src/HOL/NSA/HyperNat.thy
author huffman
Fri Mar 30 12:32:35 2012 +0200 (2012-03-30)
changeset 47220 52426c62b5d0
parent 42463 f270e3e18be5
child 57512 cc97b347b301
permissions -rw-r--r--
replace lemmas eval_nat_numeral with a simpler reformulation
     1 (*  Title       : HyperNat.thy
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 1998  University of Cambridge
     4 
     5 Converted to Isar and polished by lcp    
     6 *)
     7 
     8 header{*Hypernatural numbers*}
     9 
    10 theory HyperNat
    11 imports StarDef
    12 begin
    13 
    14 type_synonym hypnat = "nat star"
    15 
    16 abbreviation
    17   hypnat_of_nat :: "nat => nat star" where
    18   "hypnat_of_nat == star_of"
    19 
    20 definition
    21   hSuc :: "hypnat => hypnat" where
    22   hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
    23 
    24 subsection{*Properties Transferred from Naturals*}
    25 
    26 lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
    27 by transfer (rule Suc_not_Zero)
    28 
    29 lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
    30 by transfer (rule Zero_not_Suc)
    31 
    32 lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)"
    33 by transfer (rule nat.inject)
    34 
    35 lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
    36 by transfer (rule zero_less_Suc)
    37 
    38 lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)"
    39 by transfer (rule diff_self_eq_0)
    40 
    41 lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0"
    42 by transfer (rule diff_0_eq_0)
    43 
    44 lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)"
    45 by transfer (rule add_is_0)
    46 
    47 lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)"
    48 by transfer (rule diff_diff_left)
    49 
    50 lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j"
    51 by transfer (rule diff_commute)
    52 
    53 lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m"
    54 by transfer (rule diff_add_inverse)
    55 
    56 lemma hypnat_diff_add_inverse2 [simp]:  "!!m n. ((m::hypnat) + n) - n = m"
    57 by transfer (rule diff_add_inverse2)
    58 
    59 lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n"
    60 by transfer (rule diff_cancel)
    61 
    62 lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n"
    63 by transfer (rule diff_cancel2)
    64 
    65 lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)"
    66 by transfer (rule diff_add_0)
    67 
    68 lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)"
    69 by transfer (rule diff_mult_distrib)
    70 
    71 lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)"
    72 by transfer (rule diff_mult_distrib2)
    73 
    74 lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)"
    75 by transfer (rule le_0_eq)
    76 
    77 lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)"
    78 by transfer (rule mult_is_0)
    79 
    80 lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)"
    81 by transfer (rule diff_is_0_eq)
    82 
    83 lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)"
    84 by transfer (rule not_less0)
    85 
    86 lemma hypnat_less_one [iff]:
    87       "!!n. (n < (1::hypnat)) = (n=0)"
    88 by transfer (rule less_one)
    89 
    90 lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)"
    91 by transfer (rule add_diff_inverse)
    92 
    93 lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)"
    94 by transfer (rule le_add_diff_inverse)
    95 
    96 lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)"
    97 by transfer (rule le_add_diff_inverse2)
    98 
    99 declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
   100 
   101 lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n"
   102 by transfer (rule le0)
   103 
   104 lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n"
   105 by transfer (rule le_add1)
   106 
   107 lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x"
   108 by transfer (rule le_add2)
   109 
   110 lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
   111 by (insert add_strict_left_mono [OF zero_less_one], auto)
   112 
   113 lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))"
   114 by transfer (rule neq0_conv)
   115 
   116 lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
   117 by (auto simp add: linorder_not_less [symmetric])
   118 
   119 lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
   120 apply safe
   121  apply (rule_tac x = "n - (1::hypnat) " in exI)
   122  apply (simp add: hypnat_gt_zero_iff) 
   123 apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) 
   124 done
   125 
   126 lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
   127 by (simp add: linorder_not_le [symmetric] add_commute [of x]) 
   128 
   129 lemma hypnat_diff_split:
   130     "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
   131     -- {* elimination of @{text -} on @{text hypnat} *}
   132 proof (cases "a<b" rule: case_split)
   133   case True
   134     thus ?thesis
   135       by (auto simp add: hypnat_add_self_not_less order_less_imp_le 
   136                          hypnat_diff_is_0_eq [THEN iffD2])
   137 next
   138   case False
   139     thus ?thesis
   140       by (auto simp add: linorder_not_less dest: order_le_less_trans) 
   141 qed
