1 (* Title: HOL/Partial_Function.thy
2 Author: Alexander Krauss, TU Muenchen
5 header {* Partial Function Definitions *}
7 theory Partial_Function
8 imports Complete_Partial_Order Option
10 "Tools/Function/function_lib.ML"
11 "Tools/Function/partial_function.ML"
14 setup Partial_Function.setup
16 subsection {* Axiomatic setup *}
18 text {* This techical locale constains the requirements for function
19 definitions with ccpo fixed points. *}
21 definition "fun_ord ord f g \<longleftrightarrow> (\<forall>x. ord (f x) (g x))"
22 definition "fun_lub L A = (\<lambda>x. L {y. \<exists>f\<in>A. y = f x})"
23 definition "img_ord f ord = (\<lambda>x y. ord (f x) (f y))"
24 definition "img_lub f g Lub = (\<lambda>A. g (Lub (f ` A)))"
26 lemma call_mono[partial_function_mono]: "monotone (fun_ord ord) ord (\<lambda>f. f t)"
27 by (rule monotoneI) (auto simp: fun_ord_def)
29 lemma let_mono[partial_function_mono]:
30 "(\<And>x. monotone orda ordb (\<lambda>f. b f x))
31 \<Longrightarrow> monotone orda ordb (\<lambda>f. Let t (b f))"
32 by (simp add: Let_def)
34 lemma if_mono[partial_function_mono]: "monotone orda ordb F
35 \<Longrightarrow> monotone orda ordb G
36 \<Longrightarrow> monotone orda ordb (\<lambda>f. if c then F f else G f)"
37 unfolding monotone_def by simp
39 definition "mk_less R = (\<lambda>x y. R x y \<and> \<not> R y x)"
41 locale partial_function_definitions =
42 fixes leq :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
43 fixes lub :: "'a set \<Rightarrow> 'a"
44 assumes leq_refl: "leq x x"
45 assumes leq_trans: "leq x y \<Longrightarrow> leq y z \<Longrightarrow> leq x z"
46 assumes leq_antisym: "leq x y \<Longrightarrow> leq y x \<Longrightarrow> x = y"
47 assumes lub_upper: "chain leq A \<Longrightarrow> x \<in> A \<Longrightarrow> leq x (lub A)"
48 assumes lub_least: "chain leq A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> leq x z) \<Longrightarrow> leq (lub A) z"
50 lemma partial_function_lift:
51 assumes "partial_function_definitions ord lb"
52 shows "partial_function_definitions (fun_ord ord) (fun_lub lb)" (is "partial_function_definitions ?ordf ?lubf")
54 interpret partial_function_definitions ord lb by fact
56 { fix A a assume A: "chain ?ordf A"
57 have "chain ord {y. \<exists>f\<in>A. y = f a}" (is "chain ord ?C")
59 fix x y assume "x \<in> ?C" "y \<in> ?C"
60 then obtain f g where fg: "f \<in> A" "g \<in> A"
61 and [simp]: "x = f a" "y = g a" by blast
63 show "ord x y \<or> ord y x" unfolding fun_ord_def by auto
69 fix x show "?ordf x x"
70 unfolding fun_ord_def by (auto simp: leq_refl)
72 fix x y z assume "?ordf x y" "?ordf y z"
73 thus "?ordf x z" unfolding fun_ord_def
74 by (force dest: leq_trans)
76 fix x y assume "?ordf x y" "?ordf y x"
77 thus "x = y" unfolding fun_ord_def
78 by (force intro!: ext dest: leq_antisym)
80 fix A f assume f: "f \<in> A" and A: "chain ?ordf A"
81 thus "?ordf f (?lubf A)"
82 unfolding fun_lub_def fun_ord_def
83 by (blast intro: lub_upper chain_fun[OF A] f)
85 fix A :: "('b \<Rightarrow> 'a) set" and g :: "'b \<Rightarrow> 'a"
86 assume A: "chain ?ordf A" and g: "\<And>f. f \<in> A \<Longrightarrow> ?ordf f g"
87 show "?ordf (?lubf A) g" unfolding fun_lub_def fun_ord_def
88 by (blast intro: lub_least chain_fun[OF A] dest: g[unfolded fun_ord_def])
92 lemma ccpo: assumes "partial_function_definitions ord lb"
93 shows "class.ccpo ord (mk_less ord) lb"
94 using assms unfolding partial_function_definitions_def mk_less_def
95 by unfold_locales blast+
97 lemma partial_function_image:
98 assumes "partial_function_definitions ord Lub"
99 assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
100 assumes inv: "\<And>x. f (g x) = x"
101 shows "partial_function_definitions (img_ord f ord) (img_lub f g Lub)"
103 let ?iord = "img_ord f ord"
104 let ?ilub = "img_lub f g Lub"
106 interpret partial_function_definitions ord Lub by fact
109 fix A x assume "chain ?iord A" "x \<in> A"
110 then have "chain ord (f ` A)" "f x \<in> f ` A"
111 by (auto simp: img_ord_def intro: chainI dest: chainD)
112 thus "?iord x (?ilub A)"
113 unfolding inv img_lub_def img_ord_def by (rule lub_upper)
115 fix A x assume "chain ?iord A"
116 and 1: "\<And>z. z \<in> A \<Longrightarrow> ?iord z x"
117 then have "chain ord (f ` A)"
118 by (auto simp: img_ord_def intro: chainI dest: chainD)
119 thus "?iord (?ilub A) x"
120 unfolding inv img_lub_def img_ord_def
