src/HOL/Finite_Set.thy
 author paulson Wed Feb 02 18:06:00 2005 +0100 (2005-02-02) changeset 15487 55497029b255 parent 15484 2636ec211ec8 child 15497 53bca254719a permissions -rw-r--r--
generalization and tidying
```     1 (*  Title:      HOL/Finite_Set.thy
```
```     2     ID:         \$Id\$
```
```     3     Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
```
```     4                 Additions by Jeremy Avigad in Feb 2004
```
```     5 *)
```
```     6
```
```     7 header {* Finite sets *}
```
```     8
```
```     9 theory Finite_Set
```
```    10 imports Divides Power Inductive
```
```    11 begin
```
```    12
```
```    13 subsection {* Definition and basic properties *}
```
```    14
```
```    15 consts Finites :: "'a set set"
```
```    16 syntax
```
```    17   finite :: "'a set => bool"
```
```    18 translations
```
```    19   "finite A" == "A : Finites"
```
```    20
```
```    21 inductive Finites
```
```    22   intros
```
```    23     emptyI [simp, intro!]: "{} : Finites"
```
```    24     insertI [simp, intro!]: "A : Finites ==> insert a A : Finites"
```
```    25
```
```    26 axclass finite \<subseteq> type
```
```    27   finite: "finite UNIV"
```
```    28
```
```    29 lemma ex_new_if_finite: -- "does not depend on def of finite at all"
```
```    30   assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
```
```    31   shows "\<exists>a::'a. a \<notin> A"
```
```    32 proof -
```
```    33   from prems have "A \<noteq> UNIV" by blast
```
```    34   thus ?thesis by blast
```
```    35 qed
```
```    36
```
```    37 lemma finite_induct [case_names empty insert, induct set: Finites]:
```
```    38   "finite F ==>
```
```    39     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
```
```    40   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
```
```    41 proof -
```
```    42   assume "P {}" and
```
```    43     insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)"
```
```    44   assume "finite F"
```
```    45   thus "P F"
```
```    46   proof induct
```
```    47     show "P {}" .
```
```    48     fix x F assume F: "finite F" and P: "P F"
```
```    49     show "P (insert x F)"
```
```    50     proof cases
```
```    51       assume "x \<in> F"
```
```    52       hence "insert x F = F" by (rule insert_absorb)
```
```    53       with P show ?thesis by (simp only:)
```
```    54     next
```
```    55       assume "x \<notin> F"
```
```    56       from F this P show ?thesis by (rule insert)
```
```    57     qed
```
```    58   qed
```
```    59 qed
```
```    60
```
```    61 lemma finite_ne_induct[case_names singleton insert, consumes 2]:
```
```    62 assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow>
```
```    63  \<lbrakk> \<And>x. P{x};
```
```    64    \<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk>
```
```    65  \<Longrightarrow> P F"
```
```    66 using fin
```
```    67 proof induct
```
```    68   case empty thus ?case by simp
```
```    69 next
```
```    70   case (insert x F)
```
```    71   show ?case
```
```    72   proof cases
```
```    73     assume "F = {}" thus ?thesis using insert(4) by simp
```
```    74   next
```
```    75     assume "F \<noteq> {}" thus ?thesis using insert by blast
```
```    76   qed
```
```    77 qed
```
```    78
```
```    79 lemma finite_subset_induct [consumes 2, case_names empty insert]:
```
```    80   "finite F ==> F \<subseteq> A ==>
```
```    81     P {} ==> (!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==>
```
```    82     P F"
```
```    83 proof -
```
```    84   assume "P {}" and insert:
```
```    85     "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
```
```    86   assume "finite F"
```
```    87   thus "F \<subseteq> A ==> P F"
```
```    88   proof induct
```
```    89     show "P {}" .
```
```    90     fix x F assume "finite F" and "x \<notin> F"
```
```    91       and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A"
```
```    92     show "P (insert x F)"
```
```    93     proof (rule insert)
```
```    94       from i show "x \<in> A" by blast
```
```    95       from i have "F \<subseteq> A" by blast
```
```    96       with P show "P F" .
```
```    97     qed
```
```    98   qed
```
```    99 qed
```
```   100
```
```   101 text{* Finite sets are the images of initial segments of natural numbers: *}
```
```   102
```
```   103 lemma finite_imp_nat_seg_image:
```
```   104 assumes fin: "finite A" shows "\<exists> (n::nat) f. A = f ` {i::nat. i<n}"
```
```   105 using fin
```
```   106 proof induct
```
```   107   case empty
```
```   108   show ?case
```
```   109   proof show "\<exists>f. {} = f ` {i::nat. i < 0}" by(simp add:image_def) qed
```
```   110 next
```
```   111   case (insert a A)
```
```   112   from insert.hyps obtain n f where "A = f ` {i::nat. i < n}" by blast
```
```   113   hence "insert a A = (%i. if i<n then f i else a) ` {i. i < n+1}"
```
```   114     by (auto simp add:image_def Ball_def)
```
```   115   thus ?case by blast
```
```   116 qed
```
```   117
```
```   118 lemma nat_seg_image_imp_finite:
```
```   119   "!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A"
```
```   120 proof (induct n)
```
```   121   case 0 thus ?case by simp
```
```   122 next
```
```   123   case (Suc n)
```
```   124   let ?B = "f ` {i. i < n}"
```
```   125   have finB: "finite ?B" by(rule Suc.hyps[OF refl])
```
```   126   show ?case
```
```   127   proof cases
```
```   128     assume "\<exists>k<n. f n = f k"
```
```   129     hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq)
```
```   130     thus ?thesis using finB by simp
```
```   131   next
```
```   132     assume "\<not>(\<exists> k<n. f n = f k)"
```
```   133     hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq)
```
```   134     thus ?thesis using finB by simp
```
```   135   qed
```
```   136 qed
```
```   137
```
```   138 lemma finite_conv_nat_seg_image:
```
```   139   "finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})"
```
```   140 by(blast intro: finite_imp_nat_seg_image nat_seg_image_imp_finite)
```
```   141
```
```   142 subsubsection{* Finiteness and set theoretic constructions *}
```
```   143
```
```   144 lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)"
```
```   145   -- {* The union of two finite sets is finite. *}
```
```   146   by (induct set: Finites) simp_all
```
```   147
```
```   148 lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A"
```
```   149   -- {* Every subset of a finite set is finite. *}
```
```   150 proof -
```
```   151   assume "finite B"
```
```   152   thus "!!A. A \<subseteq> B ==> finite A"
```
```   153   proof induct
```
```   154     case empty
```
```   155     thus ?case by simp
```
```   156   next
```
```   157     case (insert x F A)
```
```   158     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" .
```
```   159     show "finite A"
```
```   160     proof cases
```
```   161       assume x: "x \<in> A"
```
```   162       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
```
```   163       with r have "finite (A - {x})" .
```
```   164       hence "finite (insert x (A - {x}))" ..
```
```   165       also have "insert x (A - {x}) = A" by (rule insert_Diff)
```
```   166       finally show ?thesis .
```
```   167     next
```
```   168       show "A \<subseteq> F ==> ?thesis" .
```
```   169       assume "x \<notin> A"
```
```   170       with A show "A \<subseteq> F" by (simp add: subset_insert_iff)
```
```   171     qed
```
```   172   qed
```
```   173 qed
```
```   174
```
```   175 lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)"
```
```   176   by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI)
```
```   177
```
```   178 lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)"
```
```   179   -- {* The converse obviously fails. *}
```
```   180   by (blast intro: finite_subset)
```
```   181
```
```   182 lemma finite_insert [simp]: "finite (insert a A) = finite A"
```
```   183   apply (subst insert_is_Un)
```
```   184   apply (simp only: finite_Un, blast)
```
```   185   done
```
```   186
```
```   187 lemma finite_Union[simp, intro]:
```
```   188  "\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)"
```
```   189 by (induct rule:finite_induct) simp_all
```
```   190
```
```   191 lemma finite_empty_induct:
```
```   192   "finite A ==>
```
```   193   P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}"
```
```   194 proof -
```
```   195   assume "finite A"
```
```   196     and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
```
```   197   have "P (A - A)"
```
```   198   proof -
```
```   199     fix c b :: "'a set"
```
```   200     presume c: "finite c" and b: "finite b"
```
```   201       and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
```
```   202     from c show "c \<subseteq> b ==> P (b - c)"
```
```   203     proof induct
```
```   204       case empty
```
```   205       from P1 show ?case by simp
```
```   206     next
```
```   207       case (insert x F)
```
```   208       have "P (b - F - {x})"
```
```   209       proof (rule P2)
```
```   210         from _ b show "finite (b - F)" by (rule finite_subset) blast
```
```   211         from insert show "x \<in> b - F" by simp
```
```   212         from insert show "P (b - F)" by simp
```
```   213       qed
```
```   214       also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
```
```   215       finally show ?case .
```
```   216     qed
```
```   217   next
```
```   218     show "A \<subseteq> A" ..
```
```   219   qed
```
```   220   thus "P {}" by simp
```
```   221 qed
```
```   222
```
```   223 lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)"
```
```   224   by (rule Diff_subset [THEN finite_subset])
```
```   225
```
```   226 lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)"
```
```   227   apply (subst Diff_insert)
```
```   228   apply (case_tac "a : A - B")
```
```   229    apply (rule finite_insert [symmetric, THEN trans])
```
```   230    apply (subst insert_Diff, simp_all)
```
```   231   done
```
```   232
```
```   233
```
```   234 text {* Image and Inverse Image over Finite Sets *}
```
```   235
```
```   236 lemma finite_imageI[simp]: "finite F ==> finite (h ` F)"
```
```   237   -- {* The image of a finite set is finite. *}
```
```   238   by (induct set: Finites) simp_all
```
```   239
```
```   240 lemma finite_surj: "finite A ==> B <= f ` A ==> finite B"
```
```   241   apply (frule finite_imageI)
```
```   242   apply (erule finite_subset, assumption)
```
```   243   done
```
```   244
```
```   245 lemma finite_range_imageI:
```
```   246     "finite (range g) ==> finite (range (%x. f (g x)))"
```
```   247   apply (drule finite_imageI, simp)
```
```   248   done
```
```   249
```
```   250 lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A"
```
```   251 proof -
```
```   252   have aux: "!!A. finite (A - {}) = finite A" by simp
```
```   253   fix B :: "'a set"
```
```   254   assume "finite B"
```
```   255   thus "!!A. f`A = B ==> inj_on f A ==> finite A"
```
```   256     apply induct
```
```   257      apply simp
```
```   258     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
```
```   259      apply clarify
```
```   260      apply (simp (no_asm_use) add: inj_on_def)
```
```   261      apply (blast dest!: aux [THEN iffD1], atomize)
```
```   262     apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl)
```
```   263     apply (frule subsetD [OF equalityD2 insertI1], clarify)
```
```   264     apply (rule_tac x = xa in bexI)
```
```   265      apply (simp_all add: inj_on_image_set_diff)
```
```   266     done
```
```   267 qed (rule refl)
```
```   268
```
```   269
```
```   270 lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
```
```   271   -- {* The inverse image of a singleton under an injective function
```
```   272          is included in a singleton. *}
```
```   273   apply (auto simp add: inj_on_def)
```
```   274   apply (blast intro: the_equality [symmetric])
```
```   275   done
```
```   276
```
```   277 lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)"
```
```   278   -- {* The inverse image of a finite set under an injective function
```
```   279          is finite. *}
```
```   280   apply (induct set: Finites, simp_all)
```
```   281   apply (subst vimage_insert)
```
```   282   apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton])
```
```   283   done
```
```   284
```
```   285
```
```   286 text {* The finite UNION of finite sets *}
```
```   287
```
```   288 lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)"
```
```   289   by (induct set: Finites) simp_all
```
```   290
```
```   291 text {*
```
```   292   Strengthen RHS to
```
```   293   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
```
```   294
```
```   295   We'd need to prove
```
```   296   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
```
```   297   by induction. *}
```
```   298
```
```   299 lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))"
```
```   300   by (blast intro: finite_UN_I finite_subset)
```
```   301
```
```   302
```
```   303 text {* Sigma of finite sets *}
```
```   304
```
```   305 lemma finite_SigmaI [simp]:
```
```   306     "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)"
```
```   307   by (unfold Sigma_def) (blast intro!: finite_UN_I)
```
```   308
```
```   309 lemma finite_cartesian_product: "[| finite A; finite B |] ==>
```
```   310     finite (A <*> B)"
```
```   311   by (rule finite_SigmaI)
```
```   312
```
```   313 lemma finite_Prod_UNIV:
```
```   314     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
```
```   315   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
```
```   316    apply (erule ssubst)
```
```   317    apply (erule finite_SigmaI, auto)
```
```   318   done
```
```   319
```
```   320 lemma finite_cartesian_productD1:
```
```   321      "[| finite (A <*> B); B \<noteq> {} |] ==> finite A"
```
```   322 apply (auto simp add: finite_conv_nat_seg_image)
```
```   323 apply (drule_tac x=n in spec)
```
```   324 apply (drule_tac x="fst o f" in spec)
```
```   325 apply (auto simp add: o_def)
```
```   326  prefer 2 apply (force dest!: equalityD2)
```
```   327 apply (drule equalityD1)
```
```   328 apply (rename_tac y x)
```
```   329 apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)")
```
```   330  prefer 2 apply force
```
```   331 apply clarify
```
```   332 apply (rule_tac x=k in image_eqI, auto)
```
```   333 done
```
```   334
```
```   335 lemma finite_cartesian_productD2:
```
```   336      "[| finite (A <*> B); A \<noteq> {} |] ==> finite B"
```
```   337 apply (auto simp add: finite_conv_nat_seg_image)
```
```   338 apply (drule_tac x=n in spec)
```
```   339 apply (drule_tac x="snd o f" in spec)
```
```   340 apply (auto simp add: o_def)
```
```   341  prefer 2 apply (force dest!: equalityD2)
```
```   342 apply (drule equalityD1)
```
```   343 apply (rename_tac x y)
```
```   344 apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)")
```
```   345  prefer 2 apply force
```
```   346 apply clarify
```
```   347 apply (rule_tac x=k in image_eqI, auto)
```
```   348 done
```
```   349
```
```   350
```
```   351 instance unit :: finite
```
```   352 proof
```
```   353   have "finite {()}" by simp
```
```   354   also have "{()} = UNIV" by auto
```
```   355   finally show "finite (UNIV :: unit set)" .
