1 (* Title: HOL/Algebra/RingHom.thy
2 Author: Stephan Hohe, TU Muenchen
9 section {* Homomorphisms of Non-Commutative Rings *}
11 text {* Lifting existing lemmas in a @{text ring_hom_ring} locale *}
12 locale ring_hom_ring = R: ring R + S: ring S
13 for R (structure) and S (structure) +
15 assumes homh: "h \<in> ring_hom R S"
16 notes hom_mult [simp] = ring_hom_mult [OF homh]
17 and hom_one [simp] = ring_hom_one [OF homh]
19 sublocale ring_hom_cring \<subseteq> ring: ring_hom_ring
20 by default (rule homh)
22 sublocale ring_hom_ring \<subseteq> abelian_group: abelian_group_hom R S
23 apply (rule abelian_group_homI)
24 apply (rule R.is_abelian_group)
25 apply (rule S.is_abelian_group)
26 apply (intro group_hom.intro group_hom_axioms.intro)
27 apply (rule R.a_group)
28 apply (rule S.a_group)
29 apply (insert homh, unfold hom_def ring_hom_def)
33 lemma (in ring_hom_ring) is_ring_hom_ring:
35 by (rule ring_hom_ring_axioms)
38 fixes R (structure) and S (structure)
39 assumes "ring R" "ring S"
40 assumes (* morphism: "h \<in> carrier R \<rightarrow> carrier S" *)
41 hom_closed: "!!x. x \<in> carrier R ==> h x \<in> carrier S"
42 and compatible_mult: "!!x y. [| x : carrier R; y : carrier R |] ==> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
43 and compatible_add: "!!x y. [| x : carrier R; y : carrier R |] ==> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
44 and compatible_one: "h \<one> = \<one>\<^bsub>S\<^esub>"
45 shows "ring_hom_ring R S h"
47 interpret ring R by fact
48 interpret ring S by fact
49 show ?thesis apply unfold_locales
50 apply (unfold ring_hom_def, safe)
51 apply (simp add: hom_closed Pi_def)
52 apply (erule (1) compatible_mult)
53 apply (erule (1) compatible_add)
54 apply (rule compatible_one)
58 lemma ring_hom_ringI2:
59 assumes "ring R" "ring S"
60 assumes h: "h \<in> ring_hom R S"
61 shows "ring_hom_ring R S h"
63 interpret R: ring R by fact
64 interpret S: ring S by fact
65 show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)
66 apply (rule R.is_ring)
67 apply (rule S.is_ring)
72 lemma ring_hom_ringI3:
73 fixes R (structure) and S (structure)
74 assumes "abelian_group_hom R S h" "ring R" "ring S"
75 assumes compatible_mult: "!!x y. [| x : carrier R; y : carrier R |] ==> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
76 and compatible_one: "h \<one> = \<one>\<^bsub>S\<^esub>"
77 shows "ring_hom_ring R S h"
79 interpret abelian_group_hom R S h by fact
80 interpret R: ring R by fact
81 interpret S: ring S by fact
82 show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro, rule R.is_ring, rule S.is_ring)
83 apply (insert group_hom.homh[OF a_group_hom])
84 apply (unfold hom_def ring_hom_def, simp)
86 apply (erule (1) compatible_mult)
87 apply (rule compatible_one)
91 lemma ring_hom_cringI:
92 assumes "ring_hom_ring R S h" "cring R" "cring S"
93 shows "ring_hom_cring R S h"
95 interpret ring_hom_ring R S h by fact
96 interpret R: cring R by fact
97 interpret S: cring S by fact
98 show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)
99 (rule R.is_cring, rule S.is_cring, rule homh)
103 subsection {* The Kernel of a Ring Homomorphism *}
105 --"the kernel of a ring homomorphism is an ideal"
106 lemma (in ring_hom_ring) kernel_is_ideal:
107 shows "ideal (a_kernel R S h) R"
109 apply (rule R.is_ring)
110 apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
111 apply (unfold a_kernel_def', simp+)
114 text {* Elements of the kernel are mapped to zero *}
115 lemma (in abelian_group_hom) kernel_zero [simp]:
116 "i \<in> a_kernel R S h \<Longrightarrow> h i = \<zero>\<^bsub>S\<^esub>"
117 by (simp add: a_kernel_defs)
120 subsection {* Cosets *}
122 text {* Cosets of the kernel correspond to the elements of the image of the homomorphism *}
123 lemma (in ring_hom_ring) rcos_imp_homeq:
124 assumes acarr: "a \<in> carrier R"
125 and xrcos: "x \<in> a_kernel R S h +> a"
128 interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
131 have "\<exists>i \<in> a_kernel R S h. x = i \<oplus> a" by (simp add: a_r_coset_defs)
133 where iker: "i \<in> a_kernel R S h"
134 and x: "x = i \<oplus> a"
136 note carr = acarr iker[THEN a_Hcarr]
139 have "h x = h (i \<oplus> a)" by simp
141 have "\<dots> = h i \<oplus>\<^bsub>S\<^esub> h a" by simp
143 have "\<dots> = \<zero>\<^bsub>S\<^esub> \<oplus>\<^bsub>S\<^esub> h a" by simp
145 have "\<dots> = h a" by simp
150 lemma (in ring_hom_ring) homeq_imp_rcos:
151 assumes acarr: "a \<in> carrier R"
152 and xcarr: "x \<in> carrier R"
154 shows "x \<in> a_kernel R S h +> a"
156 interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
158 note carr = acarr xcarr
159 note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]
162 have a: "h x \<oplus>\<^bsub>S\<^esub> \<ominus>\<^bsub>S\<^esub>h a = \<zero>\<^bsub>S\<^esub>" by algebra
164 have "h x \<oplus>\<^bsub>S\<^esub> \<ominus>\<^bsub>S\<^esub>h a = h (x \<oplus> \<ominus>a)" by simp
166 have b: "h (x \<oplus> \<ominus>a) = \<zero>\<^bsub>S\<^esub>" by simp
168 from carr have "x \<oplus> \<ominus>a \<in> carrier R" by simp
170 have "x \<oplus> \<ominus>a \<in> a_kernel R S h"
171 unfolding a_kernel_def'
175 show "x \<in> a_kernel R S h +> a" by (simp add: a_rcos_module_rev)
178 corollary (in ring_hom_ring) rcos_eq_homeq:
179 assumes acarr: "a \<in> carrier R"
180 shows "(a_kernel R S h) +> a = {x \<in> carrier R. h x = h a}"
182 apply clarsimp defer 1
184 interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
187 assume xrcos: "x \<in> a_kernel R S h +> a"
189 have xcarr: "x \<in> carrier R"
190 by (rule a_elemrcos_carrier)
193 have "h x = h a" by (rule rcos_imp_homeq[OF acarr])
195 show "x \<in> {x \<in> carrier R. h x = h a}" by fast
197 interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
200 assume xcarr: "x \<in> carrier R"
203 show "x \<in> a_kernel R S h +> a" by (rule homeq_imp_rcos)