src/HOL/Univ.ML
author paulson
Thu Sep 23 13:06:31 1999 +0200 (1999-09-23)
changeset 7584 5be4bb8e4e3f
parent 7255 853bdbe9973d
child 8114 09a7a180cc99
permissions -rw-r--r--
tidied; added lemma restrict_to_left
     1 (*  Title:      HOL/Univ
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1991  University of Cambridge
     5 *)
     6 
     7 (** apfst -- can be used in similar type definitions **)
     8 
     9 Goalw [apfst_def] "apfst f (a,b) = (f(a),b)";
    10 by (rtac split 1);
    11 qed "apfst_conv";
    12 
    13 val [major,minor] = Goal
    14     "[| q = apfst f p;  !!x y. [| p = (x,y);  q = (f(x),y) |] ==> R \
    15 \    |] ==> R";
    16 by (rtac PairE 1);
    17 by (rtac minor 1);
    18 by (assume_tac 1);
    19 by (rtac (major RS trans) 1);
    20 by (etac ssubst 1);
    21 by (rtac apfst_conv 1);
    22 qed "apfst_convE";
    23 
    24 (** Push -- an injection, analogous to Cons on lists **)
    25 
    26 Goalw [Push_def] "Push i f = Push j g  ==> i=j";
    27 by (etac (fun_cong RS box_equals) 1);
    28 by (rtac nat_case_0 1);
    29 by (rtac nat_case_0 1);
    30 qed "Push_inject1";
    31 
    32 Goalw [Push_def] "Push i f = Push j g  ==> f=g";
    33 by (rtac (ext RS box_equals) 1);
    34 by (etac fun_cong 1);
    35 by (rtac (nat_case_Suc RS ext) 1);
    36 by (rtac (nat_case_Suc RS ext) 1);
    37 qed "Push_inject2";
    38 
    39 val [major,minor] = Goal
    40     "[| Push i f =Push j g;  [| i=j;  f=g |] ==> P \
    41 \    |] ==> P";
    42 by (rtac ((major RS Push_inject2) RS ((major RS Push_inject1) RS minor)) 1);
    43 qed "Push_inject";
    44 
    45 Goalw [Push_def] "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P";
    46 by (rtac Suc_neq_Zero 1);
    47 by (etac (fun_cong RS box_equals RS Inr_inject) 1);
    48 by (rtac nat_case_0 1);
    49 by (rtac refl 1);
    50 qed "Push_neq_K0";
    51 
    52 (*** Isomorphisms ***)
    53 
    54 Goal "inj(Rep_Node)";
    55 by (rtac inj_inverseI 1);       (*cannot combine by RS: multiple unifiers*)
    56 by (rtac Rep_Node_inverse 1);
    57 qed "inj_Rep_Node";
    58 
    59 Goal "inj_on Abs_Node Node";
    60 by (rtac inj_on_inverseI 1);
    61 by (etac Abs_Node_inverse 1);
    62 qed "inj_on_Abs_Node";
    63 
    64 val Abs_Node_inject = inj_on_Abs_Node RS inj_onD;
    65 
    66 
    67 (*** Introduction rules for Node ***)
    68 
    69 Goalw [Node_def] "(%k. Inr 0, a) : Node";
    70 by (Blast_tac 1);
    71 qed "Node_K0_I";
    72 
    73 Goalw [Node_def,Push_def]
    74     "p: Node ==> apfst (Push i) p : Node";
    75 by (fast_tac (claset() addSIs [apfst_conv, nat_case_Suc RS trans]) 1);
    76 qed "Node_Push_I";
    77 
    78 
    79 (*** Distinctness of constructors ***)
    80 
    81 (** Scons vs Atom **)
    82 
    83 Goalw [Atom_def,Scons_def,Push_Node_def] "Scons M N ~= Atom(a)";
    84 by (rtac notI 1);
