src/HOL/Probability/Independent_Family.thy
 author hoelzl Wed Oct 10 12:12:23 2012 +0200 (2012-10-10) changeset 49784 5e5b2da42a69 parent 49781 59b219ca3513 child 49794 3c7b5988e094 permissions -rw-r--r--
remove incseq assumption from measure_eqI_generator_eq
```     1 (*  Title:      HOL/Probability/Independent_Family.thy
```
```     2     Author:     Johannes Hölzl, TU München
```
```     3 *)
```
```     4
```
```     5 header {* Independent families of events, event sets, and random variables *}
```
```     6
```
```     7 theory Independent_Family
```
```     8   imports Probability_Measure Infinite_Product_Measure
```
```     9 begin
```
```    10
```
```    11 lemma INT_decseq_offset:
```
```    12   assumes "decseq F"
```
```    13   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
```
```    14 proof safe
```
```    15   fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
```
```    16   show "x \<in> F i"
```
```    17   proof cases
```
```    18     from x have "x \<in> F n" by auto
```
```    19     also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i"
```
```    20       unfolding decseq_def by simp
```
```    21     finally show ?thesis .
```
```    22   qed (insert x, simp)
```
```    23 qed auto
```
```    24
```
```    25 definition (in prob_space)
```
```    26   "indep_sets F I \<longleftrightarrow> (\<forall>i\<in>I. F i \<subseteq> events) \<and>
```
```    27     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> (\<forall>A\<in>Pi J F. prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))))"
```
```    28
```
```    29 definition (in prob_space)
```
```    30   "indep_set A B \<longleftrightarrow> indep_sets (bool_case A B) UNIV"
```
```    31
```
```    32 definition (in prob_space)
```
```    33   indep_events_def_alt: "indep_events A I \<longleftrightarrow> indep_sets (\<lambda>i. {A i}) I"
```
```    34
```
```    35 lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B"
```
```    36   by auto
```
```    37
```
```    38 lemma (in prob_space) indep_events_def:
```
```    39   "indep_events A I \<longleftrightarrow> (A`I \<subseteq> events) \<and>
```
```    40     (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j)))"
```
```    41   unfolding indep_events_def_alt indep_sets_def
```
```    42   apply (simp add: Ball_def Pi_iff image_subset_iff_funcset)
```
```    43   apply (intro conj_cong refl arg_cong[where f=All] ext imp_cong)
```
```    44   apply auto
```
```    45   done
```
```    46
```
```    47 definition (in prob_space)
```
```    48   "indep_event A B \<longleftrightarrow> indep_events (bool_case A B) UNIV"
```
```    49
```
```    50 definition (in prob_space)
```
```    51   "indep_vars M' X I \<longleftrightarrow>
```
```    52     (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
```
```    53     indep_sets (\<lambda>i. sigma_sets (space M) { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
```
```    54
```
```    55 definition (in prob_space)
```
```    56   "indep_var Ma A Mb B \<longleftrightarrow> indep_vars (bool_case Ma Mb) (bool_case A B) UNIV"
```
```    57
```
```    58 lemma (in prob_space) indep_sets_cong:
```
```    59   "I = J \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i = G i) \<Longrightarrow> indep_sets F I \<longleftrightarrow> indep_sets G J"
```
```    60   by (simp add: indep_sets_def, intro conj_cong all_cong imp_cong ball_cong) blast+
```
```    61
```
```    62 lemma (in prob_space) indep_events_finite_index_events:
```
```    63   "indep_events F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_events F J)"
```
```    64   by (auto simp: indep_events_def)
```
```    65
```
```    66 lemma (in prob_space) indep_sets_finite_index_sets:
```
```    67   "indep_sets F I \<longleftrightarrow> (\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J)"
```
```    68 proof (intro iffI allI impI)
```
