src/HOL/RelPow.thy
author paulson
Thu Sep 23 13:06:31 1999 +0200 (1999-09-23)
changeset 7584 5be4bb8e4e3f
parent 5780 0187f936685a
child 8844 db71c334e854
permissions -rw-r--r--
tidied; added lemma restrict_to_left
     1 (*  Title:      HOL/RelPow.thy
     2     ID:         $Id$
     3     Author:     Tobias Nipkow
     4     Copyright   1996  TU Muenchen
     5 
     6 R^n = R O ... O R, the n-fold composition of R
     7 *)
     8 
     9 RelPow = Nat +
    10 
    11 instance
    12   set :: (term) {power}   (* only ('a * 'a) set should be in power! *)
    13 
    14 primrec
    15   "R^0 = Id"
    16   "R^(Suc n) = R O (R^n)"
    17 
    18 end