src/Pure/Isar/element.ML
author wenzelm
Fri May 26 22:20:05 2006 +0200 (2006-05-26)
changeset 19731 581cdbdbba9a
parent 19585 70a1ce3b23ae
child 19777 77929c3d2b74
permissions -rw-r--r--
pretty: do not exterm thm names;
     1 (*  Title:      Pure/Isar/element.ML
     2     ID:         $Id$
     3     Author:     Makarius
     4 
     5 Explicit data structures for some Isar language elements.
     6 *)
     7 
     8 signature ELEMENT =
     9 sig
    10   datatype ('typ, 'term) stmt =
    11     Shows of ((string * Attrib.src list) * ('term * 'term list) list) list |
    12     Obtains of (string * ((string * 'typ option) list * 'term list)) list
    13   type statement  (*= (string, string) stmt*)
    14   type statement_i  (*= (typ, term) stmt*)
    15   datatype ('typ, 'term, 'fact) ctxt =
    16     Fixes of (string * 'typ option * mixfix) list |
    17     Constrains of (string * 'typ) list |
    18     Assumes of ((string * Attrib.src list) * ('term * 'term list) list) list |
    19     Defines of ((string * Attrib.src list) * ('term * 'term list)) list |
    20     Notes of ((string * Attrib.src list) * ('fact * Attrib.src list) list) list
    21   type context (*= (string, string, thmref) ctxt*)
    22   type context_i (*= (typ, term, thm list) ctxt*)
    23   val map_ctxt: {name: string -> string,
    24     var: string * mixfix -> string * mixfix,
    25     typ: 'typ -> 'a, term: 'term -> 'b, fact: 'fact -> 'c,
    26     attrib: Attrib.src -> Attrib.src} -> ('typ, 'term, 'fact) ctxt -> ('a, 'b, 'c) ctxt
    27   val map_ctxt_values: (typ -> typ) -> (term -> term) -> (thm -> thm) -> context_i -> context_i
    28   val rename: (string * (string * mixfix option)) list -> string -> string
    29   val rename_var: (string * (string * mixfix option)) list -> string * mixfix -> string * mixfix
    30   val rename_term: (string * (string * mixfix option)) list -> term -> term
    31   val rename_thm: (string * (string * mixfix option)) list -> thm -> thm
    32   val rename_ctxt: (string * (string * mixfix option)) list -> context_i -> context_i
    33   val instT_type: typ Symtab.table -> typ -> typ
    34   val instT_term: typ Symtab.table -> term -> term
    35   val instT_thm: theory -> typ Symtab.table -> thm -> thm
    36   val instT_ctxt: theory -> typ Symtab.table -> context_i -> context_i
    37   val inst_term: typ Symtab.table * term Symtab.table -> term -> term
    38   val inst_thm: theory -> typ Symtab.table * term Symtab.table -> thm -> thm
    39   val inst_ctxt: theory -> typ Symtab.table * term Symtab.table -> context_i -> context_i
    40   val pretty_stmt: ProofContext.context -> statement_i -> Pretty.T list
    41   val pretty_ctxt: ProofContext.context -> context_i -> Pretty.T list
    42   val pretty_statement: ProofContext.context -> string -> thm -> Pretty.T
    43 end;
    44 
    45 structure Element: ELEMENT =
    46 struct
    47 
    48 
    49 (** conclusions **)
    50 
    51 datatype ('typ, 'term) stmt =
    52   Shows of ((string * Attrib.src list) * ('term * 'term list) list) list |
    53   Obtains of (string * ((string * 'typ option) list * 'term list)) list;
    54 
    55 type statement = (string, string) stmt;
    56 type statement_i = (typ, term) stmt;
    57 
    58 
    59 
    60 (** context elements **)
    61 
    62 (* datatype ctxt *)
    63 
    64 datatype ('typ, 'term, 'fact) ctxt =
    65   Fixes of (string * 'typ option * mixfix) list |
    66   Constrains of (string * 'typ) list |
    67   Assumes of ((string * Attrib.src list) * ('term * 'term list) list) list |
    68   Defines of ((string * Attrib.src list) * ('term * 'term list)) list |
    69   Notes of ((string * Attrib.src list) * ('fact * Attrib.src list) list) list;
    70 
    71 type context = (string, string, thmref) ctxt;
    72 type context_i = (typ, term, thm list) ctxt;
    73 
    74 fun map_ctxt {name, var, typ, term, fact, attrib} =
    75   fn Fixes fixes => Fixes (fixes |> map (fn (x, T, mx) =>