```    69   assume *: "\<forall>J\<subseteq>I. J \<noteq> {} \<longrightarrow> finite J \<longrightarrow> indep_sets F J"
```
```    70   show "indep_sets F I" unfolding indep_sets_def
```
```    71   proof (intro conjI ballI allI impI)
```
```    72     fix i assume "i \<in> I"
```
```    73     with *[THEN spec, of "{i}"] show "F i \<subseteq> events"
```
```    74       by (auto simp: indep_sets_def)
```
```    75   qed (insert *, auto simp: indep_sets_def)
```
```    76 qed (auto simp: indep_sets_def)
```
```    77
```
```    78 lemma (in prob_space) indep_sets_mono_index:
```
```    79   "J \<subseteq> I \<Longrightarrow> indep_sets F I \<Longrightarrow> indep_sets F J"
```
```    80   unfolding indep_sets_def by auto
```
```    81
```
```    82 lemma (in prob_space) indep_sets_mono_sets:
```
```    83   assumes indep: "indep_sets F I"
```
```    84   assumes mono: "\<And>i. i\<in>I \<Longrightarrow> G i \<subseteq> F i"
```
```    85   shows "indep_sets G I"
```
```    86 proof -
```
```    87   have "(\<forall>i\<in>I. F i \<subseteq> events) \<Longrightarrow> (\<forall>i\<in>I. G i \<subseteq> events)"
```
```    88     using mono by auto
```
```    89   moreover have "\<And>A J. J \<subseteq> I \<Longrightarrow> A \<in> (\<Pi> j\<in>J. G j) \<Longrightarrow> A \<in> (\<Pi> j\<in>J. F j)"
```
```    90     using mono by (auto simp: Pi_iff)
```
```    91   ultimately show ?thesis
```
```    92     using indep by (auto simp: indep_sets_def)
```
```    93 qed
```
```    94
```
```    95 lemma (in prob_space) indep_sets_mono:
```
```    96   assumes indep: "indep_sets F I"
```
```    97   assumes mono: "J \<subseteq> I" "\<And>i. i\<in>J \<Longrightarrow> G i \<subseteq> F i"
```
```    98   shows "indep_sets G J"
```
```    99   apply (rule indep_sets_mono_sets)
```
```   100   apply (rule indep_sets_mono_index)
```
```   101   apply (fact +)
```
```   102   done
```
```   103
```
```   104 lemma (in prob_space) indep_setsI:
```
```   105   assumes "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events"
```
```   106     and "\<And>A J. J \<noteq> {} \<Longrightarrow> J \<subseteq> I \<Longrightarrow> finite J \<Longrightarrow> (\<forall>j\<in>J. A j \<in> F j) \<Longrightarrow> prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
```
```   107   shows "indep_sets F I"
```
```   108   using assms unfolding indep_sets_def by (auto simp: Pi_iff)
```
```   109
```
```   110 lemma (in prob_space) indep_setsD:
```
```   111   assumes "indep_sets F I" and "J \<subseteq> I" "J \<noteq> {}" "finite J" "\<forall>j\<in>J. A j \<in> F j"
```
```   112   shows "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
```
```   113   using assms unfolding indep_sets_def by auto
```
```   114
```
```   115 lemma (in prob_space) indep_setI:
```
```   116   assumes ev: "A \<subseteq> events" "B \<subseteq> events"
```
```   117     and indep: "\<And>a b. a \<in> A \<Longrightarrow> b \<in> B \<Longrightarrow> prob (a \<inter> b) = prob a * prob b"
```
```   118   shows "indep_set A B"
```
```   119   unfolding indep_set_def
```
```   120 proof (rule indep_setsI)
```
```   121   fix F J assume "J \<noteq> {}" "J \<subseteq> UNIV"
```
```   122     and F: "\<forall>j\<in>J. F j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
```
```   123   have "J \<in> Pow UNIV" by auto
```
```   124   with F `J \<noteq> {}` indep[of "F True" "F False"]
```
```   125   show "prob (\<Inter>j\<in>J. F j) = (\<Prod>j\<in>J. prob (F j))"
```
```   126     unfolding UNIV_bool Pow_insert by (auto simp: ac_simps)
```
```   127 qed (auto split: bool.split simp: ev)
```
```   128
```
```   129 lemma (in prob_space) indep_setD:
```
```   130   assumes indep: "indep_set A B" and ev: "a \<in> A" "b \<in> B"
```
```   131   shows "prob (a \<inter> b) = prob a * prob b"
```
```   132   using indep[unfolded indep_set_def, THEN indep_setsD, of UNIV "bool_case a b"] ev
```
```   133   by (simp add: ac_simps UNIV_bool)
```