```
```   356 qed
```
```   357
```
```   358 instance * :: (finite, finite) finite
```
```   359 proof
```
```   360   show "finite (UNIV :: ('a \<times> 'b) set)"
```
```   361   proof (rule finite_Prod_UNIV)
```
```   362     show "finite (UNIV :: 'a set)" by (rule finite)
```
```   363     show "finite (UNIV :: 'b set)" by (rule finite)
```
```   364   qed
```
```   365 qed
```
```   366
```
```   367
```
```   368 text {* The powerset of a finite set *}
```
```   369
```
```   370 lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A"
```
```   371 proof
```
```   372   assume "finite (Pow A)"
```
```   373   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
```
```   374   thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp
```
```   375 next
```
```   376   assume "finite A"
```
```   377   thus "finite (Pow A)"
```
```   378     by induct (simp_all add: finite_UnI finite_imageI Pow_insert)
```
```   379 qed
```
```   380
```
```   381
```
```   382 lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A"
```
```   383 by(blast intro: finite_subset[OF subset_Pow_Union])
```
```   384
```
```   385
```
```   386 lemma finite_converse [iff]: "finite (r^-1) = finite r"
```
```   387   apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r")
```
```   388    apply simp
```
```   389    apply (rule iffI)
```
```   390     apply (erule finite_imageD [unfolded inj_on_def])
```
```   391     apply (simp split add: split_split)
```
```   392    apply (erule finite_imageI)
```
```   393   apply (simp add: converse_def image_def, auto)
```
```   394   apply (rule bexI)
```
```   395    prefer 2 apply assumption
```
```   396   apply simp
```
```   397   done
```
```   398
```
```   399
```
```   400 text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi
```
```   401 Ehmety) *}
```
```   402
```
```   403 lemma finite_Field: "finite r ==> finite (Field r)"
```
```   404   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
```
```   405   apply (induct set: Finites)
```
```   406    apply (auto simp add: Field_def Domain_insert Range_insert)
```
```   407   done
```
```   408
```
```   409 lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r"
```
```   410   apply clarify
```
```   411   apply (erule trancl_induct)
```
```   412    apply (auto simp add: Field_def)
```
```   413   done
```
```   414
```
```   415 lemma finite_trancl: "finite (r^+) = finite r"
```
```   416   apply auto
```
```   417    prefer 2
```
```   418    apply (rule trancl_subset_Field2 [THEN finite_subset])
```
```   419    apply (rule finite_SigmaI)
```
```   420     prefer 3
```
```   421     apply (blast intro: r_into_trancl' finite_subset)
```
```   422    apply (auto simp add: finite_Field)
```
```   423   done
```
```   424
```
```   425
```
```   426 subsection {* A fold functional for finite sets *}
```
```   427
```
```   428 text {* The intended behaviour is
```
```   429 @{text "fold f g z {x\<^isub>1, ..., x\<^isub>n} = f (g x\<^isub>1) (\<dots> (f (g x\<^isub>n) z)\<dots>)"}
```
```   430 if @{text f} is associative-commutative. For an application of @{text fold}
```
```   431 se the definitions of sums and products over finite sets.
```
```   432 *}
```
```   433
```
```   434 consts
```
```   435   foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => ('b set \<times> 'a) set"
```
```   436
```
```   437 inductive "foldSet f g z"
```
```   438 intros
```
```   439 emptyI [intro]: "({}, z) : foldSet f g z"
```
```   440 insertI [intro]: "\<lbrakk> x \<notin> A; (A, y) : foldSet f g z \<rbrakk>
```
```   441  \<Longrightarrow> (insert x A, f (g x) y) : foldSet f g z"
```
```   442
```
```   443 inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f g z"
```
```   444
```
```   445 constdefs
```
```   446   fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a"
```
```   447   "fold f g z A == THE x. (A, x) : foldSet f g z"
```
```   448
```
```   449 lemma Diff1_foldSet:
```
```   450   "(A - {x}, y) : foldSet f g z ==> x: A ==> (A, f (g x) y) : foldSet f g z"
```
```   451 by (erule insert_Diff [THEN subst], rule foldSet.intros, auto)
```
```   452
```
```   453 lemma foldSet_imp_finite: "(A, x) : foldSet f g z ==> finite A"
```
```   454   by (induct set: foldSet) auto
```
```   455
```
```   456 lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f g z"
```
```   457   by (induct set: Finites) auto
```
```   458
```
```   459
```
```   460 subsubsection {* Commutative monoids *}
```
```   461
```
```   462 locale ACf =
```
```   463   fixes f :: "'a => 'a => 'a"    (infixl "\<cdot>" 70)
```
```   464   assumes commute: "x \<cdot> y = y \<cdot> x"
```
```   465     and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
```
```   466
```
```   467 locale ACe = ACf +
```
```   468   fixes e :: 'a
```
```   469   assumes ident [simp]: "x \<cdot> e = x"
```
```   470
```
```   471 locale ACIf = ACf +
```
```   472   assumes idem: "x \<cdot> x = x"
```
```   473
```
```   474 lemma (in ACf) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
```
```   475 proof -
```
```   476   have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute)
```
```   477   also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc)
```
```   478   also have "z \<cdot> x = x \<cdot> z" by (simp only: commute)
```
```   479   finally show ?thesis .
```
```   480 qed
```
```   481
```
```   482 lemmas (in ACf) AC = assoc commute left_commute
```
```   483
```
```   484 lemma (in ACe) left_ident [simp]: "e \<cdot> x = x"
```
```   485 proof -
```
```   486   have "x \<cdot> e = x" by (rule ident)
```
```   487   thus ?thesis by (subst commute)
```
```   488 qed
```
```   489
```
```   490 text{* Instantiation of locales: *}
```
```   491
```
```   492 lemma ACf_add: "ACf (op + :: 'a::comm_monoid_add \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```   493 by(fastsimp intro: ACf.intro add_assoc add_commute)
```
```   494
```
```   495 lemma ACe_add: "ACe (op +) (0::'a::comm_monoid_add)"
```
```   496 by(fastsimp intro: ACe.intro ACe_axioms.intro ACf_add)
```
```   497
```
```   498
```
```   499 lemma ACf_mult: "ACf (op * :: 'a::comm_monoid_mult \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```   500 by(fast intro: ACf.intro mult_assoc ab_semigroup_mult.mult_commute)
```
```   501
```
```   502 lemma ACe_mult: "ACe (op *) (1::'a::comm_monoid_mult)"
```
```   503 by(fastsimp intro: ACe.intro ACe_axioms.intro ACf_mult)
```
```   504
```
```   505
```
```   506 subsubsection{*From @{term foldSet} to @{term fold}*}
```
```   507
```
```   508 (* only used in the next lemma, but in there twice *)
```
```   509 lemma card_lemma: assumes A1: "A = insert b B" and notinB: "b \<notin> B" and
```
```   510   card: "A = h`{i. i<Suc n}" and new: "\<not>(EX k<n. h n = h k)"
```
```   511 shows "EX h. B = h`{i. i<n}" (is "EX h. ?P h")
```
```   512 proof
```
```   513   let ?h = "%i. if h i = b then h n else h i"
```
```   514   show "B = ?h`{i. i<n}" (is "_ = ?r")
```
```   515   proof
```
```   516     show "B \<subseteq> ?r"
```
```   517     proof
```
```   518       fix u assume "u \<in> B"
```
```   519       hence uinA: "u \<in> A" and unotb: "u \<noteq> b" using A1 notinB by blast+
```
```   520       then obtain i\<^isub>u where below: "i\<^isub>u < Suc n" and [simp]: "u = h i\<^isub>u"
```
```   521 	using card by(auto simp:image_def)
```
```   522       show "u \<in> ?r"
```
```   523       proof cases
```
```   524 	assume "i\<^isub>u < n"
```
```   525 	thus ?thesis using unotb by(fastsimp)
```
```   526       next
```
```   527 	assume "\<not> i\<^isub>u < n"
```
```   528 	with below have [simp]: "i\<^isub>u = n" by arith
```
```   529 	obtain i\<^isub>k where i\<^isub>k: "i\<^isub>k < Suc n" and [simp]: "b = h i\<^isub>k"
```
```   530 	  using A1 card by blast
```
```   531 	have "i\<^isub>k < n"
```
```   532 	proof (rule ccontr)
```
```   533 	  assume "\<not> i\<^isub>k < n"
```
```   534 	  hence "i\<^isub>k = n" using i\<^isub>k by arith
```
```   535 	  thus False using unotb by simp
```
```   536 	qed
```
```   537 	thus ?thesis by(auto simp add:image_def)
```
```   538       qed
```
```   539     qed
```
```   540   next
```
```   541     show "?r \<subseteq> B"
```
```   542     proof
```
```   543       fix u assume "u \<in> ?r"
```
```   544       then obtain i\<^isub>u where below: "i\<^isub>u < n" and
```
```   545         or: "b = h i\<^isub>u \<and> u = h n \<or> h i\<^isub>u \<noteq> b \<and> h i\<^isub>u = u"
```
```   546 	by(auto simp:image_def)
```
```   547       from or show "u \<in> B"
```
```   548       proof
```
```   549 	assume [simp]: "b = h i\<^isub>u \<and> u = h n"
```
```   550 	have "u \<in> A" using card by auto
```
```   551         moreover have "u \<noteq> b" using new below by auto
```
```   552 	ultimately show "u \<in> B" using A1 by blast
```
```   553       next
```
```   554 	assume "h i\<^isub>u \<noteq> b \<and> h i\<^isub>u = u"
```
```   555 	moreover hence "u \<in> A" using card below by auto
```
```   556 	ultimately show "u \<in> B" using A1 by blast
```
```   557       qed
```
```   558     qed
```
```   559   qed
```
```   560 qed
```
```   561
```
```   562 lemma (in ACf) foldSet_determ_aux:
```
```   563   "!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; (A,x) : foldSet f g z; (A,x') : foldSet f g z \<rbrakk>
```
```   564    \<Longrightarrow> x' = x"
```
```   565 proof (induct n)
```
```   566   case 0 thus ?case by auto
```
```   567 next
```
```   568   case (Suc n)
```
```   569   have IH: "!!A x x' h. \<lbrakk>A = h`{i::nat. i<n}; (A,x) \<in> foldSet f g z; (A,x') \<in> foldSet f g z\<rbrakk>
```
```   570            \<Longrightarrow> x' = x" and card: "A = h`{i. i<Suc n}"
```
```   571   and Afoldx: "(A, x) \<in> foldSet f g z" and Afoldy: "(A,x') \<in> foldSet f g z" .
