src/HOL/ATP_Linkup.thy
author huffman
Sat Jun 06 09:11:12 2009 -0700 (2009-06-06)
changeset 31488 5691ccb8d6b5
parent 31037 ac8669134e7a
child 31833 9ab1326ed98d
permissions -rw-r--r--
generalize tendsto to class topological_space
     1 (*  Title:      HOL/ATP_Linkup.thy
     2     Author:     Lawrence C Paulson
     3     Author:     Jia Meng, NICTA
     4     Author:     Fabian Immler, TUM
     5 *)
     6 
     7 header {* The Isabelle-ATP Linkup *}
     8 
     9 theory ATP_Linkup
    10 imports Divides Record Hilbert_Choice Plain
    11 uses
    12   "Tools/polyhash.ML"
    13   "Tools/res_clause.ML"
    14   ("Tools/res_axioms.ML")
    15   ("Tools/res_hol_clause.ML")
    16   ("Tools/res_reconstruct.ML")
    17   ("Tools/res_atp.ML")
    18   ("Tools/atp_manager.ML")
    19   ("Tools/atp_wrapper.ML")
    20   ("Tools/atp_minimal.ML")
    21   "~~/src/Tools/Metis/metis.ML"
    22   ("Tools/metis_tools.ML")
    23 begin
    24 
    25 definition COMBI :: "'a => 'a"
    26   where "COMBI P == P"
    27 
    28 definition COMBK :: "'a => 'b => 'a"
    29   where "COMBK P Q == P"
    30 
    31 definition COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c"
    32   where "COMBB P Q R == P (Q R)"
    33 
    34 definition COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c"
    35   where "COMBC P Q R == P R Q"
    36 
    37 definition COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
    38   where "COMBS P Q R == P R (Q R)"
    39 
    40 definition fequal :: "'a => 'a => bool"
    41   where "fequal X Y == (X=Y)"
    42 
    43 lemma fequal_imp_equal: "fequal X Y ==> X=Y"
    44   by (simp add: fequal_def)
    45 
    46 lemma equal_imp_fequal: "X=Y ==> fequal X Y"
    47   by (simp add: fequal_def)
    48 
    49 text{*These two represent the equivalence between Boolean equality and iff.
    50 They can't be converted to clauses automatically, as the iff would be
    51 expanded...*}
    52 
    53 lemma iff_positive: "P | Q | P=Q"
    54 by blast
    55 
    56 lemma iff_negative: "~P | ~Q | P=Q"
    57 by blast
    58 
    59 text{*Theorems for translation to combinators*}
    60 
    61 lemma abs_S: "(%x. (f x) (g x)) == COMBS f g"
    62 apply (rule eq_reflection)
    63 apply (rule ext) 
    64 apply (simp add: COMBS_def) 
    65 done
    66 
    67 lemma abs_I: "(%x. x) == COMBI"
    68 apply (rule eq_reflection)
    69 apply (rule ext) 
    70 apply (simp add: COMBI_def) 
    71 done
    72 
    73 lemma abs_K: "(%x. y) == COMBK y"
    74 apply (rule eq_reflection)
    75 apply (rule ext) 
    76 apply (simp add: COMBK_def) 
    77 done
    78 
    79 lemma abs_B: "(%x. a (g x)) == COMBB a g"
    80 apply (rule eq_reflection)
    81 apply (rule ext) 
    82 apply (simp add: COMBB_def) 
    83 done
    84 
    85 lemma abs_C: "(%x. (f x) b) == COMBC f b"
    86 apply (rule eq_reflection)
    87 apply (rule ext) 
    88 apply (simp add: COMBC_def) 
    89 done
    90 
    91 
    92 subsection {* Setup of external ATPs *}
    93 
    94 use "Tools/res_axioms.ML" setup ResAxioms.setup
    95 use "Tools/res_hol_clause.ML"
    96 use "Tools/res_reconstruct.ML" setup ResReconstruct.setup
    97 use "Tools/res_atp.ML"
    98 
    99 use "Tools/atp_manager.ML"
   100 use "Tools/atp_wrapper.ML"
   101 
   102 use "Tools/atp_minimal.ML"
   103 
   104 text {* basic provers *}
   105 setup {* AtpManager.add_prover "spass" AtpWrapper.spass *}
   106 setup {* AtpManager.add_prover "vampire" AtpWrapper.vampire *}
   107 setup {* AtpManager.add_prover "e" AtpWrapper.eprover *}
   108 
   109 text {* provers with stuctured output *}
   110 setup {* AtpManager.add_prover "vampire_full" AtpWrapper.vampire_full *}
   111 setup {* AtpManager.add_prover "e_full" AtpWrapper.eprover_full *}
   112 
   113 text {* on some problems better results *}
   114 setup {* AtpManager.add_prover "spass_no_tc" (AtpWrapper.spass_opts 40 false) *}
   115 
   116 text {* remote provers via SystemOnTPTP *}
   117 setup {* AtpManager.add_prover "remote_vampire"
   118   (AtpWrapper.remote_prover "-s Vampire---9.0") *}
   119 setup {* AtpManager.add_prover "remote_spass"
   120   (AtpWrapper.remote_prover "-s SPASS---3.01") *}
   121 setup {* AtpManager.add_prover "remote_e"
   122   (AtpWrapper.remote_prover "-s EP---1.0") *}
   123   
   124 
   125 
   126 subsection {* The Metis prover *}
   127 
   128 use "Tools/metis_tools.ML"
   129 setup MetisTools.setup
   130 
   131 end