```   134
```
```   135 lemma (in prob_space) indep_var_eq:
```
```   136   "indep_var S X T Y \<longleftrightarrow>
```
```   137     (random_variable S X \<and> random_variable T Y) \<and>
```
```   138     indep_set
```
```   139       (sigma_sets (space M) { X -` A \<inter> space M | A. A \<in> sets S})
```
```   140       (sigma_sets (space M) { Y -` A \<inter> space M | A. A \<in> sets T})"
```
```   141   unfolding indep_var_def indep_vars_def indep_set_def UNIV_bool
```
```   142   by (intro arg_cong2[where f="op \<and>"] arg_cong2[where f=indep_sets] ext)
```
```   143      (auto split: bool.split)
```
```   144
```
```   145 lemma (in prob_space)
```
```   146   assumes indep: "indep_set A B"
```
```   147   shows indep_setD_ev1: "A \<subseteq> events"
```
```   148     and indep_setD_ev2: "B \<subseteq> events"
```
```   149   using indep unfolding indep_set_def indep_sets_def UNIV_bool by auto
```
```   150
```
```   151 lemma (in prob_space) indep_sets_dynkin:
```
```   152   assumes indep: "indep_sets F I"
```
```   153   shows "indep_sets (\<lambda>i. dynkin (space M) (F i)) I"
```
```   154     (is "indep_sets ?F I")
```
```   155 proof (subst indep_sets_finite_index_sets, intro allI impI ballI)
```
```   156   fix J assume "finite J" "J \<subseteq> I" "J \<noteq> {}"
```
```   157   with indep have "indep_sets F J"
```
```   158     by (subst (asm) indep_sets_finite_index_sets) auto
```
```   159   { fix J K assume "indep_sets F K"
```
```   160     let ?G = "\<lambda>S i. if i \<in> S then ?F i else F i"
```
```   161     assume "finite J" "J \<subseteq> K"
```
```   162     then have "indep_sets (?G J) K"
```
```   163     proof induct
```
```   164       case (insert j J)
```
```   165       moreover def G \<equiv> "?G J"
```
```   166       ultimately have G: "indep_sets G K" "\<And>i. i \<in> K \<Longrightarrow> G i \<subseteq> events" and "j \<in> K"
```
```   167         by (auto simp: indep_sets_def)
```
```   168       let ?D = "{E\<in>events. indep_sets (G(j := {E})) K }"
```
```   169       { fix X assume X: "X \<in> events"
```
```   170         assume indep: "\<And>J A. J \<noteq> {} \<Longrightarrow> J \<subseteq> K \<Longrightarrow> finite J \<Longrightarrow> j \<notin> J \<Longrightarrow> (\<forall>i\<in>J. A i \<in> G i)
```
```   171           \<Longrightarrow> prob ((\<Inter>i\<in>J. A i) \<inter> X) = prob X * (\<Prod>i\<in>J. prob (A i))"
```
```   172         have "indep_sets (G(j := {X})) K"
```
```   173         proof (rule indep_setsI)
```
```   174           fix i assume "i \<in> K" then show "(G(j:={X})) i \<subseteq> events"
```
```   175             using G X by auto
```
```   176         next
```
```   177           fix A J assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "\<forall>i\<in>J. A i \<in> (G(j := {X})) i"
```
```   178           show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
```
```   179           proof cases
```
```   180             assume "j \<in> J"
```
```   181             with J have "A j = X" by auto
```
```   182             show ?thesis
```
```   183             proof cases
```
```   184               assume "J = {j}" then show ?thesis by simp
```
```   185             next
```
```   186               assume "J \<noteq> {j}"
```
```   187               have "prob (\<Inter>i\<in>J. A i) = prob ((\<Inter>i\<in>J-{j}. A i) \<inter> X)"
```
```   188                 using `j \<in> J` `A j = X` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
```
```   189               also have "\<dots> = prob X * (\<Prod>i\<in>J-{j}. prob (A i))"
```
```   190               proof (rule indep)
```
```   191                 show "J - {j} \<noteq> {}" "J - {j} \<subseteq> K" "finite (J - {j})" "j \<notin> J - {j}"
```
```   192                   using J `J \<noteq> {j}` `j \<in> J` by auto
```
```   193                 show "\<forall>i\<in>J - {j}. A i \<in> G i"
```