```
```   572   show ?case
```
```   573   proof cases
```
```   574     assume "EX k<n. h n = h k"
```
```   575       --{*@{term h} is not injective, so the cardinality has not increased*}
```
```   576     hence card': "A = h ` {i. i < n}"
```
```   577       using card by (auto simp:image_def less_Suc_eq)
```
```   578     show ?thesis by(rule IH[OF card' Afoldx Afoldy])
```
```   579   next
```
```   580     assume new: "\<not>(EX k<n. h n = h k)"
```
```   581     show ?thesis
```
```   582     proof (rule foldSet.cases[OF Afoldx])
```
```   583       assume "(A, x) = ({}, z)"  --{*fold of a singleton set*}
```
```   584       thus "x' = x" using Afoldy by (auto)
```
```   585     next
```
```   586       fix B b y
```
```   587       assume eq1: "(A, x) = (insert b B, g b \<cdot> y)"
```
```   588 	and y: "(B,y) \<in> foldSet f g z" and notinB: "b \<notin> B"
```
```   589       hence A1: "A = insert b B" and x: "x = g b \<cdot> y" by auto
```
```   590       show ?thesis
```
```   591       proof (rule foldSet.cases[OF Afoldy])
```
```   592 	assume "(A,x') = ({}, z)"
```
```   593 	thus ?thesis using A1 by auto
```
```   594       next
```
```   595 	fix C c r
```
```   596 	assume eq2: "(A,x') = (insert c C, g c \<cdot> r)"
```
```   597 	  and r: "(C,r) \<in> foldSet f g z" and notinC: "c \<notin> C"
```
```   598 	hence A2: "A = insert c C" and x': "x' = g c \<cdot> r" by auto
```
```   599 	obtain hB where lessB: "B = hB ` {i. i<n}"
```
```   600 	  using card_lemma[OF A1 notinB card new] by auto
```
```   601 	obtain hC where lessC: "C = hC ` {i. i<n}"
```
```   602 	  using card_lemma[OF A2 notinC card new] by auto
```
```   603 	show ?thesis
```
```   604 	proof cases
```
```   605 	  assume "b = c"
```
```   606 	  then moreover have "B = C" using A1 A2 notinB notinC by auto
```
```   607 	  ultimately show ?thesis using IH[OF lessB] y r x x' by auto
```
```   608 	next
```
```   609 	  assume diff: "b \<noteq> c"
```
```   610 	  let ?D = "B - {c}"
```
```   611 	  have B: "B = insert c ?D" and C: "C = insert b ?D"
```
```   612 	    using A1 A2 notinB notinC diff by(blast elim!:equalityE)+
```
```   613 	  have "finite A" by(rule foldSet_imp_finite[OF Afoldx])
```
```   614 	  with A1 have "finite ?D" by simp
```
```   615 	  then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g z"
```
```   616 	    using finite_imp_foldSet by rules
```
```   617 	  moreover have cinB: "c \<in> B" using B by(auto)
```
```   618 	  ultimately have "(B,g c \<cdot> d) \<in> foldSet f g z"
```
```   619 	    by(rule Diff1_foldSet)
```
```   620 	  hence "g c \<cdot> d = y" by(rule IH[OF lessB y])
```
```   621           moreover have "g b \<cdot> d = r"
```
```   622 	  proof (rule IH[OF lessC r])
```
```   623 	    show "(C,g b \<cdot> d) \<in> foldSet f g z" using C notinB Dfoldd
```
```   624 	      by fastsimp
```
```   625 	  qed
```
```   626 	  ultimately show ?thesis using x x' by(auto simp:AC)
```
```   627 	qed
```
```   628       qed
```
```   629     qed
```
```   630   qed
```
```   631 qed
```
```   632
```
```   633 (* The same proof, but using card
```
```   634 lemma (in ACf) foldSet_determ_aux:
```
```   635   "!!A x x'. \<lbrakk> card A < n; (A,x) : foldSet f g e; (A,x') : foldSet f g e \<rbrakk>
```
```   636    \<Longrightarrow> x' = x"
```
```   637 proof (induct n)
```
```   638   case 0 thus ?case by simp
```
```   639 next
```
```   640   case (Suc n)
```
```   641   have IH: "!!A x x'. \<lbrakk>card A < n; (A,x) \<in> foldSet f g e; (A,x') \<in> foldSet f g e\<rbrakk>
```
```   642            \<Longrightarrow> x' = x" and card: "card A < Suc n"
```
```   643   and Afoldx: "(A, x) \<in> foldSet f g e" and Afoldy: "(A,x') \<in> foldSet f g e" .
```
```   644   from card have "card A < n \<or> card A = n" by arith
```
```   645   thus ?case
```
```   646   proof
```
```   647     assume less: "card A < n"
```
```   648     show ?thesis by(rule IH[OF less Afoldx Afoldy])
```
```   649   next
```
```   650     assume cardA: "card A = n"
```
```   651     show ?thesis
```
```   652     proof (rule foldSet.cases[OF Afoldx])
```
```   653       assume "(A, x) = ({}, e)"
```
```   654       thus "x' = x" using Afoldy by (auto)
```
```   655     next
```
```   656       fix B b y
```
```   657       assume eq1: "(A, x) = (insert b B, g b \<cdot> y)"
```
```   658 	and y: "(B,y) \<in> foldSet f g e" and notinB: "b \<notin> B"
```
```   659       hence A1: "A = insert b B" and x: "x = g b \<cdot> y" by auto
```
```   660       show ?thesis
```
```   661       proof (rule foldSet.cases[OF Afoldy])
```
```   662 	assume "(A,x') = ({}, e)"
```
```   663 	thus ?thesis using A1 by auto
```
```   664       next
```
```   665 	fix C c z
```
```   666 	assume eq2: "(A,x') = (insert c C, g c \<cdot> z)"
```
```   667 	  and z: "(C,z) \<in> foldSet f g e" and notinC: "c \<notin> C"
```
```   668 	hence A2: "A = insert c C" and x': "x' = g c \<cdot> z" by auto
```
```   669 	have finA: "finite A" by(rule foldSet_imp_finite[OF Afoldx])
```
```   670 	with cardA A1 notinB have less: "card B < n" by simp
```
```   671 	show ?thesis
```
```   672 	proof cases
```
```   673 	  assume "b = c"
```
```   674 	  then moreover have "B = C" using A1 A2 notinB notinC by auto
```
```   675 	  ultimately show ?thesis using IH[OF less] y z x x' by auto
```
```   676 	next
```
```   677 	  assume diff: "b \<noteq> c"
```
```   678 	  let ?D = "B - {c}"
```
```   679 	  have B: "B = insert c ?D" and C: "C = insert b ?D"
```
```   680 	    using A1 A2 notinB notinC diff by(blast elim!:equalityE)+
```
```   681 	  have "finite ?D" using finA A1 by simp
```
```   682 	  then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g e"
```
```   683 	    using finite_imp_foldSet by rules
```
```   684 	  moreover have cinB: "c \<in> B" using B by(auto)
```
```   685 	  ultimately have "(B,g c \<cdot> d) \<in> foldSet f g e"
```
```   686 	    by(rule Diff1_foldSet)
```
```   687 	  hence "g c \<cdot> d = y" by(rule IH[OF less y])
```
```   688           moreover have "g b \<cdot> d = z"
```
```   689 	  proof (rule IH[OF _ z])
```
```   690 	    show "card C < n" using C cardA A1 notinB finA cinB
```
```   691 	      by(auto simp:card_Diff1_less)
```
```   692 	  next
```
```   693 	    show "(C,g b \<cdot> d) \<in> foldSet f g e" using C notinB Dfoldd
```
```   694 	      by fastsimp
```
```   695 	  qed
```
```   696 	  ultimately show ?thesis using x x' by(auto simp:AC)
```
```   697 	qed
```
```   698       qed
```
```   699     qed
```
```   700   qed
```
```   701 qed
```
```   702 *)
```
```   703
```
```   704 lemma (in ACf) foldSet_determ:
```
```   705   "(A, x) : foldSet f g z ==> (A, y) : foldSet f g z ==> y = x"
```
```   706 apply(frule foldSet_imp_finite)
```
```   707 apply(simp add:finite_conv_nat_seg_image)
```
```   708 apply(blast intro: foldSet_determ_aux [rule_format])
```
```   709 done
```
```   710
```
```   711 lemma (in ACf) fold_equality: "(A, y) : foldSet f g z ==> fold f g z A = y"
```
```   712   by (unfold fold_def) (blast intro: foldSet_determ)
```
```   713
```
```   714 text{* The base case for @{text fold}: *}
```
```   715
```
```   716 lemma fold_empty [simp]: "fold f g z {} = z"
```
```   717   by (unfold fold_def) blast
```
```   718
```
```   719 lemma (in ACf) fold_insert_aux: "x \<notin> A ==>
```
```   720     ((insert x A, v) : foldSet f g z) =
```
```   721     (EX y. (A, y) : foldSet f g z & v = f (g x) y)"
```
```   722   apply auto
```
```   723   apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE])
```
```   724    apply (fastsimp dest: foldSet_imp_finite)
```
```   725   apply (blast intro: foldSet_determ)
```
```   726   done
```
```   727
```
```   728 text{* The recursion equation for @{text fold}: *}
```
```   729
```
```   730 lemma (in ACf) fold_insert[simp]:
```
```   731     "finite A ==> x \<notin> A ==> fold f g z (insert x A) = f (g x) (fold f g z A)"
```
```   732   apply (unfold fold_def)
```
```   733   apply (simp add: fold_insert_aux)
```
```   734   apply (rule the_equality)
```
```   735   apply (auto intro: finite_imp_foldSet
```
```   736     cong add: conj_cong simp add: fold_def [symmetric] fold_equality)
```
```   737   done
```
```   738
```
```   739 declare
```
```   740   empty_foldSetE [rule del]  foldSet.intros [rule del]
```
```   741   -- {* Delete rules to do with @{text foldSet} relation. *}
```
```   742
```
```   743 text{* A simplified version for idempotent functions: *}
```
```   744
```
```   745 lemma (in ACIf) fold_insert2:
```
```   746 assumes finA: "finite A"
```
```   747 shows "fold (op \<cdot>) g z (insert a A) = g a \<cdot> fold f g z A"
```
```   748 proof cases
```
```   749   assume "a \<in> A"
```
```   750   then obtain B where A: "A = insert a B" and disj: "a \<notin> B"
```
```   751     by(blast dest: mk_disjoint_insert)
```
```   752   show ?thesis
```
```   753   proof -
```
```   754     from finA A have finB: "finite B" by(blast intro: finite_subset)
```
```   755     have "fold f g z (insert a A) = fold f g z (insert a B)" using A by simp
```
```   756     also have "\<dots> = (g a) \<cdot> (fold f g z B)"
```
```   757       using finB disj by(simp)
```
```   758     also have "\<dots> = g a \<cdot> fold f g z A"
```
```   759       using A finB disj by(simp add:idem assoc[symmetric])
```
```   760     finally show ?thesis .