    85 by (etac (equalityD2 RS subsetD RS UnE) 1);
    86 by (rtac singletonI 1);
    87 by (REPEAT (eresolve_tac [imageE, Abs_Node_inject RS apfst_convE, 
    88                           Pair_inject, sym RS Push_neq_K0] 1
    89      ORELSE resolve_tac [Node_K0_I, Rep_Node RS Node_Push_I] 1));
    90 qed "Scons_not_Atom";
    91 bind_thm ("Atom_not_Scons", Scons_not_Atom RS not_sym);
    92 
    93 
    94 (*** Injectiveness ***)
    95 
    96 (** Atomic nodes **)
    97 
    98 Goalw [Atom_def] "inj(Atom)";
    99 by (blast_tac (claset() addSIs [injI, Node_K0_I] addSDs [Abs_Node_inject]) 1);
   100 qed "inj_Atom";
   101 val Atom_inject = inj_Atom RS injD;
   102 
   103 Goal "(Atom(a)=Atom(b)) = (a=b)";
   104 by (blast_tac (claset() addSDs [Atom_inject]) 1);
   105 qed "Atom_Atom_eq";
   106 AddIffs [Atom_Atom_eq];
   107 
   108 Goalw [Leaf_def,o_def] "inj(Leaf)";
   109 by (rtac injI 1);
   110 by (etac (Atom_inject RS Inl_inject) 1);
   111 qed "inj_Leaf";
   112 
   113 bind_thm ("Leaf_inject", inj_Leaf RS injD);
   114 AddSDs [Leaf_inject];
   115 
   116 Goalw [Numb_def,o_def] "inj(Numb)";
   117 by (rtac injI 1);
   118 by (etac (Atom_inject RS Inr_inject) 1);
   119 qed "inj_Numb";
   120 
   121 val Numb_inject = inj_Numb RS injD;
   122 AddSDs [Numb_inject];
   123 
   124 (** Injectiveness of Push_Node **)
   125 
   126 val [major,minor] = Goalw [Push_Node_def]
   127     "[| Push_Node i m =Push_Node j n;  [| i=j;  m=n |] ==> P \
   128 \    |] ==> P";
   129 by (rtac (major RS Abs_Node_inject RS apfst_convE) 1);
   130 by (REPEAT (resolve_tac [Rep_Node RS Node_Push_I] 1));
   131 by (etac (sym RS apfst_convE) 1);
   132 by (rtac minor 1);
   133 by (etac Pair_inject 1);
   134 by (etac (Push_inject1 RS sym) 1);
   135 by (rtac (inj_Rep_Node RS injD) 1);
   136 by (etac trans 1);
   137 by (safe_tac (claset() addSEs [Push_inject,sym]));
   138 qed "Push_Node_inject";
   139 
   140 
   141 (** Injectiveness of Scons **)
   142 
   143 Goalw [Scons_def] "Scons M N <= Scons M' N' ==> M<=M'";
   144 by (blast_tac (claset() addSDs [Push_Node_inject]) 1);
   145 qed "Scons_inject_lemma1";
   146 
   147 Goalw [Scons_def] "Scons M N <= Scons M' N' ==> N<=N'";
   148 by (blast_tac (claset() addSDs [Push_Node_inject]) 1);
   149 qed "Scons_inject_lemma2";
   150 
   151 Goal "Scons M N = Scons M' N' ==> M=M'";
   152 by (etac equalityE 1);
   153 by (REPEAT (ares_tac [equalityI, Scons_inject_lemma1] 1));
   154 qed "Scons_inject1";
   155 
   156 Goal "Scons M N = Scons M' N' ==> N=N'";
   157 by (etac equalityE 1);
   158 by (REPEAT (ares_tac [equalityI, Scons_inject_lemma2] 1));
   159 qed "Scons_inject2";
   160 
   161 val [major,minor] = Goal
   162     "[| Scons M N = Scons M' N';  [| M=M';  N=N' |] ==> P \
   163 \    |] ==> P";
   164 by (rtac ((major RS Scons_inject2) RS ((major RS Scons_inject1) RS minor)) 1);
   165 qed "Scons_inject";
   166 