   142 
   143 subsection{*Properties of the set of embedded natural numbers*}
   144 
   145 lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
   146 proof
   147   fix n :: nat
   148   show "of_nat n = star_of n" by transfer simp
   149 qed
   150 
   151 lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
   152 by (auto simp add: Nats_def Standard_def)
   153 
   154 lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
   155 by (simp add: Nats_eq_Standard)
   156 
   157 lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
   158 by transfer simp
   159 
   160 lemma hypnat_of_nat_Suc [simp]:
   161      "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
   162 by transfer simp
   163 
   164 lemma of_nat_eq_add [rule_format]:
   165      "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
   166 apply (induct n) 
   167 apply (auto simp add: add_assoc) 
   168 apply (case_tac x) 
   169 apply (auto simp add: add_commute [of 1]) 
   170 done
   171 
   172 lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
   173 by (simp add: Nats_eq_Standard)
   174 
   175 
   176 subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
   177 
   178 definition
   179   (* the set of infinite hypernatural numbers *)
   180   HNatInfinite :: "hypnat set" where
   181   "HNatInfinite = {n. n \<notin> Nats}"
   182 
   183 lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
   184 by (simp add: HNatInfinite_def)
   185 
   186 lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
   187 by (simp add: HNatInfinite_def)
   188 
   189 lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
   190 by (auto simp add: HNatInfinite_def Nats_eq_Standard)
   191 
   192 lemma star_of_Suc_lessI:
   193   "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N"
   194 by transfer (rule Suc_lessI)
   195 
   196 lemma star_of_less_HNatInfinite:
   197   assumes N: "N \<in> HNatInfinite"
   198   shows "star_of n < N"
   199 proof (induct n)
   200   case 0
   201   from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite)
   202   thus "star_of 0 < N" by simp
   203 next
   204   case (Suc n)
   205   from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite)
   206   with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI)
   207 qed
   208 
   209 lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
   210 by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
   211 
   212 subsubsection {* Closure Rules *}
   213 
   214 lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y"
   215 by (auto simp add: Nats_def star_of_less_HNatInfinite)
   216 
   217 lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y"
   218 by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
   219 
   220 lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
   221 by (simp add: Nats_less_HNatInfinite)
   222 
   223 lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
   224 by (simp add: Nats_less_HNatInfinite)
   225 
   226 lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
   227 by (simp add: Nats_le_HNatInfinite)
   228 
   229 lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
   230 by (simp add: HNatInfinite_def)
   231 
   232 lemma Nats_downward_closed:
   233   "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats"
   234 apply (simp only: linorder_not_less [symmetric])
   235 apply (erule contrapos_np)
   236 apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])
   237 apply (erule (1) Nats_less_HNatInfinite)
   238 done
   239 
   240 lemma HNatInfinite_upward_closed:
   241   "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite"
   242 apply (simp only: HNatInfinite_not_Nats_iff)
   243 apply (erule contrapos_nn)
   244 apply (erule (1) Nats_downward_closed)
   245 done
   246 
   247 lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
   248 apply (erule HNatInfinite_upward_closed)
   249 apply (rule hypnat_le_add1)
   250 done
   251 
   252 lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"
   253 by (rule HNatInfinite_add)
   254 
   255 lemma HNatInfinite_diff:
   256   "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
   257 apply (frule (1) Nats_le_HNatInfinite)
   258 apply (simp only: HNatInfinite_not_Nats_iff)
   259 apply (erule contrapos_nn)
   260 apply (drule (1) Nats_add, simp)
   261 done
   262 
   263 lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
   264 apply (rule_tac x = "x - (1::hypnat) " in exI)
   265 apply (simp add: Nats_le_HNatInfinite)
   266 done
   267 
   268 
   269 subsection{*Existence of an infinite hypernatural number*}
   270 
   271 definition
   272   (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *)
   273   whn :: hypnat where
   274   hypnat_omega_def: "whn = star_n (%n::nat. n)"
   275 
   276 lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
   277 by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
   278 
   279 lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
   280 by (simp add: hypnat_omega_def star_of_def star_n_eq_iff)
   281 
   282 lemma whn_not_Nats [simp]: "whn \<notin> Nats"
   283 by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
   284 
   285 lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
   286 by (simp add: HNatInfinite_def)
   287 
   288 lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
