src/HOL/ex/set.thy
author nipkow
Mon, 22 Nov 2004 11:54:08 +0100
changeset 15306 51f3d31e8eea
parent 14353 79f9fbef9106
child 15481 fc075ae929e4
permissions -rw-r--r--
fixed proof

(*  Title:      HOL/ex/set.thy
    ID:         $Id$
    Author:     Tobias Nipkow and Lawrence C Paulson
    Copyright   1991  University of Cambridge
*)

header {* Set Theory examples: Cantor's Theorem, Schröder-Berstein Theorem, etc. *}

theory set = Main:

text{*
  These two are cited in Benzmueller and Kohlhase's system description
  of LEO, CADE-15, 1998 (pages 139-143) as theorems LEO could not
  prove.
*}

lemma "(X = Y \<union> Z) =
    (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
  by blast

lemma "(X = Y \<inter> Z) =
    (X \<subseteq> Y \<and> X \<subseteq> Z \<and> (\<forall>V. V \<subseteq> Y \<and> V \<subseteq> Z \<longrightarrow> V \<subseteq> X))"
  by blast

text {*
  Trivial example of term synthesis: apparently hard for some provers!
*}

lemma "a \<noteq> b \<Longrightarrow> a \<in> ?X \<and> b \<notin> ?X"
  by blast


subsection {* Examples for the @{text blast} paper *}

lemma "(\<Union>x \<in> C. f x \<union> g x) = \<Union>(f ` C)  \<union>  \<Union>(g ` C)"
  -- {* Union-image, called @{text Un_Union_image} in Main HOL *}
  by blast

lemma "(\<Inter>x \<in> C. f x \<inter> g x) = \<Inter>(f ` C) \<inter> \<Inter>(g ` C)"
  -- {* Inter-image, called @{text Int_Inter_image} in Main HOL *}
  by blast

lemma "\<And>S::'a set set. \<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
  -- {* Singleton I.  Nice demonstration of @{text blast}--and its limitations. *}
  -- {* For some unfathomable reason, @{text UNIV_I} increases the search space greatly. *}
  by (blast del: UNIV_I)

lemma "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
  -- {*Singleton II.  Variant of the benchmark above. *}
  by (blast del: UNIV_I)

lemma "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
  -- {* A unique fixpoint theorem --- @{text fast}/@{text best}/@{text meson} all fail. *}
  apply (erule ex1E, rule ex1I, erule arg_cong)
  apply (rule subst, assumption, erule allE, rule arg_cong, erule mp)
  apply (erule arg_cong)
  done



subsection {* Cantor's Theorem: There is no surjection from a set to its powerset *}

lemma cantor1: "\<not> (\<exists>f:: 'a \<Rightarrow> 'a set. \<forall>S. \<exists>x. f x = S)"
  -- {* Requires best-first search because it is undirectional. *}
  by best

lemma "\<forall>f:: 'a \<Rightarrow> 'a set. \<forall>x. f x \<noteq> ?S f"
  -- {*This form displays the diagonal term. *}
  by best

lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
  -- {* This form exploits the set constructs. *}
  by (rule notI, erule rangeE, best)

lemma "?S \<notin> range (f :: 'a \<Rightarrow> 'a set)"
  -- {* Or just this! *}
  by best


subsection {* The Schröder-Berstein Theorem *}

lemma disj_lemma: "- (f ` X) = g ` (-X) \<Longrightarrow> f a = g b \<Longrightarrow> a \<in> X \<Longrightarrow> b \<in> X"
  by blast

lemma surj_if_then_else:
  "-(f ` X) = g ` (-X) \<Longrightarrow> surj (\<lambda>z. if z \<in> X then f z else g z)"
  by (simp add: surj_def) blast

lemma bij_if_then_else:
  "inj_on f X \<Longrightarrow> inj_on g (-X) \<Longrightarrow> -(f ` X) = g ` (-X) \<Longrightarrow>
    h = (\<lambda>z. if z \<in> X then f z else g z) \<Longrightarrow> inj h \<and> surj h"
  apply (unfold inj_on_def)
  apply (simp add: surj_if_then_else)
  apply (blast dest: disj_lemma sym)
  done