    76        let val (x', mx') = var (x, mx) in (x', Option.map typ T, mx') end))
    77    | Constrains xs => Constrains (xs |> map (fn (x, T) => (#1 (var (x, NoSyn)), typ T)))
    78    | Assumes asms => Assumes (asms |> map (fn ((a, atts), propps) =>
    79       ((name a, map attrib atts), propps |> map (fn (t, ps) => (term t, map term ps)))))
    80    | Defines defs => Defines (defs |> map (fn ((a, atts), (t, ps)) =>
    81       ((name a, map attrib atts), (term t, map term ps))))
    82    | Notes facts => Notes (facts |> map (fn ((a, atts), bs) =>
    83       ((name a, map attrib atts), bs |> map (fn (ths, btts) => (fact ths, map attrib btts)))));
    84 
    85 fun map_ctxt_values typ term thm = map_ctxt
    86   {name = I, var = I, typ = typ, term = term, fact = map thm,
    87     attrib = Args.map_values I typ term thm};
    88 
    89 
    90 
    91 (** logical operations **)
    92 
    93 (* derived rules *)
    94 
    95 fun instantiate_tfrees thy subst =
    96   let
    97     val certT = Thm.ctyp_of thy;
    98     fun inst vs (a, T) = AList.lookup (op =) vs a
    99       |> Option.map (fn v => (certT (TVar v), certT T));
   100   in
   101     Drule.tvars_intr_list (map fst subst) #->
   102     (fn vs => Thm.instantiate (map_filter (inst vs) subst, []))
   103   end;
   104 
   105 fun instantiate_frees thy subst =
   106   let val cert = Thm.cterm_of thy in
   107     Drule.forall_intr_list (map (cert o Free o fst) subst) #>
   108     Drule.forall_elim_list (map (cert o snd) subst)
   109   end;
   110 
   111 fun hyps_rule rule th =
   112   let
   113     val cterm_rule = Thm.reflexive #> rule #> Thm.cprop_of #> Drule.dest_equals #> #1;
   114     val {hyps, ...} = Thm.crep_thm th;
   115   in
   116     Drule.implies_elim_list
   117       (rule (Drule.implies_intr_list hyps th))
   118       (map (Thm.assume o cterm_rule) hyps)
   119   end;
   120 
   121 
   122 (* renaming *)
   123 
   124 fun rename ren x =
   125   (case AList.lookup (op =) ren (x: string) of
   126     NONE => x
   127   | SOME (x', _) => x');
   128 
   129 fun rename_var ren (x, mx) =
   130   (case (AList.lookup (op =) ren (x: string), mx) of
   131     (NONE, _) => (x, mx)
   132   | (SOME (x', NONE), Structure) => (x', mx)
   133   | (SOME (x', SOME _), Structure) =>
   134       error ("Attempt to change syntax of structure parameter " ^ quote x)
   135   | (SOME (x', NONE), _) => (x', NoSyn)
   136   | (SOME (x', SOME mx'), _) => (x', mx'));
   137 
   138 fun rename_term ren (Free (x, T)) = Free (rename ren x, T)
   139   | rename_term ren (t $ u) = rename_term ren t $ rename_term ren u
   140   | rename_term ren (Abs (x, T, t)) = Abs (x, T, rename_term ren t)
   141   | rename_term _ a = a;
   142 
   143 fun rename_thm ren th =
   144   let
   145     val subst = Drule.frees_of th
   146       |> map_filter (fn (x, T) =>
   147         let val x' = rename ren x
   148         in if x = x' then NONE else SOME ((x, T), (Free (x', T))) end);
   149   in
   150     if null subst then th
   151     else th |> hyps_rule (instantiate_frees (Thm.theory_of_thm th) subst)
   152   end;
   153 
   154 fun rename_ctxt ren =
   155   map_ctxt_values I (rename_term ren) (rename_thm ren)
   156   #> map_ctxt {name = I, typ = I, term = I, fact = I, attrib = I, var = rename_var ren};
   157 
   158 
   159 (* type instantiation *)
   160 
   161 fun instT_type env =
   162   if Symtab.is_empty env then I
   163   else Term.map_type_tfree (fn (x, S) => the_default (TFree (x, S)) (Symtab.lookup env x));
   164 
   165 fun instT_term env =
   166   if Symtab.is_empty env then I
   167   else Term.map_term_types (instT_type env);
   168 
   169 fun instT_subst env th =
   170   Drule.tfrees_of th
   171   |> map_filter (fn (a, S) =>
   172     let
   173       val T = TFree (a, S);
   174       val T' = the_default T (Symtab.lookup env a);
   175     in if T = T' then NONE else SOME (a, T') end);