   167 Goal "(Scons M N = Scons M' N') = (M=M' & N=N')";
   168 by (blast_tac (claset() addSEs [Scons_inject]) 1);
   169 qed "Scons_Scons_eq";
   170 
   171 (*** Distinctness involving Leaf and Numb ***)
   172 
   173 (** Scons vs Leaf **)
   174 
   175 Goalw [Leaf_def,o_def] "Scons M N ~= Leaf(a)";
   176 by (rtac Scons_not_Atom 1);
   177 qed "Scons_not_Leaf";
   178 bind_thm ("Leaf_not_Scons", Scons_not_Leaf RS not_sym);
   179 
   180 AddIffs [Scons_not_Leaf, Leaf_not_Scons];
   181 
   182 
   183 (** Scons vs Numb **)
   184 
   185 Goalw [Numb_def,o_def] "Scons M N ~= Numb(k)";
   186 by (rtac Scons_not_Atom 1);
   187 qed "Scons_not_Numb";
   188 bind_thm ("Numb_not_Scons", Scons_not_Numb RS not_sym);
   189 
   190 AddIffs [Scons_not_Numb, Numb_not_Scons];
   191 
   192 
   193 (** Leaf vs Numb **)
   194 
   195 Goalw [Leaf_def,Numb_def] "Leaf(a) ~= Numb(k)";
   196 by (simp_tac (simpset() addsimps [Inl_not_Inr]) 1);
   197 qed "Leaf_not_Numb";
   198 bind_thm ("Numb_not_Leaf", Leaf_not_Numb RS not_sym);
   199 
   200 AddIffs [Leaf_not_Numb, Numb_not_Leaf];
   201 
   202 
   203 (*** ndepth -- the depth of a node ***)
   204 
   205 Addsimps [apfst_conv];
   206 AddIffs  [Scons_not_Atom, Atom_not_Scons, Scons_Scons_eq];
   207 
   208 
   209 Goalw [ndepth_def] "ndepth (Abs_Node((%k. Inr 0, x))) = 0";
   210 by (EVERY1[stac (Node_K0_I RS Abs_Node_inverse), stac split]);
   211 by (rtac Least_equality 1);
   212 by (rtac refl 1);
   213 by (etac less_zeroE 1);
   214 qed "ndepth_K0";
   215 
   216 Goal "k < Suc(LEAST x. f x = Inr 0) --> nat_case (Inr (Suc i)) f k ~= Inr 0";
   217 by (nat_ind_tac "k" 1);
   218 by (ALLGOALS Simp_tac);
   219 by (rtac impI 1);
   220 by (etac not_less_Least 1);
   221 val lemma = result();
   222 
   223 Goalw [ndepth_def,Push_Node_def]
   224     "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))";
   225 by (stac (Rep_Node RS Node_Push_I RS Abs_Node_inverse) 1);
   226 by (cut_facts_tac [rewrite_rule [Node_def] Rep_Node] 1);
   227 by Safe_tac;
   228 by (etac ssubst 1);  (*instantiates type variables!*)
   229 by (Simp_tac 1);
   230 by (rtac Least_equality 1);
   231 by (rewtac Push_def);
   232 by (rtac (nat_case_Suc RS trans) 1);
   233 by (etac LeastI 1);
   234 by (asm_simp_tac (simpset() addsimps [lemma]) 1);
   235 qed "ndepth_Push_Node";
   236 
   237 
   238 (*** ntrunc applied to the various node sets ***)
   239 
   240 Goalw [ntrunc_def] "ntrunc 0 M = {}";
   241 by (Blast_tac 1);
   242 qed "ntrunc_0";
   243 
   244 Goalw [Atom_def,ntrunc_def] "ntrunc (Suc k) (Atom a) = Atom(a)";
   245 by (fast_tac (claset() addss (simpset() addsimps [ndepth_K0])) 1);
   246 qed "ntrunc_Atom";
   247 
   248 Goalw [Leaf_def,o_def] "ntrunc (Suc k) (Leaf a) = Leaf(a)";
   249 by (rtac ntrunc_Atom 1);
   250 qed "ntrunc_Leaf";
   251 
   252 Goalw [Numb_def,o_def] "ntrunc (Suc k) (Numb i) = Numb(i)";