121 by (rule lub_least) (auto dest: 1[unfolded img_ord_def])
122 qed (auto simp: img_ord_def intro: leq_refl dest: leq_trans leq_antisym inj)
125 context partial_function_definitions
128 abbreviation "le_fun \<equiv> fun_ord leq"
129 abbreviation "lub_fun \<equiv> fun_lub lub"
130 abbreviation "fixp_fun == ccpo.fixp le_fun lub_fun"
131 abbreviation "mono_body \<equiv> monotone le_fun leq"
133 text {* Interpret manually, to avoid flooding everything with facts about
136 lemma ccpo: "class.ccpo le_fun (mk_less le_fun) lub_fun"
138 apply (rule partial_function_lift)
139 apply (rule partial_function_definitions_axioms)
142 text {* The crucial fixed-point theorem *}
144 lemma mono_body_fixp:
145 "(\<And>x. mono_body (\<lambda>f. F f x)) \<Longrightarrow> fixp_fun F = F (fixp_fun F)"
146 by (rule ccpo.fixp_unfold[OF ccpo]) (auto simp: monotone_def fun_ord_def)
148 text {* Version with curry/uncurry combinators, to be used by package *}
151 fixes F :: "'c \<Rightarrow> 'c" and
152 U :: "'c \<Rightarrow> 'b \<Rightarrow> 'a" and
153 C :: "('b \<Rightarrow> 'a) \<Rightarrow> 'c"
154 assumes mono: "\<And>x. mono_body (\<lambda>f. U (F (C f)) x)"
155 assumes eq: "f \<equiv> C (fixp_fun (\<lambda>f. U (F (C f))))"
156 assumes inverse: "\<And>f. C (U f) = f"
159 have "f = C (fixp_fun (\<lambda>f. U (F (C f))))" by (simp add: eq)
160 also have "... = C (U (F (C (fixp_fun (\<lambda>f. U (F (C f)))))))"
161 by (subst mono_body_fixp[of "%f. U (F (C f))", OF mono]) (rule refl)
162 also have "... = F (C (fixp_fun (\<lambda>f. U (F (C f)))))" by (rule inverse)
163 also have "... = F f" by (simp add: eq)
164 finally show "f = F f" .
167 text {* Rules for @{term mono_body}: *}
169 lemma const_mono[partial_function_mono]: "monotone ord leq (\<lambda>f. c)"
170 by (rule monotoneI) (rule leq_refl)
172 declaration {* Partial_Function.init @{term fixp_fun}
173 @{term mono_body} @{thm fixp_rule_uc} *}
178 subsection {* Flat interpretation: tailrec and option *}
181 "flat_ord b x y \<longleftrightarrow> x = b \<or> x = y"
184 "flat_lub b A = (if A \<subseteq> {b} then b else (THE x. x \<in> A - {b}))"
186 lemma flat_interpretation:
187 "partial_function_definitions (flat_ord b) (flat_lub b)"
189 fix A x assume 1: "chain (flat_ord b) A" "x \<in> A"
190 show "flat_ord b x (flat_lub b A)"
193 thus ?thesis by (simp add: flat_ord_def)
195 assume "x \<noteq> b"
196 with 1 have "A - {b} = {x}"
197 by (auto elim: chainE simp: flat_ord_def)
198 then have "flat_lub b A = x"
199 by (auto simp: flat_lub_def)
200 thus ?thesis by (auto simp: flat_ord_def)
203 fix A z assume A: "chain (flat_ord b) A"
204 and z: "\<And>x. x \<in> A \<Longrightarrow> flat_ord b x z"
205 show "flat_ord b (flat_lub b A) z"
207 assume "A \<subseteq> {b}"
209 by (auto simp: flat_lub_def flat_ord_def)
211 assume nb: "\<not> A \<subseteq> {b}"
212 then obtain y where y: "y \<in> A" "y \<noteq> b" by auto
213 with A have "A - {b} = {y}"
214 by (auto elim: chainE simp: flat_ord_def)
215 with nb have "flat_lub b A = y"
216 by (auto simp: flat_lub_def)
217 with z y show ?thesis by auto
219 qed (auto simp: flat_ord_def)
221 interpretation tailrec!:
222 partial_function_definitions "flat_ord undefined" "flat_lub undefined"
223 by (rule flat_interpretation)
225 interpretation option!:
226 partial_function_definitions "flat_ord None" "flat_lub None"
227 by (rule flat_interpretation)
229 abbreviation "option_ord \<equiv> flat_ord None"
230 abbreviation "mono_option \<equiv> monotone (fun_ord option_ord) option_ord"
232 lemma bind_mono[partial_function_mono]:
233 assumes mf: "mono_option B" and mg: "\<And>y. mono_option (\<lambda>f. C y f)"
234 shows "mono_option (\<lambda>f. Option.bind (B f) (\<lambda>y. C y f))"
235 proof (rule monotoneI)
236 fix f g :: "'a \<Rightarrow> 'b option" assume fg: "fun_ord option_ord f g"
238 have "option_ord (B f) (B g)" by (rule monotoneD[of _ _ _ f g])
239 then have "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y. C y f))"
240 unfolding flat_ord_def by auto
242 have "\<And>y'. option_ord (C y' f) (C y' g)"
243 by (rule monotoneD) (rule fg)
244 then have "option_ord (Option.bind (B g) (\<lambda>y'. C y' f)) (Option.bind (B g) (\<lambda>y'. C y' g))"
245 unfolding flat_ord_def by (cases "B g") auto
246 finally (option.leq_trans)
247 show "option_ord (Option.bind (B f) (\<lambda>y. C y f)) (Option.bind (B g) (\<lambda>y'. C y' g))" .
250 hide_const (open) chain