```   194                   using J by auto
```
```   195               qed
```
```   196               also have "\<dots> = prob (A j) * (\<Prod>i\<in>J-{j}. prob (A i))"
```
```   197                 using `A j = X` by simp
```
```   198               also have "\<dots> = (\<Prod>i\<in>J. prob (A i))"
```
```   199                 unfolding setprod.insert_remove[OF `finite J`, symmetric, of "\<lambda>i. prob  (A i)"]
```
```   200                 using `j \<in> J` by (simp add: insert_absorb)
```
```   201               finally show ?thesis .
```
```   202             qed
```
```   203           next
```
```   204             assume "j \<notin> J"
```
```   205             with J have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
```
```   206             with J show ?thesis
```
```   207               by (intro indep_setsD[OF G(1)]) auto
```
```   208           qed
```
```   209         qed }
```
```   210       note indep_sets_insert = this
```
```   211       have "dynkin_system (space M) ?D"
```
```   212       proof (rule dynkin_systemI', simp_all cong del: indep_sets_cong, safe)
```
```   213         show "indep_sets (G(j := {{}})) K"
```
```   214           by (rule indep_sets_insert) auto
```
```   215       next
```
```   216         fix X assume X: "X \<in> events" and G': "indep_sets (G(j := {X})) K"
```
```   217         show "indep_sets (G(j := {space M - X})) K"
```
```   218         proof (rule indep_sets_insert)
```
```   219           fix J A assume J: "J \<noteq> {}" "J \<subseteq> K" "finite J" "j \<notin> J" and A: "\<forall>i\<in>J. A i \<in> G i"
```
```   220           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
```
```   221             using G by auto
```
```   222           have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
```
```   223               prob ((\<Inter>j\<in>J. A j) - (\<Inter>i\<in>insert j J. (A(j := X)) i))"
```
```   224             using A_sets sets_into_space[of _ M] X `J \<noteq> {}`
```
```   225             by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
```
```   226           also have "\<dots> = prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)"
```
```   227             using J `J \<noteq> {}` `j \<notin> J` A_sets X sets_into_space
```
```   228             by (auto intro!: finite_measure_Diff finite_INT split: split_if_asm)
```
```   229           finally have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) =
```
```   230               prob (\<Inter>j\<in>J. A j) - prob (\<Inter>i\<in>insert j J. (A(j := X)) i)" .
```
```   231           moreover {
```
```   232             have "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
```
```   233               using J A `finite J` by (intro indep_setsD[OF G(1)]) auto
```
```   234             then have "prob (\<Inter>j\<in>J. A j) = prob (space M) * (\<Prod>i\<in>J. prob (A i))"
```
```   235               using prob_space by simp }
```
```   236           moreover {
```
```   237             have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = (\<Prod>i\<in>insert j J. prob ((A(j := X)) i))"
```
```   238               using J A `j \<in> K` by (intro indep_setsD[OF G']) auto
```
```   239             then have "prob (\<Inter>i\<in>insert j J. (A(j := X)) i) = prob X * (\<Prod>i\<in>J. prob (A i))"
```
```   240               using `finite J` `j \<notin> J` by (auto intro!: setprod_cong) }
```
```   241           ultimately have "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = (prob (space M) - prob X) * (\<Prod>i\<in>J. prob (A i))"
```
```   242             by (simp add: field_simps)
```
```   243           also have "\<dots> = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))"
```
```   244             using X A by (simp add: finite_measure_compl)
```
```   245           finally show "prob ((\<Inter>j\<in>J. A j) \<inter> (space M - X)) = prob (space M - X) * (\<Prod>i\<in>J. prob (A i))" .