   253 by (rtac ntrunc_Atom 1);
   254 qed "ntrunc_Numb";
   255 
   256 Goalw [Scons_def,ntrunc_def]
   257     "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)";
   258 by (safe_tac (claset() addSIs [imageI]));
   259 by (REPEAT (stac ndepth_Push_Node 3 THEN etac Suc_mono 3));
   260 by (REPEAT (rtac Suc_less_SucD 1 THEN 
   261             rtac (ndepth_Push_Node RS subst) 1 THEN 
   262             assume_tac 1));
   263 qed "ntrunc_Scons";
   264 
   265 Addsimps [ntrunc_0, ntrunc_Atom, ntrunc_Leaf, ntrunc_Numb, ntrunc_Scons];
   266 
   267 
   268 (** Injection nodes **)
   269 
   270 Goalw [In0_def] "ntrunc (Suc 0) (In0 M) = {}";
   271 by (Simp_tac 1);
   272 by (rewtac Scons_def);
   273 by (Blast_tac 1);
   274 qed "ntrunc_one_In0";
   275 
   276 Goalw [In0_def]
   277     "ntrunc (Suc (Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)";
   278 by (Simp_tac 1);
   279 qed "ntrunc_In0";
   280 
   281 Goalw [In1_def] "ntrunc (Suc 0) (In1 M) = {}";
   282 by (Simp_tac 1);
   283 by (rewtac Scons_def);
   284 by (Blast_tac 1);
   285 qed "ntrunc_one_In1";
   286 
   287 Goalw [In1_def]
   288     "ntrunc (Suc (Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)";
   289 by (Simp_tac 1);
   290 qed "ntrunc_In1";
   291 
   292 Addsimps [ntrunc_one_In0, ntrunc_In0, ntrunc_one_In1, ntrunc_In1];
   293 
   294 
   295 (*** Cartesian Product ***)
   296 
   297 Goalw [uprod_def] "[| M:A;  N:B |] ==> Scons M N : uprod A B";
   298 by (REPEAT (ares_tac [singletonI,UN_I] 1));
   299 qed "uprodI";
   300 
   301 (*The general elimination rule*)
   302 val major::prems = Goalw [uprod_def]
   303     "[| c : uprod A B;  \
   304 \       !!x y. [| x:A;  y:B;  c = Scons x y |] ==> P \
   305 \    |] ==> P";
   306 by (cut_facts_tac [major] 1);
   307 by (REPEAT (eresolve_tac [asm_rl,singletonE,UN_E] 1
   308      ORELSE resolve_tac prems 1));
   309 qed "uprodE";
   310 
   311 (*Elimination of a pair -- introduces no eigenvariables*)
   312 val prems = Goal
   313     "[| Scons M N : uprod A B;      [| M:A;  N:B |] ==> P   \
   314 \    |] ==> P";
   315 by (rtac uprodE 1);
   316 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Scons_inject,ssubst] 1));
   317 qed "uprodE2";
   318 
   319 
   320 (*** Disjoint Sum ***)
   321 
   322 Goalw [usum_def] "M:A ==> In0(M) : usum A B";
   323 by (Blast_tac 1);
   324 qed "usum_In0I";
   325 
   326 Goalw [usum_def] "N:B ==> In1(N) : usum A B";
   327 by (Blast_tac 1);
   328 qed "usum_In1I";
   329 
   330 val major::prems = Goalw [usum_def]
   331     "[| u : usum A B;  \
   332 \       !!x. [| x:A;  u=In0(x) |] ==> P; \
   333 \       !!y. [| y:B;  u=In1(y) |] ==> P \
   334 \    |] ==> P";
   335 by (rtac (major RS UnE) 1);
   336 by (REPEAT (rtac refl 1 
   337      ORELSE eresolve_tac (prems@[imageE,ssubst]) 1));
   338 qed "usumE";
   339 
   340 