```
```   761   qed
```
```   762 next
```
```   763   assume "a \<notin> A"
```
```   764   with finA show ?thesis by simp
```
```   765 qed
```
```   766
```
```   767 lemma (in ACIf) foldI_conv_id:
```
```   768   "finite A \<Longrightarrow> fold f g z A = fold f id z (g ` A)"
```
```   769 by(erule finite_induct)(simp_all add: fold_insert2 del: fold_insert)
```
```   770
```
```   771 subsubsection{*Lemmas about @{text fold}*}
```
```   772
```
```   773 lemma (in ACf) fold_commute:
```
```   774   "finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)"
```
```   775   apply (induct set: Finites, simp)
```
```   776   apply (simp add: left_commute [of x])
```
```   777   done
```
```   778
```
```   779 lemma (in ACf) fold_nest_Un_Int:
```
```   780   "finite A ==> finite B
```
```   781     ==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)"
```
```   782   apply (induct set: Finites, simp)
```
```   783   apply (simp add: fold_commute Int_insert_left insert_absorb)
```
```   784   done
```
```   785
```
```   786 lemma (in ACf) fold_nest_Un_disjoint:
```
```   787   "finite A ==> finite B ==> A Int B = {}
```
```   788     ==> fold f g z (A Un B) = fold f g (fold f g z B) A"
```
```   789   by (simp add: fold_nest_Un_Int)
```
```   790
```
```   791 lemma (in ACf) fold_reindex:
```
```   792 assumes fin: "finite A"
```
```   793 shows "inj_on h A \<Longrightarrow> fold f g z (h ` A) = fold f (g \<circ> h) z A"
```
```   794 using fin apply (induct)
```
```   795  apply simp
```
```   796 apply simp
```
```   797 done
```
```   798
```
```   799 lemma (in ACe) fold_Un_Int:
```
```   800   "finite A ==> finite B ==>
```
```   801     fold f g e A \<cdot> fold f g e B =
```
```   802     fold f g e (A Un B) \<cdot> fold f g e (A Int B)"
```
```   803   apply (induct set: Finites, simp)
```
```   804   apply (simp add: AC insert_absorb Int_insert_left)
```
```   805   done
```
```   806
```
```   807 corollary (in ACe) fold_Un_disjoint:
```
```   808   "finite A ==> finite B ==> A Int B = {} ==>
```
```   809     fold f g e (A Un B) = fold f g e A \<cdot> fold f g e B"
```
```   810   by (simp add: fold_Un_Int)
```
```   811
```
```   812 lemma (in ACe) fold_UN_disjoint:
```
```   813   "\<lbrakk> finite I; ALL i:I. finite (A i);
```
```   814      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
```
```   815    \<Longrightarrow> fold f g e (UNION I A) =
```
```   816        fold f (%i. fold f g e (A i)) e I"
```
```   817   apply (induct set: Finites, simp, atomize)
```
```   818   apply (subgoal_tac "ALL i:F. x \<noteq> i")
```
```   819    prefer 2 apply blast
```
```   820   apply (subgoal_tac "A x Int UNION F A = {}")
```
```   821    prefer 2 apply blast
```
```   822   apply (simp add: fold_Un_disjoint)
```
```   823   done
```
```   824
```
```   825 lemma (in ACf) fold_cong:
```
```   826   "finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A"
```
```   827   apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold f g z C = fold f h z C")
```
```   828    apply simp
```
```   829   apply (erule finite_induct, simp)
```
```   830   apply (simp add: subset_insert_iff, clarify)
```
```   831   apply (subgoal_tac "finite C")
```
```   832    prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
```
```   833   apply (subgoal_tac "C = insert x (C - {x})")
```
```   834    prefer 2 apply blast
```
```   835   apply (erule ssubst)
```
```   836   apply (drule spec)
```
```   837   apply (erule (1) notE impE)
```
```   838   apply (simp add: Ball_def del: insert_Diff_single)
```
```   839   done
```
```   840
```
```   841 lemma (in ACe) fold_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
```
```   842   fold f (%x. fold f (g x) e (B x)) e A =
```
```   843   fold f (split g) e (SIGMA x:A. B x)"
```
```   844 apply (subst Sigma_def)
```
```   845 apply (subst fold_UN_disjoint)
```
```   846    apply assumption
```
```   847   apply simp
```
```   848  apply blast
```
```   849 apply (erule fold_cong)
```
```   850 apply (subst fold_UN_disjoint)
```
```   851    apply simp
```
```   852   apply simp
```
```   853  apply blast
```
```   854 apply (simp)
```
```   855 done
```
```   856
```
```   857 lemma (in ACe) fold_distrib: "finite A \<Longrightarrow>
```
```   858    fold f (%x. f (g x) (h x)) e A = f (fold f g e A) (fold f h e A)"
```
```   859 apply (erule finite_induct)
```
```   860  apply simp
```
```   861 apply (simp add:AC)
```
```   862 done
```
```   863
```
```   864
```
```   865 subsection {* Generalized summation over a set *}
```
```   866
```
```   867 constdefs
```
```   868   setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
```
```   869   "setsum f A == if finite A then fold (op +) f 0 A else 0"
```
```   870
```
```   871 text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
```
```   872 written @{text"\<Sum>x\<in>A. e"}. *}
```
```   873
```
```   874 syntax
```
```   875   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
```
```   876 syntax (xsymbols)
```
```   877   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
```
```   878 syntax (HTML output)
```
```   879   "_setsum" :: "idt => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
```
```   880
```
```   881 translations -- {* Beware of argument permutation! *}
```
```   882   "SUM i:A. b" == "setsum (%i. b) A"
```
```   883   "\<Sum>i\<in>A. b" == "setsum (%i. b) A"
```
```   884
```
```   885 text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
```
```   886  @{text"\<Sum>x|P. e"}. *}
```
```   887
```
```   888 syntax
```
```   889   "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
```
```   890 syntax (xsymbols)
```
```   891   "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
```
```   892 syntax (HTML output)
```
```   893   "_qsetsum" :: "idt \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
```
```   894
```
```   895 translations
```
```   896   "SUM x|P. t" => "setsum (%x. t) {x. P}"
```
```   897   "\<Sum>x|P. t" => "setsum (%x. t) {x. P}"
```
```   898
```
```   899 text{* Finally we abbreviate @{term"\<Sum>x\<in>A. x"} by @{text"\<Sum>A"}. *}
```
```   900
```
```   901 syntax
```
```   902   "_Setsum" :: "'a set => 'a::comm_monoid_mult"  ("\<Sum>_" [1000] 999)
```
```   903
```
```   904 parse_translation {*
```
```   905   let
```
```   906     fun Setsum_tr [A] = Syntax.const "setsum" \$ Abs ("", dummyT, Bound 0) \$ A
```
```   907   in [("_Setsum", Setsum_tr)] end;
```
```   908 *}
```
```   909
```
```   910 print_translation {*
```
```   911 let
```
```   912   fun setsum_tr' [Abs(_,_,Bound 0), A] = Syntax.const "_Setsum" \$ A
```
```   913     | setsum_tr' [Abs(x,Tx,t), Const ("Collect",_) \$ Abs(y,Ty,P)] =
```
```   914        if x<>y then raise Match
```
```   915        else let val x' = Syntax.mark_bound x
```
```   916                 val t' = subst_bound(x',t)
```
```   917                 val P' = subst_bound(x',P)
```
```   918             in Syntax.const "_qsetsum" \$ Syntax.mark_bound x \$ P' \$ t' end
```
```   919 in
```
```   920 [("setsum", setsum_tr')]
```
```   921 end
```
```   922 *}
```
```   923
```
```   924 lemma setsum_empty [simp]: "setsum f {} = 0"
```
```   925   by (simp add: setsum_def)
```
```   926
```
```   927 lemma setsum_insert [simp]:
```
```   928     "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F"
```
```   929   by (simp add: setsum_def ACf.fold_insert [OF ACf_add])
```
```   930
```
```   931 lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0"
```
```   932   by (simp add: setsum_def)
```
```   933
```
```   934 lemma setsum_reindex:
```
```   935      "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B"
```
```   936 by(auto simp add: setsum_def ACf.fold_reindex[OF ACf_add] dest!:finite_imageD)
```
```   937
```
```   938 lemma setsum_reindex_id:
```
```   939      "inj_on f B ==> setsum f B = setsum id (f ` B)"
```
```   940 by (auto simp add: setsum_reindex)
```
```   941
```
```   942 lemma setsum_cong:
```
```   943   "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B"
```
```   944 by(fastsimp simp: setsum_def intro: ACf.fold_cong[OF ACf_add])
```
```   945
```
```   946 lemma setsum_reindex_cong:
```
```   947      "[|inj_on f A; B = f ` A; !!a. g a = h (f a)|]
```
```   948       ==> setsum h B = setsum g A"
```
```   949   by (simp add: setsum_reindex cong: setsum_cong)
```
```   950
```
```   951 lemma setsum_0: "setsum (%i. 0) A = 0"
```
```   952 apply (clarsimp simp: setsum_def)
```
```   953 apply (erule finite_induct, auto simp:ACf.fold_insert [OF ACf_add])
```
```   954 done
```
```   955
```
```   956 lemma setsum_0': "ALL a:F. f a = 0 ==> setsum f F = 0"
```
```   957   apply (subgoal_tac "setsum f F = setsum (%x. 0) F")
```
```   958   apply (erule ssubst, rule setsum_0)
```
```   959   apply (rule setsum_cong, auto)
```
```   960   done
```
```   961
```
```   962 lemma setsum_Un_Int: "finite A ==> finite B ==>
```
```   963   setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B"
```
```   964   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
```
```   965 by(simp add: setsum_def ACe.fold_Un_Int[OF ACe_add,symmetric])
```
```   966
```
```   967 lemma setsum_Un_disjoint: "finite A ==> finite B
```
```   968   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
```
```   969 by (subst setsum_Un_Int [symmetric], auto)
```
```   970
```
```   971 (*But we can't get rid of finite I. If infinite, although the rhs is 0,
```
```   972   the lhs need not be, since UNION I A could still be finite.*)
```
```   973 lemma setsum_UN_disjoint:
```
```   974     "finite I ==> (ALL i:I. finite (A i)) ==>
```
```   975         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
```
```   976       setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))"
```
```   977 by(simp add: setsum_def ACe.fold_UN_disjoint[OF ACe_add] cong: setsum_cong)
```
```   978
```
```   979 text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
```
```   980 directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
```
```   981 lemma setsum_Union_disjoint:
```
```   982   "[| (ALL A:C. finite A);
```
```   983       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
```
```   984    ==> setsum f (Union C) = setsum (setsum f) C"
```
```   985 apply (cases "finite C")
```
```   986  prefer 2 apply (force dest: finite_UnionD simp add: setsum_def)
```
```   987   apply (frule setsum_UN_disjoint [of C id f])
```
```   988  apply (unfold Union_def id_def, assumption+)
```
```   989 done
```
```   990
```
```   991 (*But we can't get rid of finite A. If infinite, although the lhs is 0,
```
```   992   the rhs need not be, since SIGMA A B could still be finite.*)
```
```   993 lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
```
```   994     (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) =
```
```   995     (\<Sum>z\<in>(SIGMA x:A. B x). f (fst z) (snd z))"
```
```   996 by(simp add:setsum_def ACe.fold_Sigma[OF ACe_add] split_def cong:setsum_cong)
```
```   997
```
```   998 text{*Here we can eliminate the finiteness assumptions, by cases.*}
```
```   999 lemma setsum_cartesian_product:
```
```  1000    "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>z\<in>A <*> B. f (fst z) (snd z))"
```
```  1001 apply (cases "finite A")
```
```  1002  apply (cases "finite B")
```
```  1003   apply (simp add: setsum_Sigma)
```
```  1004  apply (cases "A={}", simp)
```
```  1005  apply (simp add: setsum_0)
```
```  1006 apply (auto simp add: setsum_def
```
```  1007             dest: finite_cartesian_productD1 finite_cartesian_productD2)
```
```  1008 done
```
```  1009
```
```  1010 lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)"
```
```  1011 by(simp add:setsum_def ACe.fold_distrib[OF ACe_add])
```
```  1012
```
```  1013
```
```  1014 subsubsection {* Properties in more restricted classes of structures *}
```
```  1015
```
```  1016 lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
```
```  1017   apply (case_tac "finite A")
```
```  1018    prefer 2 apply (simp add: setsum_def)
```
```  1019   apply (erule rev_mp)
```
```  1020   apply (erule finite_induct, auto)
```
```  1021   done
```
```  1022
```
```  1023 lemma setsum_eq_0_iff [simp]:
```
```  1024     "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))"
```
```  1025   by (induct set: Finites) auto
```
```  1026
```
```  1027 lemma setsum_Un_nat: "finite A ==> finite B ==>
```
```  1028     (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
```
```  1029   -- {* For the natural numbers, we have subtraction. *}
```
```  1030   by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
```
```  1031
```
```  1032 lemma setsum_Un: "finite A ==> finite B ==>
```
```  1033     (setsum f (A Un B) :: 'a :: ab_group_add) =
```
```  1034       setsum f A + setsum f B - setsum f (A Int B)"
```
```  1035   by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps)
```
```  1036
```
```  1037 lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
```
```  1038     (if a:A then setsum f A - f a else setsum f A)"
```
```  1039   apply (case_tac "finite A")
```
```  1040    prefer 2 apply (simp add: setsum_def)
```
```  1041   apply (erule finite_induct)
```
```  1042    apply (auto simp add: insert_Diff_if)
```
```  1043   apply (drule_tac a = a in mk_disjoint_insert, auto)
```
```  1044   done
```
```  1045
```
```  1046 lemma setsum_diff1: "finite A \<Longrightarrow>
```
```  1047   (setsum f (A - {a}) :: ('a::ab_group_add)) =
```
```  1048   (if a:A then setsum f A - f a else setsum f A)"
```
```  1049   by (erule finite_induct) (auto simp add: insert_Diff_if)
```
```  1050
```
```  1051 (* By Jeremy Siek: *)
```
```  1052
```
```  1053 lemma setsum_diff_nat:
```
```  1054   assumes finB: "finite B"
```
```  1055   shows "B \<subseteq> A \<Longrightarrow> (setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
```
```  1056 using finB
```
```  1057 proof (induct)
```
```  1058   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
```
```  1059 next
```
```  1060   fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
```
```  1061     and xFinA: "insert x F \<subseteq> A"
```
```  1062     and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
```
```  1063   from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
```
```  1064   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
```
```  1065     by (simp add: setsum_diff1_nat)
```
```  1066   from xFinA have "F \<subseteq> A" by simp
```
```  1067   with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
```
```  1068   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
```
```  1069     by simp
```
```  1070   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
```
```  1071   with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
```
```  1072     by simp
```
```  1073   from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
```
```  1074   with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
```
```  1075     by simp
```
```  1076   thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
```
```  1077 qed
```
```  1078
```
```  1079 lemma setsum_diff:
```
```  1080   assumes le: "finite A" "B \<subseteq> A"
```
```  1081   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
```
```  1082 proof -
```
```  1083   from le have finiteB: "finite B" using finite_subset by auto
```
```  1084   show ?thesis using finiteB le
```
```  1085     proof (induct)
```
```  1086       case empty
```
```  1087       thus ?case by auto
```
```  1088     next
```
```  1089       case (insert x F)
```
```  1090       thus ?case using le finiteB
```
```  1091 	by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
```
```  1092     qed
```
```  1093   qed
```
```  1094
```
```  1095 lemma setsum_mono:
```
```  1096   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, pordered_ab_semigroup_add}))"
```
```  1097   shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
```
```  1098 proof (cases "finite K")
```
```  1099   case True
```
```  1100   thus ?thesis using le
```
```  1101   proof (induct)
```
```  1102     case empty
```
```  1103     thus ?case by simp
```
```  1104   next
```
```  1105     case insert
```
```  1106     thus ?case using add_mono
```
```  1107       by force
```
```  1108   qed
```
```  1109 next
```
```  1110   case False
```
```  1111   thus ?thesis
```
```  1112     by (simp add: setsum_def)
```
```  1113 qed
```
```  1114
```
```  1115 lemma setsum_mono2_nat:
```
```  1116   assumes fin: "finite B" and sub: "A \<subseteq> B"
```
```  1117 shows "setsum f A \<le> (setsum f B :: nat)"
```
```  1118 proof -
```
```  1119   have "setsum f A \<le> setsum f A + setsum f (B-A)" by arith
```
```  1120   also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
```
```  1121     by (simp add:setsum_Un_disjoint del:Un_Diff_cancel)
```
```  1122   also have "A \<union> (B-A) = B" using sub by blast
```
```  1123   finally show ?thesis .