lemma decomposition: "\<exists>X. X = - (g ` (- (f ` X)))"
  apply (rule exI)
  apply (rule lfp_unfold)
  apply (rule monoI, blast)
  done

theorem Schroeder_Bernstein:
  "inj (f :: 'a \<Rightarrow> 'b) \<Longrightarrow> inj (g :: 'b \<Rightarrow> 'a)
    \<Longrightarrow> \<exists>h:: 'a \<Rightarrow> 'b. inj h \<and> surj h"
  apply (rule decomposition [THEN exE])
  apply (rule exI)
  apply (rule bij_if_then_else)
     apply (rule_tac [4] refl)
    apply (rule_tac [2] inj_on_inv)
    apply (erule subset_inj_on [OF _ subset_UNIV])
   txt {* Tricky variable instantiations! *}
   apply (erule ssubst, subst double_complement)
   apply (rule subsetI, erule imageE, erule ssubst, rule rangeI)
  apply (erule ssubst, subst double_complement, erule inv_image_comp [symmetric])
  done


subsection {* Set variable instantiation examples *}

text {*
  From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages
  293-314.

  Isabelle can prove the easy examples without any special mechanisms,
  but it can't prove the hard ones.
*}

lemma "\<exists>A. (\<forall>x \<in> A. x \<le> (0::int))"
  -- {* Example 1, page 295. *}
  by force

lemma "D \<in> F \<Longrightarrow> \<exists>G. \<forall>A \<in> G. \<exists>B \<in> F. A \<subseteq> B"
  -- {* Example 2. *}
  by force

lemma "P a \<Longrightarrow> \<exists>A. (\<forall>x \<in> A. P x) \<and> (\<exists>y. y \<in> A)"
  -- {* Example 3. *}
  by force

lemma "a < b \<and> b < (c::int) \<Longrightarrow> \<exists>A. a \<notin> A \<and> b \<in> A \<and> c \<notin> A"
  -- {* Example 4. *}
  by force

lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A"
  -- {*Example 5, page 298. *}
  by force

lemma "P (f b) \<Longrightarrow> \<exists>s A. (\<forall>x \<in> A. P x) \<and> f s \<in> A"
  -- {* Example 6. *}
  by force

lemma "\<exists>A. a \<notin> A"
  -- {* Example 7. *}
  by force

lemma "(\<forall>u v. u < (0::int) \<longrightarrow> u \<noteq> abs v)
    \<longrightarrow> (\<exists>A::int set. (\<forall>y. abs y \<notin> A) \<and> -2 \<in> A)"
  -- {* Example 8 now needs a small hint. *}
  by (simp add: abs_if, force)
    -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *}

text {* Example 9 omitted (requires the reals). *}

text {* The paper has no Example 10! *}

lemma "(\<forall>A. 0 \<in> A \<and> (\<forall>x \<in> A. Suc x \<in> A) \<longrightarrow> n \<in> A) \<and>
  P 0 \<and> (\<forall>x. P x \<longrightarrow> P (Suc x)) \<longrightarrow> P n"
  -- {* Example 11: needs a hint. *}
  apply clarify
  apply (drule_tac x = "{x. P x}" in spec)
  apply force
  done

lemma
  "(\<forall>A. (0, 0) \<in> A \<and> (\<forall>x y. (x, y) \<in> A \<longrightarrow> (Suc x, Suc y) \<in> A) \<longrightarrow> (n, m) \<in> A)
    \<and> P n \<longrightarrow> P m"
  -- {* Example 12. *}
  by auto

lemma
  "(\<forall>x. (\<exists>u. x = 2 * u) = (\<not> (\<exists>v. Suc x = 2 * v))) \<longrightarrow>
    (\<exists>A. \<forall>x. (x \<in> A) = (Suc x \<notin> A))"
  -- {* Example EO1: typo in article, and with the obvious fix it seems
      to require arithmetic reasoning. *}
  apply clarify
  apply (rule_tac x = "{x. \<exists>u. x = 2 * u}" in exI, auto)
   apply (case_tac v, auto)
  apply (drule_tac x = "Suc v" and P = "\<lambda>x. ?a x \<noteq> ?b x" in spec, force)
  done

end