noteq> 0"
702 with Q have R: ?R by simp
703 from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
708 lemma split_div_lemma:
709 "0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"
711 apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)
712 prefer 3; apply assumption
713 apply (simp_all add: quorem_def)
716 apply (rule_tac P="%x. n * (m div n) \<le> x" in
717 subst [OF mod_div_equality [of _ n]])
718 apply (simp only: add: mult_ac)
719 apply (rule_tac P="%x. x < n + n * (m div n)" in
720 subst [OF mod_div_equality [of _ n]])
721 apply (simp only: add: mult_ac add_ac)
722 apply (rule add_less_mono1, simp)
726 "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
727 (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
728 apply (case_tac "0 < n")
729 apply (simp only: add: split_div_lemma)
730 apply (simp_all add: DIVISION_BY_ZERO_DIV)
735 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
736 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
742 with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)
744 assume not0: "k \<noteq> 0"
746 proof (simp, intro allI impI)
748 assume "n = k*i + j" "j < k"
749 thus "P j" using not0 P by(simp add:add_ac mult_ac)
757 with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)
759 assume not0: "k \<noteq> 0"
760 with Q have R: ?R by simp
761 from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
766 theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
767 apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
768 subst [OF mod_div_equality [of _ n]])
772 subsection {*An ``induction'' law for modulus arithmetic.*}
775 assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
776 and base: "P i" and i: "i<p"
779 assume contra: "\<not>(P 0)"
780 from i have p: "0<p" by simp
781 have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
786 show "?A 0" by simp -- "by contradiction"
792 assume y: "P (p - Suc n)"
795 assume "\<not>(Suc n < p)"
796 hence "p - Suc n = 0"
798 with y contra show "False"
801 hence n2: "Suc (p - Suc n) = p-n" by arith
802 from p have "p - Suc n < p" by arith
803 with y step have z: "P ((Suc (p - Suc n)) mod p)"
808 with z n2 contra show ?thesis by simp
811 with p have "p-n < p" by arith
812 with z n2 False ih show ?thesis by simp
818 from i obtain k where "0<k \<and> i+k=p"
819 by (blast dest: less_imp_add_positive)
820 hence "0<k \<and> i=p-k" by auto
824 show "False" by blast
828 assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
829 and base: "P i" and i: "i<p" and j: "j<p"
832 have "\<forall>j<p. P j"
835 show "j<p \<longrightarrow> P j" (is "?A j")
837 from step base i show "?A 0"
838 by (auto elim: mod_induct_0)
844 assume suc: "Suc k < p"
845 hence k: "k<p" by simp
846 with ih have "P k" ..
847 with step k have "P (Suc k mod p)"
850 from suc have "Suc k mod p = Suc k"
853 show "P (Suc k)" by simp
857 with j show ?thesis by blast
861 lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c"
862 apply (rule trans [symmetric])
863 apply (rule mod_add1_eq, simp)
864 apply (rule mod_add1_eq [symmetric])
867 lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c"
868 apply (rule trans [symmetric])
869 apply (rule mod_add1_eq, simp)
870 apply (rule mod_add1_eq [symmetric])
875 val div_def = thm "div_def"
876 val mod_def = thm "mod_def"
877 val dvd_def = thm "dvd_def"
878 val quorem_def = thm "quorem_def"
880 val wf_less_trans = thm "wf_less_trans";
881 val mod_eq = thm "mod_eq";
882 val div_eq = thm "div_eq";
883 val DIVISION_BY_ZERO_DIV = thm "DIVISION_BY_ZERO_DIV";
884 val DIVISION_BY_ZERO_MOD = thm "DIVISION_BY_ZERO_MOD";
885 val mod_less = thm "mod_less";
886 val mod_geq = thm "mod_geq";
887 val le_mod_geq = thm "le_mod_geq";
888 val mod_if = thm "mod_if";
889 val mod_1 = thm "mod_1";
890 val mod_self = thm "mod_self";
891 val mod_add_self2 = thm "mod_add_self2";
892 val mod_add_self1 = thm "mod_add_self1";
893 val mod_mult_self1 = thm "mod_mult_self1";
894 val mod_mult_self2 = thm "mod_mult_self2";