```
```   246         qed (insert X, auto)
```
```   247       next
```
```   248         fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F" and "range F \<subseteq> ?D"
```
```   249         then have F: "\<And>i. F i \<in> events" "\<And>i. indep_sets (G(j:={F i})) K" by auto
```
```   250         show "indep_sets (G(j := {\<Union>k. F k})) K"
```
```   251         proof (rule indep_sets_insert)
```
```   252           fix J A assume J: "j \<notin> J" "J \<noteq> {}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> G i"
```
```   253           then have A_sets: "\<And>i. i\<in>J \<Longrightarrow> A i \<in> events"
```
```   254             using G by auto
```
```   255           have "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
```
```   256             using `J \<noteq> {}` `j \<notin> J` `j \<in> K` by (auto intro!: arg_cong[where f=prob] split: split_if_asm)
```
```   257           moreover have "(\<lambda>k. prob (\<Inter>i\<in>insert j J. (A(j := F k)) i)) sums prob (\<Union>k. (\<Inter>i\<in>insert j J. (A(j := F k)) i))"
```
```   258           proof (rule finite_measure_UNION)
```
```   259             show "disjoint_family (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i)"
```
```   260               using disj by (rule disjoint_family_on_bisimulation) auto
```
```   261             show "range (\<lambda>k. \<Inter>i\<in>insert j J. (A(j := F k)) i) \<subseteq> events"
```
```   262               using A_sets F `finite J` `J \<noteq> {}` `j \<notin> J` by (auto intro!: Int)
```
```   263           qed
```
```   264           moreover { fix k
```
```   265             from J A `j \<in> K` have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * (\<Prod>i\<in>J. prob (A i))"
```
```   266               by (subst indep_setsD[OF F(2)]) (auto intro!: setprod_cong split: split_if_asm)
```
```   267             also have "\<dots> = prob (F k) * prob (\<Inter>i\<in>J. A i)"
```
```   268               using J A `j \<in> K` by (subst indep_setsD[OF G(1)]) auto
```
```   269             finally have "prob (\<Inter>i\<in>insert j J. (A(j := F k)) i) = prob (F k) * prob (\<Inter>i\<in>J. A i)" . }
```
```   270           ultimately have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)))"
```
```   271             by simp
```
```   272           moreover
```
```   273           have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * prob (\<Inter>i\<in>J. A i))"
```
```   274             using disj F(1) by (intro finite_measure_UNION sums_mult2) auto
```
```   275           then have "(\<lambda>k. prob (F k) * prob (\<Inter>i\<in>J. A i)) sums (prob (\<Union>k. F k) * (\<Prod>i\<in>J. prob (A i)))"
```
```   276             using J A `j \<in> K` by (subst indep_setsD[OF G(1), symmetric]) auto
```
```   277           ultimately
```
```   278           show "prob ((\<Inter>j\<in>J. A j) \<inter> (\<Union>k. F k)) = prob (\<Union>k. F k) * (\<Prod>j\<in>J. prob (A j))"
```
```   279             by (auto dest!: sums_unique)
```
```   280         qed (insert F, auto)
```
```   281       qed (insert sets_into_space, auto)
```
```   282       then have mono: "dynkin (space M) (G j) \<subseteq> {E \<in> events. indep_sets (G(j := {E})) K}"
```
```   283       proof (rule dynkin_system.dynkin_subset, safe)
```
```   284         fix X assume "X \<in> G j"
```
```   285         then show "X \<in> events" using G `j \<in> K` by auto
```
```   286         from `indep_sets G K`
```
```   287         show "indep_sets (G(j := {X})) K"
```
```   288           by (rule indep_sets_mono_sets) (insert `X \<in> G j`, auto)
```
```   289       qed
```
```   290       have "indep_sets (G(j:=?D)) K"
```
```   291       proof (rule indep_setsI)