   341 (** Injection **)
   342 
   343 Goalw [In0_def,In1_def] "In0(M) ~= In1(N)";
   344 by (rtac notI 1);
   345 by (etac (Scons_inject1 RS Numb_inject RS Zero_neq_Suc) 1);
   346 qed "In0_not_In1";
   347 
   348 bind_thm ("In1_not_In0", In0_not_In1 RS not_sym);
   349 
   350 AddIffs [In0_not_In1, In1_not_In0];
   351 
   352 Goalw [In0_def] "In0(M) = In0(N) ==>  M=N";
   353 by (etac (Scons_inject2) 1);
   354 qed "In0_inject";
   355 
   356 Goalw [In1_def] "In1(M) = In1(N) ==>  M=N";
   357 by (etac (Scons_inject2) 1);
   358 qed "In1_inject";
   359 
   360 Goal "(In0 M = In0 N) = (M=N)";
   361 by (blast_tac (claset() addSDs [In0_inject]) 1);
   362 qed "In0_eq";
   363 
   364 Goal "(In1 M = In1 N) = (M=N)";
   365 by (blast_tac (claset() addSDs [In1_inject]) 1);
   366 qed "In1_eq";
   367 
   368 AddIffs [In0_eq, In1_eq];
   369 
   370 Goal "inj In0";
   371 by (blast_tac (claset() addSIs [injI]) 1);
   372 qed "inj_In0";
   373 
   374 Goal "inj In1";
   375 by (blast_tac (claset() addSIs [injI]) 1);
   376 qed "inj_In1";
   377 
   378 
   379 (*** Function spaces ***)
   380 
   381 Goalw [Lim_def] "Lim f = Lim g ==> f = g";
   382 by (rtac ext 1);
   383 by (rtac ccontr 1);
   384 by (etac equalityE 1);
   385 by (subgoal_tac "? y. y : f x & y ~: g x | y ~: f x & y : g x" 1);
   386 by (Blast_tac 2);
   387 by (etac exE 1);
   388 by (etac disjE 1);
   389 by (REPEAT (EVERY [
   390   dtac subsetD 1,
   391   Fast_tac 1,
   392   etac UnionE 1,
   393   dtac CollectD 1,
   394   etac exE 1,
   395   hyp_subst_tac 1,
   396   etac imageE 1,
   397   etac Push_Node_inject 1,
   398   Asm_full_simp_tac 1,
   399   TRY (thin_tac "?S <= ?T" 1)]));
   400 qed "Lim_inject";
   401 
   402 Goalw [Funs_def] "S <= T ==> Funs S <= Funs T";
   403 by (Blast_tac 1);
   404 qed "Funs_mono";
   405 
   406 val [p] = goalw thy [Funs_def] "(!!x. f x : S) ==> f : Funs S";
   407 by (rtac CollectI 1);
   408 by (rtac subsetI 1);
   409 by (etac rangeE 1);
   410 by (etac ssubst 1);
   411 by (rtac p 1);
   412 qed "FunsI";
   413 
   414 Goalw [Funs_def] "f : Funs S ==> f x : S";
   415 by (etac CollectE 1);
   416 by (etac subsetD 1);
   417 by (rtac rangeI 1);
   418 qed "FunsD";
   419 
   420 val [p1, p2] = goalw thy [o_def]
   421   "[| f : Funs R; !!x. x : R ==> r (a x) = x |] ==> r o (a o f) = f";
   422 by (rtac (p2 RS ext) 1);
   423 by (rtac (p1 RS FunsD) 1);
   424 qed "Funs_inv";
   425 
   426 val [p1, p2] = Goalw [o_def]
   427      "[| f : Funs (range g); !!h. f = g o h ==> P |] ==> P";
   428 by (res_inst_tac [("h", "%x. @y. f x = g y")] p2 1);
   429 by (rtac ext 1);
   430 by (rtac (p1 RS FunsD RS rangeE) 1);
   431 by (etac (exI RS (select_eq_Ex RS iffD2)) 1);
   432 qed "Funs_rangeE";
   433 
   434 Goal "a : S ==> (%x. a) : Funs S";
   435 by (rtac FunsI 1);
   436 by (assume_tac 1);
   437 qed "Funs_nonempty";
   438 
   439 