   176 
   177 fun instT_thm thy env th =
   178   if Symtab.is_empty env then th
   179   else
   180     let val subst = instT_subst env th
   181     in if null subst then th else th |> hyps_rule (instantiate_tfrees thy subst) end;
   182 
   183 fun instT_ctxt thy env =
   184   map_ctxt_values (instT_type env) (instT_term env) (instT_thm thy env);
   185 
   186 
   187 (* type and term instantiation *)
   188 
   189 fun inst_term (envT, env) =
   190   if Symtab.is_empty env then instT_term envT
   191   else
   192     let
   193       val instT = instT_type envT;
   194       fun inst (Const (x, T)) = Const (x, instT T)
   195         | inst (Free (x, T)) =
   196             (case Symtab.lookup env x of
   197               NONE => Free (x, instT T)
   198             | SOME t => t)
   199         | inst (Var (xi, T)) = Var (xi, instT T)
   200         | inst (b as Bound _) = b
   201         | inst (Abs (x, T, t)) = Abs (x, instT T, inst t)
   202         | inst (t $ u) = inst t $ inst u;
   203     in Envir.beta_norm o inst end;
   204 
   205 fun inst_thm thy (envT, env) th =
   206   if Symtab.is_empty env then instT_thm thy envT th
   207   else
   208     let
   209       val substT = instT_subst envT th;
   210       val subst = Drule.frees_of th
   211         |> map_filter (fn (x, T) =>
   212           let
   213             val T' = instT_type envT T;
   214             val t = Free (x, T');
   215             val t' = the_default t (Symtab.lookup env x);
   216           in if t aconv t' then NONE else SOME ((x, T'), t') end);
   217     in
   218       if null substT andalso null subst then th
   219       else th |> hyps_rule
   220        (instantiate_tfrees thy substT #>
   221         instantiate_frees thy subst #>
   222         Drule.fconv_rule (Thm.beta_conversion true))
   223     end;
   224 
   225 fun inst_ctxt thy envs =
   226   map_ctxt_values (instT_type (#1 envs)) (inst_term envs) (inst_thm thy envs);
   227 
   228 
   229 
   230 (** pretty printing **)
   231 
   232 fun pretty_items _ _ [] = []
   233   | pretty_items keyword sep (x :: ys) =
   234       Pretty.block [Pretty.keyword keyword, Pretty.brk 1, x] ::
   235         map (fn y => Pretty.block [Pretty.str "  ", Pretty.keyword sep, Pretty.brk 1, y]) ys;
   236 
   237 fun pretty_name_atts ctxt (name, atts) sep =
   238   if name = "" andalso null atts then []
   239   else [Pretty.block
   240     (Pretty.breaks (Pretty.str name :: Args.pretty_attribs ctxt atts @ [Pretty.str sep]))];
   241 
   242 
   243 (* pretty_stmt *)
   244 
   245 fun pretty_stmt ctxt =
   246   let
   247     val prt_typ = Pretty.quote o ProofContext.pretty_typ ctxt;
   248     val prt_term = Pretty.quote o ProofContext.pretty_term ctxt;
   249     val prt_terms = separate (Pretty.keyword "and") o map prt_term;
   250     val prt_name_atts = pretty_name_atts ctxt;
   251 
   252     fun prt_show (a, ts) =
   253       Pretty.block (Pretty.breaks (prt_name_atts a ":" @ prt_terms (map fst ts)));
   254 
   255     fun prt_var (x, SOME T) = Pretty.block [Pretty.str (x ^ " ::"), Pretty.brk 1, prt_typ T]
   256       | prt_var (x, NONE) = Pretty.str x;
   257     val prt_vars =  separate (Pretty.keyword "and") o map prt_var;
   258 
   259     fun prt_obtain (_, ([], ts)) = Pretty.block (Pretty.breaks (prt_terms ts))
   260       | prt_obtain (_, (xs, ts)) = Pretty.block (Pretty.breaks
   261           (prt_vars xs @ [Pretty.keyword "where"] @ prt_terms ts));
   262   in
   263     fn Shows shows => pretty_items "shows" "and" (map prt_show shows)
   264      | Obtains obtains => pretty_items "obtains" "|" (map prt_obtain obtains)
   265   end;
   266 
   267 
   268 (* pretty_ctxt *)
   269 
   270 fun pretty_ctxt ctxt =
   271   let
   272     val prt_typ = Pretty.quote o ProofContext.pretty_typ ctxt;
   273     val prt_term = Pretty.quote o ProofContext.pretty_term ctxt;
   274     val prt_thm = Pretty.backquote o ProofContext.pretty_thm ctxt;
