1 (* Title: HOL/Auth/Shared
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1996 University of Cambridge
6 Theory of Shared Keys (common to all symmetric-key protocols)
8 Shared, long-term keys; initial states of agents
11 theory Shared imports Event begin
14 shrK :: "agent => key" (*symmetric keys*);
18 --{*No two agents have the same long-term key*}
19 apply (rule exI [of _ "agent_case 0 (\<lambda>n. n + 2) 1"])
20 apply (simp add: inj_on_def split: agent.split)
23 text{*All keys are symmetric*}
25 defs all_symmetric_def: "all_symmetric == True"
27 lemma isSym_keys: "K \<in> symKeys"
28 by (simp add: symKeys_def all_symmetric_def invKey_symmetric)
30 text{*Server knows all long-term keys; other agents know only their own*}
32 initState_Server: "initState Server = Key ` range shrK"
33 initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}"
34 initState_Spy: "initState Spy = Key`shrK`bad"
37 subsection{*Basic properties of shrK*}
39 (*Injectiveness: Agents' long-term keys are distinct.*)
40 lemmas shrK_injective = inj_shrK [THEN inj_eq]
41 declare shrK_injective [iff]
43 lemma invKey_K [simp]: "invKey K = K"
44 apply (insert isSym_keys)
45 apply (simp add: symKeys_def)
49 lemma analz_Decrypt' [dest]:
50 "[| Crypt K X \<in> analz H; Key K \<in> analz H |] ==> X \<in> analz H"
53 text{*Now cancel the @{text dest} attribute given to
54 @{text analz.Decrypt} in its declaration.*}
55 declare analz.Decrypt [rule del]
57 text{*Rewrites should not refer to @{term "initState(Friend i)"} because
58 that expression is not in normal form.*}
60 lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
61 apply (unfold keysFor_def)
62 apply (induct_tac "C", auto)
65 (*Specialized to shared-key model: no @{term invKey}*)
66 lemma keysFor_parts_insert:
67 "[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |]
68 ==> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H";
69 by (force dest: Event.keysFor_parts_insert)
71 lemma Crypt_imp_keysFor: "Crypt K X \<in> H ==> K \<in> keysFor H"
72 by (drule Crypt_imp_invKey_keysFor, simp)
75 subsection{*Function "knows"*}
77 (*Spy sees shared keys of agents!*)
78 lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) \<in> knows Spy evs"
79 apply (induct_tac "evs")
80 apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split)
83 (*For case analysis on whether or not an agent is compromised*)
84 lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X \<in> analz (knows Spy evs); A: bad |]
85 ==> X \<in> analz (knows Spy evs)"
86 apply (force dest!: analz.Decrypt)
90 (** Fresh keys never clash with long-term shared keys **)
92 (*Agents see their own shared keys!*)
93 lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A"
94 by (induct_tac "A", auto)
96 lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs"
97 by (rule initState_into_used, blast)
99 (*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys
100 from long-term shared keys*)
101 lemma Key_not_used [simp]: "Key K \<notin> used evs ==> K \<notin> range shrK"
104 lemma shrK_neq [simp]: "Key K \<notin> used evs ==> shrK B \<noteq> K"
107 lemmas shrK_sym_neq = shrK_neq [THEN not_sym]
108 declare shrK_sym_neq [simp]
111 subsection{*Fresh nonces*}
113 lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)"
114 by (induct_tac "B", auto)
116 lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []"
117 apply (simp (no_asm) add: used_Nil)
121 subsection{*Supply fresh nonces for possibility theorems.*}
123 (*In any trace, there is an upper bound N on the greatest nonce in use.*)
124 lemma Nonce_supply_lemma: "\<exists>N. ALL n. N<=n --> Nonce n \<notin> used evs"
125 apply (induct_tac "evs")
126 apply (rule_tac x = 0 in exI)
127 apply (simp_all (no_asm_simp) add: used_Cons split add: event.split)
129 apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
132 lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs"
133 by (rule Nonce_supply_lemma [THEN exE], blast)
135 lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'"
136 apply (cut_tac evs = evs in Nonce_supply_lemma)
137 apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify)
138 apply (rule_tac x = N in exI)
139 apply (rule_tac x = "Suc (N+Na)" in exI)
140 apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)
143 lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' &
144 Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''"
145 apply (cut_tac evs = evs in Nonce_supply_lemma)
146 apply (cut_tac evs = "evs'" in Nonce_supply_lemma)
147 apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify)
148 apply (rule_tac x = N in exI)
149 apply (rule_tac x = "Suc (N+Na)" in exI)
150 apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)
151 apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)
154 lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs"
155 apply (rule Nonce_supply_lemma [THEN exE])
156 apply (rule someI, blast)
159 text{*Unlike the corresponding property of nonces, we cannot prove
160 @{term "finite KK ==> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}.