```
```  1124 qed
```
```  1125
```
```  1126 lemma setsum_negf: "finite A ==> setsum (%x. - (f x)::'a::ab_group_add) A =
```
```  1127   - setsum f A"
```
```  1128   by (induct set: Finites, auto)
```
```  1129
```
```  1130 lemma setsum_subtractf: "finite A ==> setsum (%x. ((f x)::'a::ab_group_add) - g x) A =
```
```  1131   setsum f A - setsum g A"
```
```  1132   by (simp add: diff_minus setsum_addf setsum_negf)
```
```  1133
```
```  1134 lemma setsum_nonneg: "[| finite A;
```
```  1135     \<forall>x \<in> A. (0::'a::{pordered_ab_semigroup_add, comm_monoid_add}) \<le> f x |] ==>
```
```  1136     0 \<le> setsum f A";
```
```  1137   apply (induct set: Finites, auto)
```
```  1138   apply (subgoal_tac "0 + 0 \<le> f x + setsum f F", simp)
```
```  1139   apply (blast intro: add_mono)
```
```  1140   done
```
```  1141
```
```  1142 lemma setsum_nonpos: "[| finite A;
```
```  1143     \<forall>x \<in> A. f x \<le> (0::'a::{pordered_ab_semigroup_add, comm_monoid_add}) |] ==>
```
```  1144     setsum f A \<le> 0";
```
```  1145   apply (induct set: Finites, auto)
```
```  1146   apply (subgoal_tac "f x + setsum f F \<le> 0 + 0", simp)
```
```  1147   apply (blast intro: add_mono)
```
```  1148   done
```
```  1149
```
```  1150 lemma setsum_mult:
```
```  1151   fixes f :: "'a => ('b::semiring_0_cancel)"
```
```  1152   shows "r * setsum f A = setsum (%n. r * f n) A"
```
```  1153 proof (cases "finite A")
```
```  1154   case True
```
```  1155   thus ?thesis
```
```  1156   proof (induct)
```
```  1157     case empty thus ?case by simp
```
```  1158   next
```
```  1159     case (insert x A) thus ?case by (simp add: right_distrib)
```
```  1160   qed
```
```  1161 next
```
```  1162   case False thus ?thesis by (simp add: setsum_def)
```
```  1163 qed
```
```  1164
```
```  1165 lemma setsum_abs:
```
```  1166   fixes f :: "'a => ('b::lordered_ab_group_abs)"
```
```  1167   assumes fin: "finite A"
```
```  1168   shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A"
```
```  1169 using fin
```
```  1170 proof (induct)
```
```  1171   case empty thus ?case by simp
```
```  1172 next
```
```  1173   case (insert x A)
```
```  1174   thus ?case by (auto intro: abs_triangle_ineq order_trans)
```
```  1175 qed
```
```  1176
```
```  1177 lemma setsum_abs_ge_zero:
```
```  1178   fixes f :: "'a => ('b::lordered_ab_group_abs)"
```
```  1179   assumes fin: "finite A"
```
```  1180   shows "0 \<le> setsum (%i. abs(f i)) A"
```
```  1181 using fin
```
```  1182 proof (induct)
```
```  1183   case empty thus ?case by simp
```
```  1184 next
```
```  1185   case (insert x A) thus ?case by (auto intro: order_trans)
```
```  1186 qed
```
```  1187
```
```  1188
```
```  1189 subsection {* Generalized product over a set *}
```
```  1190
```
```  1191 constdefs
```
```  1192   setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
```
```  1193   "setprod f A == if finite A then fold (op *) f 1 A else 1"
```
```  1194
```
```  1195 syntax
```
```  1196   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_:_. _)" [0, 51, 10] 10)
```
```  1197
```
```  1198 syntax (xsymbols)
```
```  1199   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
```
```  1200 syntax (HTML output)
```
```  1201   "_setprod" :: "idt => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
```
```  1202 translations
```
```  1203   "\<Prod>i:A. b" == "setprod (%i. b) A"  -- {* Beware of argument permutation! *}
```
```  1204
```
```  1205 syntax
```
```  1206   "_Setprod" :: "'a set => 'a::comm_monoid_mult"  ("\<Prod>_" [1000] 999)
```
```  1207
```
```  1208 parse_translation {*
```
```  1209   let
```
```  1210     fun Setprod_tr [A] = Syntax.const "setprod" \$ Abs ("", dummyT, Bound 0) \$ A
```
```  1211   in [("_Setprod", Setprod_tr)] end;
```
```  1212 *}
```
```  1213 print_translation {*
```
```  1214 let fun setprod_tr' [Abs(x,Tx,t), A] =
```
```  1215     if t = Bound 0 then Syntax.const "_Setprod" \$ A else raise Match
```
```  1216 in
```
```  1217 [("setprod", setprod_tr')]
```
```  1218 end
```
```  1219 *}
```
```  1220
```
```  1221
```
```  1222 lemma setprod_empty [simp]: "setprod f {} = 1"
```
```  1223   by (auto simp add: setprod_def)
```
```  1224
```
```  1225 lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==>
```
```  1226     setprod f (insert a A) = f a * setprod f A"
```
```  1227 by (simp add: setprod_def ACf.fold_insert [OF ACf_mult])
```
```  1228
```
```  1229 lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1"
```
```  1230   by (simp add: setprod_def)
```
```  1231
```
```  1232 lemma setprod_reindex:
```
```  1233      "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B"
```
```  1234 by(auto simp: setprod_def ACf.fold_reindex[OF ACf_mult] dest!:finite_imageD)
```
```  1235
```
```  1236 lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)"
```
```  1237 by (auto simp add: setprod_reindex)
```
```  1238
```
```  1239 lemma setprod_cong:
```
```  1240   "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B"
```
```  1241 by(fastsimp simp: setprod_def intro: ACf.fold_cong[OF ACf_mult])
```
```  1242
```
```  1243 lemma setprod_reindex_cong: "inj_on f A ==>
```
```  1244     B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A"
```
```  1245   by (frule setprod_reindex, simp)
```
```  1246
```
```  1247
```
```  1248 lemma setprod_1: "setprod (%i. 1) A = 1"
```
```  1249   apply (case_tac "finite A")
```
```  1250   apply (erule finite_induct, auto simp add: mult_ac)
```
```  1251   done
```
```  1252
```
```  1253 lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1"
```
```  1254   apply (subgoal_tac "setprod f F = setprod (%x. 1) F")
```
```  1255   apply (erule ssubst, rule setprod_1)
```
```  1256   apply (rule setprod_cong, auto)
```
```  1257   done
```
```  1258
```
```  1259 lemma setprod_Un_Int: "finite A ==> finite B
```
```  1260     ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B"
```
```  1261 by(simp add: setprod_def ACe.fold_Un_Int[OF ACe_mult,symmetric])
```
```  1262
```
```  1263 lemma setprod_Un_disjoint: "finite A ==> finite B
```
```  1264   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
```
```  1265 by (subst setprod_Un_Int [symmetric], auto)
```
```  1266
```
```  1267 lemma setprod_UN_disjoint:
```
```  1268     "finite I ==> (ALL i:I. finite (A i)) ==>
```
```  1269         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
```
```  1270       setprod f (UNION I A) = setprod (%i. setprod f (A i)) I"
```
```  1271 by(simp add: setprod_def ACe.fold_UN_disjoint[OF ACe_mult] cong: setprod_cong)
```
```  1272
```
```  1273 lemma setprod_Union_disjoint:
```
```  1274   "[| (ALL A:C. finite A);
```
```  1275       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
```
```  1276    ==> setprod f (Union C) = setprod (setprod f) C"
```
```  1277 apply (cases "finite C")
```
```  1278  prefer 2 apply (force dest: finite_UnionD simp add: setprod_def)
```
```  1279   apply (frule setprod_UN_disjoint [of C id f])
```
```  1280  apply (unfold Union_def id_def, assumption+)
```
```  1281 done
```
```  1282
```
```  1283 lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
```
```  1284     (\<Prod>x:A. (\<Prod>y: B x. f x y)) =
```
```  1285     (\<Prod>z:(SIGMA x:A. B x). f (fst z) (snd z))"
```
```  1286 by(simp add:setprod_def ACe.fold_Sigma[OF ACe_mult] split_def cong:setprod_cong)
```
```  1287
```
```  1288 text{*Here we can eliminate the finiteness assumptions, by cases.*}
```
```  1289 lemma setprod_cartesian_product:
```
```  1290      "(\<Prod>x:A. (\<Prod>y: B. f x y)) = (\<Prod>z:(A <*> B). f (fst z) (snd z))"
```
```  1291 apply (cases "finite A")
```
```  1292  apply (cases "finite B")
```
```  1293   apply (simp add: setprod_Sigma)
```
```  1294  apply (cases "A={}", simp)
```
```  1295  apply (simp add: setprod_1)
```
```  1296 apply (auto simp add: setprod_def
```
```  1297             dest: finite_cartesian_productD1 finite_cartesian_productD2)
```
```  1298 done
```
```  1299
```
```  1300 lemma setprod_timesf:
```
```  1301      "setprod (%x. f x * g x) A = (setprod f A * setprod g A)"
```
```  1302 by(simp add:setprod_def ACe.fold_distrib[OF ACe_mult])
```
```  1303
```
```  1304
```
```  1305 subsubsection {* Properties in more restricted classes of structures *}
```
```  1306
```
```  1307 lemma setprod_eq_1_iff [simp]:
```
```  1308     "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))"
```
```  1309   by (induct set: Finites) auto
```
```  1310
```
```  1311 lemma setprod_zero:
```
```  1312      "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==> setprod f A = 0"
```
```  1313   apply (induct set: Finites, force, clarsimp)
```
```  1314   apply (erule disjE, auto)
```
```  1315   done
```
```  1316
```
```  1317 lemma setprod_nonneg [rule_format]:
```
```  1318      "(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A"
```
```  1319   apply (case_tac "finite A")
```
```  1320   apply (induct set: Finites, force, clarsimp)
```
```  1321   apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force)
```
```  1322   apply (rule mult_mono, assumption+)
```
```  1323   apply (auto simp add: setprod_def)
```
```  1324   done
```
```  1325
```
```  1326 lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x)
```
```  1327      --> 0 < setprod f A"
```
```  1328   apply (case_tac "finite A")
```
```  1329   apply (induct set: Finites, force, clarsimp)
```
```  1330   apply (subgoal_tac "0 * 0 < f x * setprod f F", force)
```
```  1331   apply (rule mult_strict_mono, assumption+)
```
```  1332   apply (auto simp add: setprod_def)
```
```  1333   done
```
```  1334
```
```  1335 lemma setprod_nonzero [rule_format]:
```
```  1336     "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
```
```  1337       finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0"
```
```  1338   apply (erule finite_induct, auto)
```
```  1339   done
```
```  1340
```
```  1341 lemma setprod_zero_eq:
```
```  1342     "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==>
```
```  1343      finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)"
```
```  1344   apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast)
```
```  1345   done
```
```  1346
```
```  1347 lemma setprod_nonzero_field:
```
```  1348     "finite A ==> (ALL x: A. f x \<noteq> (0::'a::field)) ==> setprod f A \<noteq> 0"
```
```  1349   apply (rule setprod_nonzero, auto)
```
```  1350   done
```
```  1351
```
```  1352 lemma setprod_zero_eq_field:
```
```  1353     "finite A ==> (setprod f A = (0::'a::field)) = (EX x: A. f x = 0)"
```
```  1354   apply (rule setprod_zero_eq, auto)
```
```  1355   done
```
```  1356
```
```  1357 lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==>
```
```  1358     (setprod f (A Un B) :: 'a ::{field})
```
```  1359       = setprod f A * setprod f B / setprod f (A Int B)"
```
```  1360   apply (subst setprod_Un_Int [symmetric], auto)
```
```  1361   apply (subgoal_tac "finite (A Int B)")
```
```  1362   apply (frule setprod_nonzero_field [of "A Int B" f], assumption)
```
```  1363   apply (subst times_divide_eq_right [THEN sym], auto simp add: divide_self)
```
```  1364   done
```
```  1365
```
```  1366 lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==>
```
```  1367     (setprod f (A - {a}) :: 'a :: {field}) =
```
```  1368       (if a:A then setprod f A / f a else setprod f A)"
```
```  1369   apply (erule finite_induct)
```
```  1370    apply (auto simp add: insert_Diff_if)
```
```  1371   apply (subgoal_tac "f a * setprod f F / f a = setprod f F * f a / f a")
```
```  1372   apply (erule ssubst)
```
```  1373   apply (subst times_divide_eq_right [THEN sym])
```
```  1374   apply (auto simp add: mult_ac times_divide_eq_right divide_self)
```
```  1375   done
```
```  1376
```
```  1377 lemma setprod_inversef: "finite A ==>
```
```  1378     ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==>
```
```  1379       setprod (inverse \<circ> f) A = inverse (setprod f A)"
```
```  1380   apply (erule finite_induct)
```
```  1381   apply (simp, simp)
```
```  1382   done
```
```  1383
```
```  1384 lemma setprod_dividef:
```
```  1385      "[|finite A;
```