895 val mod_mult_distrib = thm "mod_mult_distrib";
896 val mod_mult_distrib2 = thm "mod_mult_distrib2";
897 val mod_mult_self_is_0 = thm "mod_mult_self_is_0";
898 val mod_mult_self1_is_0 = thm "mod_mult_self1_is_0";
899 val div_less = thm "div_less";
900 val div_geq = thm "div_geq";
901 val le_div_geq = thm "le_div_geq";
902 val div_if = thm "div_if";
903 val mod_div_equality = thm "mod_div_equality";
904 val mod_div_equality2 = thm "mod_div_equality2";
905 val div_mod_equality = thm "div_mod_equality";
906 val div_mod_equality2 = thm "div_mod_equality2";
907 val mult_div_cancel = thm "mult_div_cancel";
908 val mod_less_divisor = thm "mod_less_divisor";
909 val div_mult_self_is_m = thm "div_mult_self_is_m";
910 val div_mult_self1_is_m = thm "div_mult_self1_is_m";
911 val unique_quotient_lemma = thm "unique_quotient_lemma";
912 val unique_quotient = thm "unique_quotient";
913 val unique_remainder = thm "unique_remainder";
914 val div_0 = thm "div_0";
915 val mod_0 = thm "mod_0";
916 val div_mult1_eq = thm "div_mult1_eq";
917 val mod_mult1_eq = thm "mod_mult1_eq";
918 val mod_mult1_eq' = thm "mod_mult1_eq'";
919 val mod_mult_distrib_mod = thm "mod_mult_distrib_mod";
920 val div_add1_eq = thm "div_add1_eq";
921 val mod_add1_eq = thm "mod_add1_eq";
922 val mod_add_left_eq = thm "mod_add_left_eq";
923 val mod_add_right_eq = thm "mod_add_right_eq";
924 val mod_lemma = thm "mod_lemma";
925 val div_mult2_eq = thm "div_mult2_eq";
926 val mod_mult2_eq = thm "mod_mult2_eq";
927 val div_mult_mult_lemma = thm "div_mult_mult_lemma";
928 val div_mult_mult1 = thm "div_mult_mult1";
929 val div_mult_mult2 = thm "div_mult_mult2";
930 val div_1 = thm "div_1";
931 val div_self = thm "div_self";
932 val div_add_self2 = thm "div_add_self2";
933 val div_add_self1 = thm "div_add_self1";
934 val div_mult_self1 = thm "div_mult_self1";
935 val div_mult_self2 = thm "div_mult_self2";
936 val div_le_mono = thm "div_le_mono";
937 val div_le_mono2 = thm "div_le_mono2";
938 val div_le_dividend = thm "div_le_dividend";
939 val div_less_dividend = thm "div_less_dividend";
940 val mod_Suc = thm "mod_Suc";
941 val dvdI = thm "dvdI";
942 val dvdE = thm "dvdE";
943 val dvd_0_right = thm "dvd_0_right";
944 val dvd_0_left = thm "dvd_0_left";
945 val dvd_0_left_iff = thm "dvd_0_left_iff";
946 val dvd_1_left = thm "dvd_1_left";
947 val dvd_1_iff_1 = thm "dvd_1_iff_1";
948 val dvd_refl = thm "dvd_refl";
949 val dvd_trans = thm "dvd_trans";
950 val dvd_anti_sym = thm "dvd_anti_sym";
951 val dvd_add = thm "dvd_add";
952 val dvd_diff = thm "dvd_diff";
953 val dvd_diffD = thm "dvd_diffD";
954 val dvd_diffD1 = thm "dvd_diffD1";
955 val dvd_mult = thm "dvd_mult";
956 val dvd_mult2 = thm "dvd_mult2";
957 val dvd_reduce = thm "dvd_reduce";
958 val dvd_mod = thm "dvd_mod";
959 val dvd_mod_imp_dvd = thm "dvd_mod_imp_dvd";
960 val dvd_mod_iff = thm "dvd_mod_iff";
961 val dvd_mult_cancel = thm "dvd_mult_cancel";
962 val dvd_mult_cancel1 = thm "dvd_mult_cancel1";
963 val dvd_mult_cancel2 = thm "dvd_mult_cancel2";
964 val mult_dvd_mono = thm "mult_dvd_mono";
965 val dvd_mult_left = thm "dvd_mult_left";
966 val dvd_mult_right = thm "dvd_mult_right";
967 val dvd_imp_le = thm "dvd_imp_le";
968 val dvd_eq_mod_eq_0 = thm "dvd_eq_mod_eq_0";
969 val dvd_mult_div_cancel = thm "dvd_mult_div_cancel";
970 val mod_eq_0_iff = thm "mod_eq_0_iff";
971 val mod_eqD = thm "mod_eqD";
977 assumes m: "m \<noteq> 0"
978 shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
983 proof (intro allI impI)
985 assume n: "n = m*i + j" and j: "j < m"
989 with n j P show "P i" by simp
991 assume "i \<noteq> 0"
992 with n j P show "P i" by (simp add:add_ac div_mult_self1)
997 from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
1002 assumes m: "m \<noteq> 0"
1003 shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
1008 proof (intro allI impI)
1010 assume "n = m*i + j" "j < m"
1011 thus "P j" using m P by(simp add:add_ac mult_ac)
1015 from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]