161 We have infinitely many agents and there is nothing to stop their
162 long-term keys from exhausting all the natural numbers. Instead,
163 possibility theorems must assume the existence of a few keys.*}
166 subsection{*Tactics for possibility theorems*}
170 val inj_shrK = thm "inj_shrK";
171 val isSym_keys = thm "isSym_keys";
172 val Nonce_supply = thm "Nonce_supply";
173 val invKey_K = thm "invKey_K";
174 val analz_Decrypt' = thm "analz_Decrypt'";
175 val keysFor_parts_initState = thm "keysFor_parts_initState";
176 val keysFor_parts_insert = thm "keysFor_parts_insert";
177 val Crypt_imp_keysFor = thm "Crypt_imp_keysFor";
178 val Spy_knows_Spy_bad = thm "Spy_knows_Spy_bad";
179 val Crypt_Spy_analz_bad = thm "Crypt_Spy_analz_bad";
180 val shrK_in_initState = thm "shrK_in_initState";
181 val shrK_in_used = thm "shrK_in_used";
182 val Key_not_used = thm "Key_not_used";
183 val shrK_neq = thm "shrK_neq";
184 val Nonce_notin_initState = thm "Nonce_notin_initState";
185 val Nonce_notin_used_empty = thm "Nonce_notin_used_empty";
186 val Nonce_supply_lemma = thm "Nonce_supply_lemma";
187 val Nonce_supply1 = thm "Nonce_supply1";
188 val Nonce_supply2 = thm "Nonce_supply2";
189 val Nonce_supply3 = thm "Nonce_supply3";
190 val Nonce_supply = thm "Nonce_supply";
196 (*Omitting used_Says makes the tactic much faster: it leaves expressions
197 such as Nonce ?N \<notin> used evs that match Nonce_supply*)
198 fun gen_possibility_tac ss state = state |>
200 (ALLGOALS (simp_tac (ss delsimps [used_Says, used_Notes, used_Gets]
201 setSolver safe_solver))
203 REPEAT_FIRST (eq_assume_tac ORELSE'
204 resolve_tac [refl, conjI, Nonce_supply])))
206 (*Tactic for possibility theorems (ML script version)*)
207 fun possibility_tac state = gen_possibility_tac (simpset()) state
209 (*For harder protocols (such as Recur) where we have to set up some
210 nonces and keys initially*)
211 fun basic_possibility_tac st = st |>
213 (ALLGOALS (asm_simp_tac (simpset() setSolver safe_solver))
215 REPEAT_FIRST (resolve_tac [refl, conjI]))
218 subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
220 lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x \<notin> A"
223 lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
226 lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C"
229 (** Reverse the normal simplification of "image" to build up (not break down)
230 the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to
231 erase occurrences of forwarded message components (X). **)
233 lemmas analz_image_freshK_simps =
234 simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
236 image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
237 analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
238 insert_Key_singleton subset_Compl_range
239 Key_not_used insert_Key_image Un_assoc [THEN sym]
241 (*Lemma for the trivial direction of the if-and-only-if*)
242 lemma analz_image_freshK_lemma:
243 "(Key K \<in> analz (Key`nE \<union> H)) --> (K \<in> nE | Key K \<in> analz H) ==>
244 (Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)"
245 by (blast intro: analz_mono [THEN [2] rev_subsetD])
249 val analz_image_freshK_lemma = thm "analz_image_freshK_lemma";
251 val analz_image_freshK_ss =
252 simpset() delsimps [image_insert, image_Un]
253 delsimps [imp_disjL] (*reduces blow-up*)
254 addsimps thms "analz_image_freshK_simps"
259 (*Lets blast_tac perform this step without needing the simplifier*)
260 lemma invKey_shrK_iff [iff]:
261 "(Key (invKey K) \<in> X) = (Key K \<in> X)"
264 (*Specialized methods*)
266 method_setup analz_freshK = {*
267 Method.ctxt_args (fn ctxt =>
268 (Method.SIMPLE_METHOD
269 (EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]),
270 REPEAT_FIRST (rtac analz_image_freshK_lemma),
271 ALLGOALS (asm_simp_tac (Simplifier.context ctxt analz_image_freshK_ss))]))) *}
272 "for proving the Session Key Compromise theorem"
274 method_setup possibility = {*
275 Method.ctxt_args (fn ctxt =>
276 Method.SIMPLE_METHOD (gen_possibility_tac (local_simpset_of ctxt))) *}
277 "for proving possibility theorems"
279 lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)"
280 by (induct e, auto simp: knows_Cons)