   440 (*** proving equality of sets and functions using ntrunc ***)
   441 
   442 Goalw [ntrunc_def] "ntrunc k M <= M";
   443 by (Blast_tac 1);
   444 qed "ntrunc_subsetI";
   445 
   446 val [major] = Goalw [ntrunc_def] "(!!k. ntrunc k M <= N) ==> M<=N";
   447 by (blast_tac (claset() addIs [less_add_Suc1, less_add_Suc2, 
   448 			       major RS subsetD]) 1);
   449 qed "ntrunc_subsetD";
   450 
   451 (*A generalized form of the take-lemma*)
   452 val [major] = Goal "(!!k. ntrunc k M = ntrunc k N) ==> M=N";
   453 by (rtac equalityI 1);
   454 by (ALLGOALS (rtac ntrunc_subsetD));
   455 by (ALLGOALS (rtac (ntrunc_subsetI RSN (2, subset_trans))));
   456 by (rtac (major RS equalityD1) 1);
   457 by (rtac (major RS equalityD2) 1);
   458 qed "ntrunc_equality";
   459 
   460 val [major] = Goalw [o_def]
   461     "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2";
   462 by (rtac (ntrunc_equality RS ext) 1);
   463 by (rtac (major RS fun_cong) 1);
   464 qed "ntrunc_o_equality";
   465 
   466 (*** Monotonicity ***)
   467 
   468 Goalw [uprod_def] "[| A<=A';  B<=B' |] ==> uprod A B <= uprod A' B'";
   469 by (Blast_tac 1);
   470 qed "uprod_mono";
   471 
   472 Goalw [usum_def] "[| A<=A';  B<=B' |] ==> usum A B <= usum A' B'";
   473 by (Blast_tac 1);
   474 qed "usum_mono";
   475 
   476 Goalw [Scons_def] "[| M<=M';  N<=N' |] ==> Scons M N <= Scons M' N'";
   477 by (Blast_tac 1);
   478 qed "Scons_mono";
   479 
   480 Goalw [In0_def] "M<=N ==> In0(M) <= In0(N)";
   481 by (REPEAT (ares_tac [subset_refl,Scons_mono] 1));
   482 qed "In0_mono";
   483 
   484 Goalw [In1_def] "M<=N ==> In1(M) <= In1(N)";
   485 by (REPEAT (ares_tac [subset_refl,Scons_mono] 1));
   486 qed "In1_mono";
   487 
   488 
   489 (*** Split and Case ***)
   490 
   491 Goalw [Split_def] "Split c (Scons M N) = c M N";
   492 by (Blast_tac  1);
   493 qed "Split";
   494 
   495 Goalw [Case_def] "Case c d (In0 M) = c(M)";
   496 by (Blast_tac 1);
   497 qed "Case_In0";
   498 
   499 Goalw [Case_def] "Case c d (In1 N) = d(N)";
   500 by (Blast_tac 1);
   501 qed "Case_In1";
   502 
   503 Addsimps [Split, Case_In0, Case_In1];
   504 
   505 
   506 (**** UN x. B(x) rules ****)
   507 
   508 Goalw [ntrunc_def] "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))";
   509 by (Blast_tac 1);
   510 qed "ntrunc_UN1";
   511 
   512 Goalw [Scons_def] "Scons (UN x. f x) M = (UN x. Scons (f x) M)";
   513 by (Blast_tac 1);
   514 qed "Scons_UN1_x";
   515 
   516 Goalw [Scons_def] "Scons M (UN x. f x) = (UN x. Scons M (f x))";
   517 by (Blast_tac 1);
   518 qed "Scons_UN1_y";
   519 
   520 Goalw [In0_def] "In0(UN x. f(x)) = (UN x. In0(f(x)))";
   521 by (rtac Scons_UN1_y 1);
   522 qed "In0_UN1";
   523 
   524 Goalw [In1_def] "In1(UN x. f(x)) = (UN x. In1(f(x)))";
   525 by (rtac Scons_UN1_y 1);
   526 qed "In1_UN1";
   527 
   528 