```  1386         \<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|]
```
```  1387       ==> setprod (%x. f x / g x) A = setprod f A / setprod g A"
```
```  1388   apply (subgoal_tac
```
```  1389          "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A")
```
```  1390   apply (erule ssubst)
```
```  1391   apply (subst divide_inverse)
```
```  1392   apply (subst setprod_timesf)
```
```  1393   apply (subst setprod_inversef, assumption+, rule refl)
```
```  1394   apply (rule setprod_cong, rule refl)
```
```  1395   apply (subst divide_inverse, auto)
```
```  1396   done
```
```  1397
```
```  1398 subsection {* Finite cardinality *}
```
```  1399
```
```  1400 text {* This definition, although traditional, is ugly to work with:
```
```  1401 @{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
```
```  1402 But now that we have @{text setsum} things are easy:
```
```  1403 *}
```
```  1404
```
```  1405 constdefs
```
```  1406   card :: "'a set => nat"
```
```  1407   "card A == setsum (%x. 1::nat) A"
```
```  1408
```
```  1409 lemma card_empty [simp]: "card {} = 0"
```
```  1410   by (simp add: card_def)
```
```  1411
```
```  1412 lemma card_infinite [simp]: "~ finite A ==> card A = 0"
```
```  1413   by (simp add: card_def)
```
```  1414
```
```  1415 lemma card_eq_setsum: "card A = setsum (%x. 1) A"
```
```  1416 by (simp add: card_def)
```
```  1417
```
```  1418 lemma card_insert_disjoint [simp]:
```
```  1419   "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)"
```
```  1420 by(simp add: card_def ACf.fold_insert[OF ACf_add])
```
```  1421
```
```  1422 lemma card_insert_if:
```
```  1423     "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))"
```
```  1424   by (simp add: insert_absorb)
```
```  1425
```
```  1426 lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
```
```  1427   apply auto
```
```  1428   apply (drule_tac a = x in mk_disjoint_insert, clarify)
```
```  1429   apply (auto)
```
```  1430   done
```
```  1431
```
```  1432 lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)"
```
```  1433 by auto
```
```  1434
```
```  1435 lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
```
```  1436 apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
```
```  1437 apply(simp del:insert_Diff_single)
```
```  1438 done
```
```  1439
```
```  1440 lemma card_Diff_singleton:
```
```  1441     "finite A ==> x: A ==> card (A - {x}) = card A - 1"
```
```  1442   by (simp add: card_Suc_Diff1 [symmetric])
```
```  1443
```
```  1444 lemma card_Diff_singleton_if:
```
```  1445     "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
```
```  1446   by (simp add: card_Diff_singleton)
```
```  1447
```
```  1448 lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
```
```  1449   by (simp add: card_insert_if card_Suc_Diff1)
```
```  1450
```
```  1451 lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
```
```  1452   by (simp add: card_insert_if)
```
```  1453
```
```  1454 lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B"
```
```  1455 by (simp add: card_def setsum_mono2_nat)
```
```  1456
```
```  1457 lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
```
```  1458   apply (induct set: Finites, simp, clarify)
```
```  1459   apply (subgoal_tac "finite A & A - {x} <= F")
```
```  1460    prefer 2 apply (blast intro: finite_subset, atomize)
```
```  1461   apply (drule_tac x = "A - {x}" in spec)
```
```  1462   apply (simp add: card_Diff_singleton_if split add: split_if_asm)
```
```  1463   apply (case_tac "card A", auto)
```
```  1464   done
```
```  1465
```
```  1466 lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
```
```  1467   apply (simp add: psubset_def linorder_not_le [symmetric])
```
```  1468   apply (blast dest: card_seteq)
```
```  1469   done
```
```  1470
```
```  1471 lemma card_Un_Int: "finite A ==> finite B
```
```  1472     ==> card A + card B = card (A Un B) + card (A Int B)"
```
```  1473 by(simp add:card_def setsum_Un_Int)
```
```  1474
```
```  1475 lemma card_Un_disjoint: "finite A ==> finite B
```
```  1476     ==> A Int B = {} ==> card (A Un B) = card A + card B"
```
```  1477   by (simp add: card_Un_Int)
```
```  1478
```
```  1479 lemma card_Diff_subset:
```
```  1480   "finite B ==> B <= A ==> card (A - B) = card A - card B"
```
```  1481 by(simp add:card_def setsum_diff_nat)
```
```  1482
```
```  1483 lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
```
```  1484   apply (rule Suc_less_SucD)
```
```  1485   apply (simp add: card_Suc_Diff1)
```
```  1486   done
```
```  1487
```
```  1488 lemma card_Diff2_less:
```
```  1489     "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
```
```  1490   apply (case_tac "x = y")
```
```  1491    apply (simp add: card_Diff1_less)
```
```  1492   apply (rule less_trans)
```
```  1493    prefer 2 apply (auto intro!: card_Diff1_less)
```
```  1494   done
```
```  1495
```
```  1496 lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
```
```  1497   apply (case_tac "x : A")
```
```  1498    apply (simp_all add: card_Diff1_less less_imp_le)
```
```  1499   done
```
```  1500
```
```  1501 lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
```
```  1502 by (erule psubsetI, blast)
```
```  1503
```
```  1504 lemma insert_partition:
```
```  1505   "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
```
```  1506   \<Longrightarrow> x \<inter> \<Union> F = {}"
```
```  1507 by auto
```
```  1508
```
```  1509 (* main cardinality theorem *)
```
```  1510 lemma card_partition [rule_format]:
```
```  1511      "finite C ==>
```
```  1512         finite (\<Union> C) -->
```
```  1513         (\<forall>c\<in>C. card c = k) -->
```
```  1514         (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->
```
```  1515         k * card(C) = card (\<Union> C)"
```
```  1516 apply (erule finite_induct, simp)
```
```  1517 apply (simp add: card_insert_disjoint card_Un_disjoint insert_partition
```
```  1518        finite_subset [of _ "\<Union> (insert x F)"])
```
```  1519 done
```
```  1520
```
```  1521
```
```  1522 lemma setsum_constant_nat: "(\<Sum>x\<in>A. y) = (card A) * y"
```
```  1523   -- {* Generalized to any @{text comm_semiring_1_cancel} in
```
```  1524         @{text IntDef} as @{text setsum_constant}. *}
```
```  1525 apply (cases "finite A")
```
```  1526 apply (erule finite_induct, auto)
```
```  1527 done
```
```  1528
```
```  1529 lemma setprod_constant: "finite A ==> (\<Prod>x: A. (y::'a::recpower)) = y^(card A)"
```
```  1530   apply (erule finite_induct)
```
```  1531   apply (auto simp add: power_Suc)
```
```  1532   done
```
```  1533
```
```  1534
```
```  1535 subsubsection {* Cardinality of unions *}
```
```  1536
```
```  1537 lemma card_UN_disjoint:
```
```  1538     "finite I ==> (ALL i:I. finite (A i)) ==>
```
```  1539         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
```
```  1540       card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
```
```  1541   apply (simp add: card_def)
```
```  1542   apply (subgoal_tac
```
```  1543            "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I")
```
```  1544   apply (simp add: setsum_UN_disjoint)
```
```  1545   apply (simp add: setsum_constant_nat cong: setsum_cong)
```
```  1546   done
```
```  1547
```
```  1548 lemma card_Union_disjoint:
```
```  1549   "finite C ==> (ALL A:C. finite A) ==>
```
```  1550         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
```
```  1551       card (Union C) = setsum card C"
```
```  1552   apply (frule card_UN_disjoint [of C id])
```
```  1553   apply (unfold Union_def id_def, assumption+)
```
```  1554   done
```
```  1555
```
```  1556 subsubsection {* Cardinality of image *}
```
```  1557
```
```  1558 text{*The image of a finite set can be expressed using @{term fold}.*}
```
```  1559 lemma image_eq_fold: "finite A ==> f ` A = fold (op Un) (%x. {f x}) {} A"
```
```  1560   apply (erule finite_induct, simp)
```
```  1561   apply (subst ACf.fold_insert)
```
```  1562   apply (auto simp add: ACf_def)
```
```  1563   done
```
```  1564
```
```  1565 lemma card_image_le: "finite A ==> card (f ` A) <= card A"
```
```  1566   apply (induct set: Finites, simp)
```
```  1567   apply (simp add: le_SucI finite_imageI card_insert_if)
```
```  1568   done
```
```  1569
```
```  1570 lemma card_image: "inj_on f A ==> card (f ` A) = card A"
```
```  1571 by(simp add:card_def setsum_reindex o_def)
```
```  1572
```
```  1573 lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
```
```  1574   by (simp add: card_seteq card_image)
```
```  1575
```
```  1576 lemma eq_card_imp_inj_on:
```
```  1577   "[| finite A; card(f ` A) = card A |] ==> inj_on f A"
```
```  1578 apply(induct rule:finite_induct)
```
```  1579  apply simp
```
```  1580 apply(frule card_image_le[where f = f])
```
```  1581 apply(simp add:card_insert_if split:if_splits)
```
```  1582 done
```
```  1583
```
```  1584 lemma inj_on_iff_eq_card:
```
```  1585   "finite A ==> inj_on f A = (card(f ` A) = card A)"
```
```  1586 by(blast intro: card_image eq_card_imp_inj_on)
```
```  1587
```
```  1588
```
```  1589 lemma card_inj_on_le:
```
```  1590     "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B"
```
```  1591 apply (subgoal_tac "finite A")
```
```  1592  apply (force intro: card_mono simp add: card_image [symmetric])
```
```  1593 apply (blast intro: finite_imageD dest: finite_subset)
```
```  1594 done
```
```  1595
```
```  1596 lemma card_bij_eq:
```
```  1597     "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
```
```  1598        finite A; finite B |] ==> card A = card B"
```
```  1599   by (auto intro: le_anti_sym card_inj_on_le)
```
```  1600
```
```  1601
```
```  1602 subsubsection {* Cardinality of products *}
```
```  1603
```
```  1604 (*
```
```  1605 lemma SigmaI_insert: "y \<notin> A ==>
```
```  1606   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
```
```  1607   by auto
```
```  1608 *)
```
```  1609
```
```  1610 lemma card_SigmaI [simp]:
```
```  1611   "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
```
```  1612   \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
```
```  1613 by(simp add:card_def setsum_Sigma)
```
```  1614
```
```  1615 lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)"
```
```  1616 apply (cases "finite A")
```
```  1617 apply (cases "finite B")
```
```  1618   apply (simp add: setsum_constant_nat)
```
```  1619 apply (auto simp add: card_eq_0_iff
```
```  1620             dest: finite_cartesian_productD1 finite_cartesian_productD2)
```
```  1621 done
```
```  1622
```
```  1623 lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
```
```  1624 by (simp add: card_cartesian_product)
```
```  1625
```
```  1626
```
```  1627
```
```  1628 subsubsection {* Cardinality of the Powerset *}
```
```  1629
```
```  1630 lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A"  (* FIXME numeral 2 (!?) *)
```
```  1631   apply (induct set: Finites)
```
```  1632    apply (simp_all add: Pow_insert)
```
```  1633   apply (subst card_Un_disjoint, blast)
```
```  1634     apply (blast intro: finite_imageI, blast)
```
```  1635   apply (subgoal_tac "inj_on (insert x) (Pow F)")
```
```  1636    apply (simp add: card_image Pow_insert)
```
```  1637   apply (unfold inj_on_def)
```
```  1638   apply (blast elim!: equalityE)
```
```  1639   done
```
```  1640
```
```  1641 text {* Relates to equivalence classes.  Based on a theorem of
```
```  1642 F. Kammüller's.  *}
```
```  1643
```
```  1644 lemma dvd_partition:
```
```  1645   "finite (Union C) ==>
```
```  1646     ALL c : C. k dvd card c ==>
```
```  1647     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
```
```  1648   k dvd card (Union C)"
```
```  1649 apply(frule finite_UnionD)
```
```  1650 apply(rotate_tac -1)
```
```  1651   apply (induct set: Finites, simp_all, clarify)
```
```  1652   apply (subst card_Un_disjoint)
```
```  1653   apply (auto simp add: dvd_add disjoint_eq_subset_Compl)
```
```  1654   done
```
```  1655
```
```  1656
```
```  1657 subsubsection {* Theorems about @{text "choose"} *}
```
```  1658
```
```  1659 text {*
```
```  1660   \medskip Basic theorem about @{text "choose"}.  By Florian
```
```  1661   Kamm\"uller, tidied by LCP.
