1 (* Title: HOL/Library/Poly_Deriv.thy
6 section\<open>Polynomials and Differentiation\<close>
9 imports Deriv Polynomial
12 subsection \<open>Derivatives of univariate polynomials\<close>
14 function pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly"
16 [simp del]: "pderiv (pCons a p) = (if p = 0 then 0 else p + pCons 0 (pderiv p))"
17 by (auto intro: pCons_cases)
20 by (relation "measure degree") simp_all
22 lemma pderiv_0 [simp]:
24 using pderiv.simps [of 0 0] by simp
27 "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
28 by (simp add: pderiv.simps)
30 lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
31 by (induct p arbitrary: n)
32 (auto simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
34 primrec pderiv_coeffs :: "'a::comm_monoid_add list \<Rightarrow> 'a list"
36 "pderiv_coeffs [] = []"
37 | "pderiv_coeffs (x # xs) = plus_coeffs xs (cCons 0 (pderiv_coeffs xs))"
39 lemma coeffs_pderiv [code abstract]:
40 "coeffs (pderiv p) = pderiv_coeffs (coeffs p)"
41 by (rule sym, induct p) (simp_all add: pderiv_pCons coeffs_plus_eq_plus_coeffs cCons_def)
43 lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
46 apply (simp add: poly_eq_iff coeff_pderiv del: of_nat_Suc)
47 apply (simp add: poly_eq_iff coeff_pderiv coeff_eq_0)
50 lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
51 apply (rule order_antisym [OF degree_le])
52 apply (simp add: coeff_pderiv coeff_eq_0)
53 apply (cases "degree p", simp)
54 apply (rule le_degree)
55 apply (simp add: coeff_pderiv del: of_nat_Suc)
56 apply (metis degree_0 leading_coeff_0_iff nat.distinct(1))
59 lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
60 by (simp add: pderiv_pCons)
62 lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
63 by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
65 lemma pderiv_minus: "pderiv (- p) = - pderiv p"
66 by (rule poly_eqI, simp add: coeff_pderiv)
68 lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
69 by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
71 lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
72 by (rule poly_eqI, simp add: coeff_pderiv algebra_simps)
74 lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
75 by (induct p) (auto simp: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
77 lemma pderiv_power_Suc:
78 "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
81 apply (subst power_Suc)
82 apply (subst pderiv_mult)
84 apply (simp only: of_nat_Suc smult_add_left smult_1_left)
85 apply (simp add: algebra_simps)
88 lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
89 by (rule DERIV_cong, rule DERIV_pow, simp)
90 declare DERIV_pow2 [simp] DERIV_pow [simp]
92 lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
93 by (rule DERIV_cong, rule DERIV_add, auto)
95 lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
96 by (induct p, auto intro!: derivative_eq_intros simp add: pderiv_pCons)
98 text\<open>Consequences of the derivative theorem above\<close>
100 lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (at x::real filter)"
101 apply (simp add: real_differentiable_def)
102 apply (blast intro: poly_DERIV)
105 lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)"
106 by (rule poly_DERIV [THEN DERIV_isCont])
108 lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |]
109 ==> \<exists>x. a < x & x < b & (poly p x = 0)"
110 using IVT_objl [of "poly p" a 0 b]
111 by (auto simp add: order_le_less)
113 lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |]
114 ==> \<exists>x. a < x & x < b & (poly p x = 0)"
115 by (insert poly_IVT_pos [where p = "- p" ]) simp
117 lemma poly_MVT: "(a::real) < b ==>
118 \<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"
119 using MVT [of a b "poly p"]
121 apply (rule_tac x = z in exI)
122 apply (auto simp add: mult_left_cancel poly_DERIV [THEN DERIV_unique])
125 text\<open>Lemmas for Derivatives\<close>
127 lemma order_unique_lemma:
128 fixes p :: "'a::idom poly"
129 assumes "[:-a, 1:] ^ n dvd p" "\<not> [:-a, 1:] ^ Suc n dvd p"
130 shows "n = order a p"
131 unfolding Polynomial.order_def
132 apply (rule Least_equality [symmetric])
134 apply (rule classical)
136 unfolding not_less_eq_eq
137 using assms(1) apply (rule power_le_dvd)
141 lemma lemma_order_pderiv1:
142 "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
143 smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
144 apply (simp only: pderiv_mult pderiv_power_Suc)
145 apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
148 lemma dvd_add_cancel1:
149 fixes a b c :: "'a::comm_ring_1"
150 shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
151 by (drule (1) Rings.dvd_diff, simp)
153 lemma lemma_order_pderiv:
155 and pd: "pderiv p \<noteq> 0"
156 and pe: "p = [:- a, 1:] ^ n * q"
157 and nd: "~ [:- a, 1:] dvd q"
158 shows "n = Suc (order a (pderiv p))"
161 have "pderiv ([:- a, 1:] ^ n * q) \<noteq> 0"
163 obtain n' where "n = Suc n'" "0 < Suc n'" "pderiv ([:- a, 1:] ^ Suc n' * q) \<noteq> 0"
164 using assms by (cases n) auto
165 then have *: "!!k l. k dvd k * pderiv q + smult (of_nat (Suc n')) l \<Longrightarrow> k dvd l"
166 by (metis dvd_add_cancel1 dvd_smult_iff dvd_triv_left of_nat_eq_0_iff old.nat.distinct(2))
167 have "n' = order a (pderiv ([:- a, 1:] ^ Suc n' * q))"
168 proof (rule order_unique_lemma)
169 show "[:- a, 1:] ^ n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)"
170 apply (subst lemma_order_pderiv1)
172 apply (metis dvdI dvd_mult2 power_Suc2)
173 apply (metis dvd_smult dvd_triv_right)
176 show "\<not> [:- a, 1:] ^ Suc n' dvd pderiv ([:- a, 1:] ^ Suc n' * q)"
177 apply (subst lemma_order_pderiv1)
178 by (metis * nd dvd_mult_cancel_right power_not_zero pCons_eq_0_iff power_Suc zero_neq_one)
181 by (metis \<open>n = Suc n'\<close> pe)
185 assumes "p \<noteq> 0"
186 shows "\<exists>q. p = [:- a, 1:] ^ order a p * q \<and> \<not> [:- a, 1:] dvd q"
188 from assms have A: "[:- a, 1:] ^ order a p dvd p"
189 and B: "\<not> [:- a, 1:] ^ Suc (order a p) dvd p" by (auto dest: order)
190 from A obtain q where C: "p = [:- a, 1:] ^ order a p * q" ..