   529 (*** Equality for Cartesian Product ***)
   530 
   531 Goalw [dprod_def]
   532     "[| (M,M'):r;  (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s";
   533 by (Blast_tac 1);
   534 qed "dprodI";
   535 
   536 (*The general elimination rule*)
   537 val major::prems = Goalw [dprod_def]
   538     "[| c : dprod r s;  \
   539 \       !!x y x' y'. [| (x,x') : r;  (y,y') : s;  c = (Scons x y, Scons x' y') |] ==> P \
   540 \    |] ==> P";
   541 by (cut_facts_tac [major] 1);
   542 by (REPEAT_FIRST (eresolve_tac [asm_rl, UN_E, mem_splitE, singletonE]));
   543 by (REPEAT (ares_tac prems 1 ORELSE hyp_subst_tac 1));
   544 qed "dprodE";
   545 
   546 
   547 (*** Equality for Disjoint Sum ***)
   548 
   549 Goalw [dsum_def]  "(M,M'):r ==> (In0(M), In0(M')) : dsum r s";
   550 by (Blast_tac 1);
   551 qed "dsum_In0I";
   552 
   553 Goalw [dsum_def]  "(N,N'):s ==> (In1(N), In1(N')) : dsum r s";
   554 by (Blast_tac 1);
   555 qed "dsum_In1I";
   556 
   557 val major::prems = Goalw [dsum_def]
   558     "[| w : dsum r s;  \
   559 \       !!x x'. [| (x,x') : r;  w = (In0(x), In0(x')) |] ==> P; \
   560 \       !!y y'. [| (y,y') : s;  w = (In1(y), In1(y')) |] ==> P \
   561 \    |] ==> P";
   562 by (cut_facts_tac [major] 1);
   563 by (REPEAT_FIRST (eresolve_tac [asm_rl, UN_E, UnE, mem_splitE, singletonE]));
   564 by (DEPTH_SOLVE (ares_tac prems 1 ORELSE hyp_subst_tac 1));
   565 qed "dsumE";
   566 
   567 AddSIs [uprodI, dprodI];
   568 AddIs  [usum_In0I, usum_In1I, dsum_In0I, dsum_In1I];
   569 AddSEs [uprodE, dprodE, usumE, dsumE];
   570 
   571 
   572 (*** Monotonicity ***)
   573 
   574 Goal "[| r<=r';  s<=s' |] ==> dprod r s <= dprod r' s'";
   575 by (Blast_tac 1);
   576 qed "dprod_mono";
   577 
   578 Goal "[| r<=r';  s<=s' |] ==> dsum r s <= dsum r' s'";
   579 by (Blast_tac 1);
   580 qed "dsum_mono";
   581 
   582 
   583 (*** Bounding theorems ***)
   584 
   585 Goal "(dprod (A Times B) (C Times D)) <= (uprod A C) Times (uprod B D)";
   586 by (Blast_tac 1);
   587 qed "dprod_Sigma";
   588 
   589 val dprod_subset_Sigma = [dprod_mono, dprod_Sigma] MRS subset_trans |>standard;
   590 
   591 (*Dependent version*)
   592 Goal "(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))";
   593 by Safe_tac;
   594 by (stac Split 1);
   595 by (Blast_tac 1);
   596 qed "dprod_subset_Sigma2";
   597 
   598 Goal "(dsum (A Times B) (C Times D)) <= (usum A C) Times (usum B D)";
   599 by (Blast_tac 1);
   600 qed "dsum_Sigma";
   601 
   602 val dsum_subset_Sigma = [dsum_mono, dsum_Sigma] MRS subset_trans |> standard;
   603 
   604 
   605 (*** Domain ***)
   606 
   607 Goal "Domain (dprod r s) = uprod (Domain r) (Domain s)";
   608 by Auto_tac;
   609 qed "Domain_dprod";
   610 
   611 Goal "Domain (dsum r s) = usum (Domain r) (Domain s)";
   612 by Auto_tac;
   613 qed "Domain_dsum";
   614 
   615 Addsimps [Domain_dprod, Domain_dsum];