```
```  1662 *}
```
```  1663
```
```  1664 lemma card_s_0_eq_empty:
```
```  1665     "finite A ==> card {B. B \<subseteq> A & card B = 0} = 1"
```
```  1666   apply (simp cong add: conj_cong add: finite_subset [THEN card_0_eq])
```
```  1667   apply (simp cong add: rev_conj_cong)
```
```  1668   done
```
```  1669
```
```  1670 lemma choose_deconstruct: "finite M ==> x \<notin> M
```
```  1671   ==> {s. s <= insert x M & card(s) = Suc k}
```
```  1672        = {s. s <= M & card(s) = Suc k} Un
```
```  1673          {s. EX t. t <= M & card(t) = k & s = insert x t}"
```
```  1674   apply safe
```
```  1675    apply (auto intro: finite_subset [THEN card_insert_disjoint])
```
```  1676   apply (drule_tac x = "xa - {x}" in spec)
```
```  1677   apply (subgoal_tac "x \<notin> xa", auto)
```
```  1678   apply (erule rev_mp, subst card_Diff_singleton)
```
```  1679   apply (auto intro: finite_subset)
```
```  1680   done
```
```  1681
```
```  1682 text{*There are as many subsets of @{term A} having cardinality @{term k}
```
```  1683  as there are sets obtained from the former by inserting a fixed element
```
```  1684  @{term x} into each.*}
```
```  1685 lemma constr_bij:
```
```  1686    "[|finite A; x \<notin> A|] ==>
```
```  1687     card {B. EX C. C <= A & card(C) = k & B = insert x C} =
```
```  1688     card {B. B <= A & card(B) = k}"
```
```  1689   apply (rule_tac f = "%s. s - {x}" and g = "insert x" in card_bij_eq)
```
```  1690        apply (auto elim!: equalityE simp add: inj_on_def)
```
```  1691     apply (subst Diff_insert0, auto)
```
```  1692    txt {* finiteness of the two sets *}
```
```  1693    apply (rule_tac [2] B = "Pow (A)" in finite_subset)
```
```  1694    apply (rule_tac B = "Pow (insert x A)" in finite_subset)
```
```  1695    apply fast+
```
```  1696   done
```
```  1697
```
```  1698 text {*
```
```  1699   Main theorem: combinatorial statement about number of subsets of a set.
```
```  1700 *}
```
```  1701
```
```  1702 lemma n_sub_lemma:
```
```  1703   "!!A. finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
```
```  1704   apply (induct k)
```
```  1705    apply (simp add: card_s_0_eq_empty, atomize)
```
```  1706   apply (rotate_tac -1, erule finite_induct)
```
```  1707    apply (simp_all (no_asm_simp) cong add: conj_cong
```
```  1708      add: card_s_0_eq_empty choose_deconstruct)
```
```  1709   apply (subst card_Un_disjoint)
```
```  1710      prefer 4 apply (force simp add: constr_bij)
```
```  1711     prefer 3 apply force
```
```  1712    prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2]
```
```  1713      finite_subset [of _ "Pow (insert x F)", standard])
```
```  1714   apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset])
```
```  1715   done
```
```  1716
```
```  1717 theorem n_subsets:
```
```  1718     "finite A ==> card {B. B <= A & card B = k} = (card A choose k)"
```
```  1719   by (simp add: n_sub_lemma)
```
```  1720
```
```  1721
```
```  1722 subsection{* A fold functional for non-empty sets *}
```
```  1723
```
```  1724 text{* Does not require start value. *}
```
```  1725
```
```  1726 consts
```
```  1727   foldSet1 :: "('a => 'a => 'a) => ('a set \<times> 'a) set"
```
```  1728
```
```  1729 inductive "foldSet1 f"
```
```  1730 intros
```
```  1731 foldSet1_singletonI [intro]: "({a}, a) : foldSet1 f"
```
```  1732 foldSet1_insertI [intro]:
```
```  1733  "\<lbrakk> (A, x) : foldSet1 f; a \<notin> A; A \<noteq> {} \<rbrakk>
```
```  1734   \<Longrightarrow> (insert a A, f a x) : foldSet1 f"
```
```  1735
```
```  1736 constdefs
```
```  1737   fold1 :: "('a => 'a => 'a) => 'a set => 'a"
```
```  1738   "fold1 f A == THE x. (A, x) : foldSet1 f"
```
```  1739
```
```  1740 lemma foldSet1_nonempty:
```
```  1741  "(A, x) : foldSet1 f \<Longrightarrow> A \<noteq> {}"
```
```  1742 by(erule foldSet1.cases, simp_all)
```
```  1743
```
```  1744
```
```  1745 inductive_cases empty_foldSet1E [elim!]: "({}, x) : foldSet1 f"
```
```  1746
```
```  1747 lemma foldSet1_sing[iff]: "(({a},b) : foldSet1 f) = (a = b)"
```
```  1748 apply(rule iffI)
```
```  1749  prefer 2 apply fast
```
```  1750 apply (erule foldSet1.cases)
```
```  1751  apply blast
```
```  1752 apply (erule foldSet1.cases)
```
```  1753  apply blast
```
```  1754 apply blast
```
```  1755 done
```
```  1756
```
```  1757 lemma Diff1_foldSet1:
```
```  1758   "(A - {x}, y) : foldSet1 f ==> x: A ==> (A, f x y) : foldSet1 f"
```
```  1759 by (erule insert_Diff [THEN subst], rule foldSet1.intros,
```
```  1760     auto dest!:foldSet1_nonempty)
```
```  1761
```
```  1762 lemma foldSet1_imp_finite: "(A, x) : foldSet1 f ==> finite A"
```
```  1763   by (induct set: foldSet1) auto
```
```  1764
```
```  1765 lemma finite_nonempty_imp_foldSet1:
```
```  1766   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. (A, x) : foldSet1 f"
```
```  1767   by (induct set: Finites) auto
```
```  1768
```
```  1769 lemma (in ACf) foldSet1_determ_aux:
```
```  1770   "!!A x y. \<lbrakk> card A < n; (A, x) : foldSet1 f; (A, y) : foldSet1 f \<rbrakk> \<Longrightarrow> y = x"
```
```  1771 proof (induct n)
```
```  1772   case 0 thus ?case by simp
```
```  1773 next
```
```  1774   case (Suc n)
```
```  1775   have IH: "!!A x y. \<lbrakk>card A < n; (A, x) \<in> foldSet1 f; (A, y) \<in> foldSet1 f\<rbrakk>
```
```  1776            \<Longrightarrow> y = x" and card: "card A < Suc n"
```
```  1777   and Afoldx: "(A, x) \<in> foldSet1 f" and Afoldy: "(A, y) \<in> foldSet1 f" .