   275     val prt_name_atts = pretty_name_atts ctxt;
   276 
   277     fun prt_mixfix NoSyn = []
   278       | prt_mixfix mx = [Pretty.brk 2, Syntax.pretty_mixfix mx];
   279 
   280     fun prt_fix (x, SOME T, mx) = Pretty.block (Pretty.str (x ^ " ::") :: Pretty.brk 1 ::
   281           prt_typ T :: Pretty.brk 1 :: prt_mixfix mx)
   282       | prt_fix (x, NONE, mx) = Pretty.block (Pretty.str x :: Pretty.brk 1 :: prt_mixfix mx);
   283     fun prt_constrain (x, T) = prt_fix (x, SOME T, NoSyn);
   284 
   285     fun prt_asm (a, ts) =
   286       Pretty.block (Pretty.breaks (prt_name_atts a ":" @ map (prt_term o fst) ts));
   287     fun prt_def (a, (t, _)) =
   288       Pretty.block (Pretty.breaks (prt_name_atts a ":" @ [prt_term t]));
   289 
   290     fun prt_fact (ths, []) = map prt_thm ths
   291       | prt_fact (ths, atts) = Pretty.enclose "(" ")"
   292           (Pretty.breaks (map prt_thm ths)) :: Args.pretty_attribs ctxt atts;
   293     fun prt_note (a, ths) =
   294       Pretty.block (Pretty.breaks (flat (prt_name_atts a "=" :: map prt_fact ths)));
   295   in
   296     fn Fixes fixes => pretty_items "fixes" "and" (map prt_fix fixes)
   297      | Constrains xs => pretty_items "constrains" "and" (map prt_constrain xs)
   298      | Assumes asms => pretty_items "assumes" "and" (map prt_asm asms)
   299      | Defines defs => pretty_items "defines" "and" (map prt_def defs)
   300      | Notes facts => pretty_items "notes" "and" (map prt_note facts)
   301   end;
   302 
   303 
   304 (* pretty_statement *)
   305 
   306 local
   307 
   308 fun thm_name kind th prts =
   309   let val head =
   310     (case #1 (Thm.get_name_tags th) of
   311       "" => Pretty.command kind
   312     | a => Pretty.block [Pretty.command kind, Pretty.brk 1, Pretty.str (Sign.base_name a ^ ":")])
   313   in Pretty.block (Pretty.fbreaks (head :: prts)) end;
   314 
   315 fun obtain prop ctxt =
   316   let
   317     val xs = ProofContext.rename_frees ctxt [] (Logic.strip_params prop);
   318     val args = rev (map Free xs);
   319     val As = Logic.strip_assums_hyp prop |> map (fn t => Term.subst_bounds (args, t));
   320     val ctxt' = ctxt |> fold ProofContext.declare_term args;
   321   in (("", (map (apsnd SOME) xs, As)), ctxt') end;
   322 
   323 in
   324 
   325 fun pretty_statement ctxt kind raw_th =
   326   let
   327     val thy = ProofContext.theory_of ctxt;
   328     val th = Goal.norm_hhf raw_th;
   329 
   330     fun standard_thesis t =
   331       let
   332         val C = ObjectLogic.drop_judgment thy (Thm.concl_of th);
   333         val C' = Var ((AutoBind.thesisN, Thm.maxidx_of th + 1), Term.fastype_of C);
   334       in Term.subst_atomic [(C, C')] t end;
   335 
   336     val raw_prop =
   337       Thm.prop_of th
   338       |> singleton (ProofContext.monomorphic ctxt)
   339       |> K (ObjectLogic.is_elim th) ? standard_thesis
   340       |> Term.zero_var_indexes;
   341 
   342     val vars = Term.add_vars raw_prop [];
   343     val frees = ProofContext.rename_frees ctxt [raw_prop] (map (apfst fst) vars);
   344     val fixes = rev (filter_out (fn (x, _) => x = AutoBind.thesisN) frees);
   345 
   346     val prop = Term.instantiate ([], vars ~~ map Free frees) raw_prop;
   347     val (prems, concl) = Logic.strip_horn prop;
   348     val thesis = ObjectLogic.fixed_judgment thy AutoBind.thesisN;
   349     val (asms, cases) = take_suffix (fn prem => thesis aconv Logic.strip_assums_concl prem) prems;
   350   in
   351     pretty_ctxt ctxt (Fixes (map (fn (x, T) => (x, SOME T, NoSyn)) fixes)) @
   352     pretty_ctxt ctxt (Assumes (map (fn t => (("", []), [(t, [])])) asms)) @
   353     pretty_stmt ctxt
   354      (if null cases then Shows [(("", []), [(concl, [])])]
   355       else Obtains (#1 (fold_map obtain cases (ctxt |> ProofContext.declare_term prop))))
   356   end |> thm_name kind raw_th;
   357 
   358 end;
   359 
   360 end;