   289 apply (insert finite_atMost [of m])
   290 apply (drule FreeUltrafilterNat.finite)
   291 apply (drule FreeUltrafilterNat.not_memD)
   292 apply (simp add: Collect_neg_eq [symmetric] linorder_not_le atMost_def)
   293 done
   294 
   295 lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
   296 by (simp add: Collect_neg_eq [symmetric] linorder_not_le) 
   297 
   298 lemma hypnat_of_nat_eq:
   299      "hypnat_of_nat m  = star_n (%n::nat. m)"
   300 by (simp add: star_of_def)
   301 
   302 lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
   303 by (simp add: Nats_def image_def)
   304 
   305 lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
   306 by (simp add: Nats_less_HNatInfinite)
   307 
   308 lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
   309 by (simp add: Nats_le_HNatInfinite)
   310 
   311 lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
   312 by (simp add: Nats_less_whn)
   313 
   314 lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
   315 by (simp add: Nats_le_whn)
   316 
   317 lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
   318 by (simp add: Nats_less_whn)
   319 
   320 lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
   321 by (simp add: Nats_less_whn)
   322 
   323 
   324 subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
   325 
   326 text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
   327 
   328 (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
   329 lemma HNatInfinite_FreeUltrafilterNat_lemma:
   330   assumes "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat"
   331   shows "{n. N < f n} \<in> FreeUltrafilterNat"
   332 apply (induct N)
   333 using assms
   334 apply (drule_tac x = 0 in spec, simp)
   335 using assms
   336 apply (drule_tac x = "Suc N" in spec)
   337 apply (elim ultra, auto)
   338 done
   339 
   340 lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
   341 apply (safe intro!: Nats_less_HNatInfinite)
   342 apply (auto simp add: HNatInfinite_def)
   343 done
   344 
   345 
   346 subsubsection{*Alternative Characterization of @{term HNatInfinite} using 
   347 Free Ultrafilter*}
   348 
   349 lemma HNatInfinite_FreeUltrafilterNat:
   350      "star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
   351 apply (auto simp add: HNatInfinite_iff SHNat_eq)
   352 apply (drule_tac x="star_of u" in spec, simp)
   353 apply (simp add: star_of_def star_less_def starP2_star_n)
   354 done
   355 
   356 lemma FreeUltrafilterNat_HNatInfinite:
   357      "\<forall>u. {n. u < X n}:  FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
   358 by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
   359 
   360 lemma HNatInfinite_FreeUltrafilterNat_iff:
   361      "(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
   362 by (rule iffI [OF HNatInfinite_FreeUltrafilterNat 
   363                  FreeUltrafilterNat_HNatInfinite])
   364 
   365 subsection {* Embedding of the Hypernaturals into other types *}
   366 
   367 definition
   368   of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
   369   of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
   370 
   371 lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
   372 by transfer (rule of_nat_0)
   373 
   374 lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
   375 by transfer (rule of_nat_1)
   376 
   377 lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
   378 by transfer (rule of_nat_Suc)
   379 
   380 lemma of_hypnat_add [simp]:
   381   "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
   382 by transfer (rule of_nat_add)
   383 
   384 lemma of_hypnat_mult [simp]:
   385   "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
   386 by transfer (rule of_nat_mult)
   387 
   388 lemma of_hypnat_less_iff [simp]:
   389   "\<And>m n. (of_hypnat m < (of_hypnat n::'a::linordered_semidom star)) = (m < n)"
   390 by transfer (rule of_nat_less_iff)
   391 
   392 lemma of_hypnat_0_less_iff [simp]:
   393   "\<And>n. (0 < (of_hypnat n::'a::linordered_semidom star)) = (0 < n)"
   394 by transfer (rule of_nat_0_less_iff)
   395 
   396 lemma of_hypnat_less_0_iff [simp]:
   397   "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"
   398 by transfer (rule of_nat_less_0_iff)
   399 
   400 lemma of_hypnat_le_iff [simp]:
   401   "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star)) = (m \<le> n)"
   402 by transfer (rule of_nat_le_iff)
   403 
   404 lemma of_hypnat_0_le_iff [simp]:
   405   "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"
   406 by transfer (rule of_nat_0_le_iff)
   407 
   408 lemma of_hypnat_le_0_iff [simp]:
   409   "\<And>m. ((of_hypnat m::'a::linordered_semidom star) \<le> 0) = (m = 0)"
   410 by transfer (rule of_nat_le_0_iff)
   411 
   412 lemma of_hypnat_eq_iff [simp]:
   413   "\<And>m n. (of_hypnat m = (of_hypnat n::'a::linordered_semidom star)) = (m = n)"
   414 by transfer (rule of_nat_eq_iff)
   415 
   416 lemma of_hypnat_eq_0_iff [simp]:
   417   "\<And>m. ((of_hypnat m::'a::linordered_semidom star) = 0) = (m = 0)"
   418 by transfer (rule of_nat_eq_0_iff)
   419 
   420 lemma HNatInfinite_of_hypnat_gt_zero:
   421   "N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"
   422 by (rule ccontr, simp add: linorder_not_less)
   423 
   424 end