```
```  1778   from card have "card A < n \<or> card A = n" by arith
```
```  1779   thus ?case
```
```  1780   proof
```
```  1781     assume less: "card A < n"
```
```  1782     show ?thesis by(rule IH[OF less Afoldx Afoldy])
```
```  1783   next
```
```  1784     assume cardA: "card A = n"
```
```  1785     show ?thesis
```
```  1786     proof (rule foldSet1.cases[OF Afoldx])
```
```  1787       fix a assume "(A, x) = ({a}, a)"
```
```  1788       thus "y = x" using Afoldy by (simp add:foldSet1_sing)
```
```  1789     next
```
```  1790       fix Ax ax x'
```
```  1791       assume eq1: "(A, x) = (insert ax Ax, ax \<cdot> x')"
```
```  1792 	and x': "(Ax, x') \<in> foldSet1 f" and notinx: "ax \<notin> Ax"
```
```  1793 	and Axnon: "Ax \<noteq> {}"
```
```  1794       hence A1: "A = insert ax Ax" and x: "x = ax \<cdot> x'" by auto
```
```  1795       show ?thesis
```
```  1796       proof (rule foldSet1.cases[OF Afoldy])
```
```  1797 	fix ay assume "(A, y) = ({ay}, ay)"
```
```  1798 	thus ?thesis using eq1 x' Axnon notinx
```
```  1799 	  by (fastsimp simp:foldSet1_sing)
```
```  1800       next
```
```  1801 	fix Ay ay y'
```
```  1802 	assume eq2: "(A, y) = (insert ay Ay, ay \<cdot> y')"
```
```  1803 	  and y': "(Ay, y') \<in> foldSet1 f" and notiny: "ay \<notin> Ay"
```
```  1804 	  and Aynon: "Ay \<noteq> {}"
```
```  1805 	hence A2: "A = insert ay Ay" and y: "y = ay \<cdot> y'" by auto
```
```  1806 	have finA: "finite A" by(rule foldSet1_imp_finite[OF Afoldx])
```
```  1807 	with cardA A1 notinx have less: "card Ax < n" by simp
```
```  1808 	show ?thesis
```
```  1809 	proof cases
```
```  1810 	  assume "ax = ay"
```
```  1811 	  then moreover have "Ax = Ay" using A1 A2 notinx notiny by auto
```
```  1812 	  ultimately show ?thesis using IH[OF less x'] y' eq1 eq2 by auto
```
```  1813 	next
```
```  1814 	  assume diff: "ax \<noteq> ay"
```
```  1815 	  let ?B = "Ax - {ay}"
```
```  1816 	  have Ax: "Ax = insert ay ?B" and Ay: "Ay = insert ax ?B"
```
```  1817 	    using A1 A2 notinx notiny diff by(blast elim!:equalityE)+
```
```  1818 	  show ?thesis
```
```  1819 	  proof cases
```
```  1820 	    assume "?B = {}"
```
```  1821 	    with Ax Ay show ?thesis using x' y' x y by(simp add:commute)
```
```  1822 	  next
```
```  1823 	    assume Bnon: "?B \<noteq> {}"
```
```  1824 	    moreover have "finite ?B" using finA A1 by simp
```
```  1825 	    ultimately obtain b where Bfoldb: "(?B,b) \<in> foldSet1 f"
```
```  1826 	      using finite_nonempty_imp_foldSet1 by(blast)
```
```  1827 	    moreover have ayinAx: "ay \<in> Ax" using Ax by(auto)
```
```  1828 	    ultimately have "(Ax,ay\<cdot>b) \<in> foldSet1 f" by(rule Diff1_foldSet1)
```
```  1829 	    hence "ay\<cdot>b = x'" by(rule IH[OF less x'])
```
```  1830             moreover have "ax\<cdot>b = y'"
```
```  1831 	    proof (rule IH[OF _ y'])
```
```  1832 	      show "card Ay < n" using Ay cardA A1 notinx finA ayinAx
```
```  1833 		by(auto simp:card_Diff1_less)
```
```  1834 	    next
```
```  1835 	      show "(Ay,ax\<cdot>b) \<in> foldSet1 f" using Ay notinx Bfoldb Bnon
```
```  1836 		by fastsimp
```
```  1837 	    qed
```
```  1838 	    ultimately show ?thesis using x y by(auto simp:AC)
```
```  1839 	  qed
```
```  1840 	qed
```
```  1841       qed
```
```  1842     qed
```
```  1843   qed
```
```  1844 qed
```
```  1845
```
```  1846
```
```  1847 lemma (in ACf) foldSet1_determ:
```
```  1848   "(A, x) : foldSet1 f ==> (A, y) : foldSet1 f ==> y = x"
```
```  1849 by (blast intro: foldSet1_determ_aux [rule_format])
```
```  1850
```
```  1851 lemma (in ACf) foldSet1_equality: "(A, y) : foldSet1 f ==> fold1 f A = y"
```
```  1852   by (unfold fold1_def) (blast intro: foldSet1_determ)
```
```  1853
```
```  1854 lemma fold1_singleton[simp]: "fold1 f {a} = a"
```
```  1855   by (unfold fold1_def) blast
```
```  1856
```
```  1857 lemma (in ACf) foldSet1_insert_aux: "x \<notin> A ==> A \<noteq> {} \<Longrightarrow>
```
```  1858     ((insert x A, v) : foldSet1 f) =
```
```  1859     (EX y. (A, y) : foldSet1 f & v = f x y)"
```
```  1860 apply auto
```
```  1861 apply (rule_tac A1 = A and f1 = f in finite_nonempty_imp_foldSet1 [THEN exE])
```
```  1862   apply (fastsimp dest: foldSet1_imp_finite)
```
```  1863  apply blast
```
```  1864 apply (blast intro: foldSet1_determ)
```
```  1865 done
```
```  1866
```
```  1867 lemma (in ACf) fold1_insert:
```
```  1868   "finite A ==> x \<notin> A ==> A \<noteq> {} \<Longrightarrow> fold1 f (insert x A) = f x (fold1 f A)"
```
```  1869 apply (unfold fold1_def)
```
```  1870 apply (simp add: foldSet1_insert_aux)
```
```  1871 apply (rule the_equality)
```
```  1872 apply (auto intro: finite_nonempty_imp_foldSet1
```
```  1873     cong add: conj_cong simp add: fold1_def [symmetric] foldSet1_equality)
```
```  1874 done
```
```  1875
```
```  1876 lemma (in ACIf) fold1_insert2[simp]:
```
```  1877 assumes finA: "finite A" and nonA: "A \<noteq> {}"
```
```  1878 shows "fold1 f (insert a A) = f a (fold1 f A)"
```
```  1879 proof cases
```
```  1880   assume "a \<in> A"
```
```  1881   then obtain B where A: "A = insert a B" and disj: "a \<notin> B"
```
```  1882     by(blast dest: mk_disjoint_insert)
```
```  1883   show ?thesis
```
```  1884   proof cases
```
```  1885     assume "B = {}"
```
```  1886     thus ?thesis using A by(simp add:idem fold1_singleton)
```
```  1887   next
```
```  1888     assume nonB: "B \<noteq> {}"
```
```  1889     from finA A have finB: "finite B" by(blast intro: finite_subset)
```
```  1890     have "fold1 f (insert a A) = fold1 f (insert a B)" using A by simp
```
```  1891     also have "\<dots> = f a (fold1 f B)"
```
```  1892       using finB nonB disj by(simp add: fold1_insert)
```
```  1893     also have "\<dots> = f a (fold1 f A)"
```
```  1894       using A finB nonB disj by(simp add:idem fold1_insert assoc[symmetric])
```
```  1895     finally show ?thesis .
```
```  1896   qed
```
```  1897 next
```
```  1898   assume "a \<notin> A"
```
```  1899   with finA nonA show ?thesis by(simp add:fold1_insert)
```
```  1900 qed
```
```  1901
```
```  1902 text{* Now the recursion rules for definitions: *}
```
```  1903
```
```  1904 lemma fold1_singleton_def: "g \<equiv> fold1 f \<Longrightarrow> g {a} = a"
```
```  1905 by(simp add:fold1_singleton)
```
```  1906
```
```  1907 lemma (in ACf) fold1_insert_def:
```
```  1908   "\<lbrakk> g \<equiv> fold1 f; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
```
```  1909 by(simp add:fold1_insert)
```
```  1910
```
```  1911 lemma (in ACIf) fold1_insert2_def:
```
```  1912   "\<lbrakk> g \<equiv> fold1 f; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
```
```  1913 by(simp add:fold1_insert2)
```
```  1914
```
```  1915
```
```  1916 subsubsection{* Lemmas about {@text fold1} *}
```
```  1917
```
```  1918 lemma (in ACf) fold1_Un:
```
```  1919 assumes A: "finite A" "A \<noteq> {}"
```
```  1920 shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
```
```  1921        fold1 f (A Un B) = f (fold1 f A) (fold1 f B)"
```
```  1922 using A
```
```  1923 proof(induct rule:finite_ne_induct)
```
```  1924   case singleton thus ?case by(simp add:fold1_insert)
```
```  1925 next
```
```  1926   case insert thus ?case by (simp add:fold1_insert assoc)
```
```  1927 qed
```
```  1928
```
```  1929 lemma (in ACIf) fold1_Un2:
```
```  1930 assumes A: "finite A" "A \<noteq> {}"
```
```  1931 shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
```
```  1932        fold1 f (A Un B) = f (fold1 f A) (fold1 f B)"
```
```  1933 using A
```
```  1934 proof(induct rule:finite_ne_induct)
```
```  1935   case singleton thus ?case by(simp add:fold1_insert2)
```
```  1936 next
```
```  1937   case insert thus ?case by (simp add:fold1_insert2 assoc)
```
```  1938 qed
```
```  1939
```
```  1940 lemma (in ACf) fold1_in:
```
```  1941   assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x\<cdot>y \<in> {x,y}"
```
```  1942   shows "fold1 f A \<in> A"
```
```  1943 using A
```
```  1944 proof (induct rule:finite_ne_induct)
```
```  1945   case singleton thus ?case by(simp)
```
```  1946 next
```
```  1947   case insert thus ?case using elem by (force simp add:fold1_insert)
```
```  1948 qed
```
```  1949
```
```  1950 lemma fold1_le:
```
```  1951   assumes ACf: "ACf(f::'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  1952   and A: "finite (A)" "A \<noteq> {}" and le: "\<And>x y. f x y \<le> x"
```
```  1953   shows "a \<in> A \<Longrightarrow> fold1 f A \<le> a"
```
```  1954 using A
```
```  1955 proof (induct rule:finite_ne_induct)
```
```  1956   case singleton thus ?case by(simp)
```
```  1957 next
```
```  1958   from le have le2: "\<And>x y. f x y \<le> y" by (fastsimp simp:ACf.commute[OF ACf])
```
```  1959   case (insert x F) thus ?case using le le2
```
```  1960     by (simp add:ACf.fold1_insert[OF ACf]) (blast intro: le order_trans)
```
```  1961 qed
```
```  1962
```
```  1963 lemma fold1_ge:
```
```  1964   assumes ACf: "ACf(f::'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  1965   and A: "finite (A)" "A \<noteq> {}" and ge: "\<And>x y. x \<le> f x y"
```
```  1966   shows "a \<in> A \<Longrightarrow> a \<le> fold1 f A"
```
```  1967 using A
```
```  1968 proof (induct rule:finite_ne_induct)
```
```  1969   case singleton thus ?case by(simp)
```
```  1970 next
```
```  1971   from ge have ge2: "\<And>x y. y \<le> f x y" by (fastsimp simp:ACf.commute[OF ACf])
```
```  1972   case (insert x F) thus ?case using ge ge2
```
```  1973     by (simp add:ACf.fold1_insert[OF ACf]) (blast intro: ge order_trans)
```
```  1974 qed
```
```  1975
```
```  1976
```
```  1977 subsection{*Min and Max*}
```
```  1978
```
```  1979 text{* As an application of @{text fold1} we define the minimal and
```
```  1980 maximal element of a (non-empty) set over a linear order. First we
```
```  1981 show that @{text min} and @{text max} are ACI: *}
```
```  1982
```
```  1983 lemma ACf_min: "ACf(min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  1984 apply(rule ACf.intro)
```
```  1985 apply(auto simp:min_def)
```
```  1986 done
```
```  1987
```
```  1988 lemma ACIf_min: "ACIf(min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  1989 apply(rule ACIf.intro[OF ACf_min])
```
```  1990 apply(rule ACIf_axioms.intro)
```
```  1991 apply(auto simp:min_def)
```
```  1992 done
```
```  1993
```
```  1994 lemma ACf_max: "ACf(max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  1995 apply(rule ACf.intro)
```
```  1996 apply(auto simp:max_def)
```
```  1997 done
```
```  1998
```
```  1999 lemma ACIf_max: "ACIf(max:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a)"
```
```  2000 apply(rule ACIf.intro[OF ACf_max])
```
```  2001 apply(rule ACIf_axioms.intro)
```
```  2002 apply(auto simp:max_def)
```
```  2003 done
```
```  2004
```
```  2005 text{* Now we make the definitions: *}
```
```  2006
```
```  2007 constdefs
```
```  2008   Min :: "('a::linorder)set => 'a"
```
```  2009   "Min  ==  fold1 min"
```
```  2010
```
```  2011   Max :: "('a::linorder)set => 'a"
```
```  2012   "Max  ==  fold1 max"
```
```  2013
```
```  2014 text{* Now we instantiate the recursion equations and declare them
```
```  2015 simplification rules: *}
```
```  2016
```
```  2017 declare
```
```  2018   fold1_singleton_def[OF Min_def, simp]
```
```  2019   ACIf.fold1_insert2_def[OF ACIf_min Min_def, simp]
```
```  2020   fold1_singleton_def[OF Max_def, simp]
```
```  2021   ACIf.fold1_insert2_def[OF ACIf_max Max_def, simp]
```
```  2022
```
```  2023 text{* Now we instantiate some @{text fold1} properties: *}
```
```  2024
```
```  2025 lemma Min_in [simp]:
```
```  2026   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Min A \<in> A"
```
```  2027 using ACf.fold1_in[OF ACf_min]
```
```  2028 by(fastsimp simp: Min_def min_def)
```
```  2029
```
```  2030 lemma Max_in [simp]:
```
```  2031   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Max A \<in> A"
```
```  2032 using ACf.fold1_in[OF ACf_max]
```
```  2033 by(fastsimp simp: Max_def max_def)
```
```  2034
```
```  2035 lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<le> x"
```
```  2036 by(simp add: Min_def fold1_le[OF ACf_min] min_le_iff_disj)
```
```  2037
```
```  2038 lemma Max_ge [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> x \<le> Max A"
```
```  2039 by(simp add: Max_def fold1_ge[OF ACf_max] le_max_iff_disj)
```
```  2040
```
```  2041 end
```