191 with B have "\<not> [:- a, 1:] ^ Suc (order a p) dvd [:- a, 1:] ^ order a p * q"
193 then have "\<not> [:- a, 1:] ^ order a p * [:- a, 1:] dvd [:- a, 1:] ^ order a p * q"
195 then have D: "\<not> [:- a, 1:] dvd q"
196 using idom_class.dvd_mult_cancel_left [of "[:- a, 1:] ^ order a p" "[:- a, 1:]" q]
198 from C D show ?thesis by blast
201 lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
202 ==> (order a p = Suc (order a (pderiv p)))"
203 apply (case_tac "p = 0", simp)
204 apply (drule_tac a = a and p = p in order_decomp)
206 apply (blast intro: lemma_order_pderiv)
209 lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
211 def i \<equiv> "order a p"
212 def j \<equiv> "order a q"
213 def t \<equiv> "[:-a, 1:]"
214 have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
215 unfolding t_def by (simp add: dvd_iff_poly_eq_0)
216 assume "p * q \<noteq> 0"
217 then show "order a (p * q) = i + j"
219 apply (drule order [where a=a and p=p, folded i_def t_def])
220 apply (drule order [where a=a and p=q, folded j_def t_def])
223 apply (rule order_unique_lemma [symmetric], fold t_def)
224 apply (simp_all add: power_add t_dvd_iff)
228 text\<open>Now justify the standard squarefree decomposition, i.e. f / gcd(f,f').\<close>
230 lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
231 apply (cases "p = 0", auto)
232 apply (drule order_2 [where a=a and p=p])
233 apply (metis not_less_eq_eq power_le_dvd)
234 apply (erule power_le_dvd [OF order_1])
237 lemma poly_squarefree_decomp_order:
238 assumes "pderiv p \<noteq> 0"
240 and p': "pderiv p = e * d"
241 and d: "d = r * p + s * pderiv p"
242 shows "order a q = (if order a p = 0 then 0 else 1)"
243 proof (rule classical)
244 assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)"
245 from \<open>pderiv p \<noteq> 0\<close> have "p \<noteq> 0" by auto
246 with p have "order a p = order a q + order a d"
247 by (simp add: order_mult)
248 with 1 have "order a p \<noteq> 0" by (auto split: if_splits)
249 have "order a (pderiv p) = order a e + order a d"
250 using \<open>pderiv p \<noteq> 0\<close> \<open>pderiv p = e * d\<close> by (simp add: order_mult)
251 have "order a p = Suc (order a (pderiv p))"
252 using \<open>pderiv p \<noteq> 0\<close> \<open>order a p \<noteq> 0\<close> by (rule order_pderiv)
253 have "d \<noteq> 0" using \<open>p \<noteq> 0\<close> \<open>p = q * d\<close> by simp
254 have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
257 apply (rule dvd_mult)
258 apply (simp add: order_divides \<open>p \<noteq> 0\<close>
259 \<open>order a p = Suc (order a (pderiv p))\<close>)
260 apply (rule dvd_mult)
261 apply (simp add: order_divides)
263 then have "order a (pderiv p) \<le> order a d"
264 using \<open>d \<noteq> 0\<close> by (simp add: order_divides)
266 using \<open>order a p = order a q + order a d\<close>
267 using \<open>order a (pderiv p) = order a e + order a d\<close>
268 using \<open>order a p = Suc (order a (pderiv p))\<close>
269 using \<open>order a (pderiv p) \<le> order a d\<close>
273 lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
276 d = r * p + s * pderiv p
277 |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
278 by (blast intro: poly_squarefree_decomp_order)
280 lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
281 ==> (order a (pderiv p) = n) = (order a p = Suc n)"
282 by (auto dest: order_pderiv)
285 rsquarefree :: "'a::idom poly => bool" where
286 "rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
288 lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
289 apply (simp add: pderiv_eq_0_iff)
290 apply (case_tac p, auto split: if_splits)
293 lemma rsquarefree_roots:
294 "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
295 apply (simp add: rsquarefree_def)
296 apply (case_tac "p = 0", simp, simp)
297 apply (case_tac "pderiv p = 0")
299 apply (drule pderiv_iszero, clarsimp)
300 apply (metis coeff_0 coeff_pCons_0 degree_pCons_0 le0 le_antisym order_degree)
301 apply (force simp add: order_root order_pderiv2)
304 lemma poly_squarefree_decomp:
305 assumes "pderiv p \<noteq> 0"
307 and "pderiv p = e * d"
308 and "d = r * p + s * pderiv p"
309 shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))"
311 from \<open>pderiv p \<noteq> 0\<close> have "p \<noteq> 0" by auto
312 with \<open>p = q * d\<close> have "q \<noteq> 0" by simp
313 have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
314 using assms by (rule poly_squarefree_decomp_order2)
315 with \<open>p \<noteq> 0\<close> \<open>q \<noteq> 0\<close> show ?thesis
316 by (simp add: rsquarefree_def order_root)