```
```   292         fix i assume "i \<in> K" then show "(G(j := ?D)) i \<subseteq> events"
```
```   293           using G(2) by auto
```
```   294       next
```
```   295         fix A J assume J: "J\<noteq>{}" "J \<subseteq> K" "finite J" and A: "\<forall>i\<in>J. A i \<in> (G(j := ?D)) i"
```
```   296         show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))"
```
```   297         proof cases
```
```   298           assume "j \<in> J"
```
```   299           with A have indep: "indep_sets (G(j := {A j})) K" by auto
```
```   300           from J A show ?thesis
```
```   301             by (intro indep_setsD[OF indep]) auto
```
```   302         next
```
```   303           assume "j \<notin> J"
```
```   304           with J A have "\<forall>i\<in>J. A i \<in> G i" by (auto split: split_if_asm)
```
```   305           with J show ?thesis
```
```   306             by (intro indep_setsD[OF G(1)]) auto
```
```   307         qed
```
```   308       qed
```
```   309       then have "indep_sets (G(j := dynkin (space M) (G j))) K"
```
```   310         by (rule indep_sets_mono_sets) (insert mono, auto)
```
```   311       then show ?case
```
```   312         by (rule indep_sets_mono_sets) (insert `j \<in> K` `j \<notin> J`, auto simp: G_def)
```
```   313     qed (insert `indep_sets F K`, simp) }
```
```   314   from this[OF `indep_sets F J` `finite J` subset_refl]
```
```   315   show "indep_sets ?F J"
```
```   316     by (rule indep_sets_mono_sets) auto
```
```   317 qed
```
```   318
```
```   319 lemma (in prob_space) indep_sets_sigma:
```
```   320   assumes indep: "indep_sets F I"
```
```   321   assumes stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
```
```   322   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
```
```   323 proof -
```
```   324   from indep_sets_dynkin[OF indep]
```
```   325   show ?thesis
```
```   326   proof (rule indep_sets_mono_sets, subst sigma_eq_dynkin, simp_all add: stable)
```
```   327     fix i assume "i \<in> I"
```
```   328     with indep have "F i \<subseteq> events" by (auto simp: indep_sets_def)
```
```   329     with sets_into_space show "F i \<subseteq> Pow (space M)" by auto
```
```   330   qed
```
```   331 qed
```
```   332
```
```   333 lemma (in prob_space) indep_sets_sigma_sets_iff:
```
```   334   assumes "\<And>i. i \<in> I \<Longrightarrow> Int_stable (F i)"
```
```   335   shows "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I \<longleftrightarrow> indep_sets F I"
```
```   336 proof
```
```   337   assume "indep_sets F I" then show "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I"
```
```   338     by (rule indep_sets_sigma) fact
```
```   339 next
```
```   340   assume "indep_sets (\<lambda>i. sigma_sets (space M) (F i)) I" then show "indep_sets F I"
```
```   341     by (rule indep_sets_mono_sets) (intro subsetI sigma_sets.Basic)
```
```   342 qed
```
```   343
```
```   344 lemma (in prob_space)
```
```   345   "indep_vars M' X I \<longleftrightarrow>
```
```   346     (\<forall>i\<in>I. random_variable (M' i) (X i)) \<and>
```
```   347     indep_sets (\<lambda>i. { X i -` A \<inter> space M | A. A \<in> sets (M' i)}) I"
```
```   348   unfolding indep_vars_def
```
```   349   apply (rule conj_cong[OF refl])
```
```   350   apply (rule indep_sets_sigma_sets_iff)
```
```   351   apply (auto simp: Int_stable_def)
```
```   352   apply (rule_tac x="A \<inter> Aa" in exI)
```
```   353   apply auto
```
```   354   done
```
```   355
```
```   356 lemma (in prob_space) indep_sets2_eq:
```
```   357   "indep_set A B \<longleftrightarrow> A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
```
```   358   unfolding indep_set_def
```
```   359 proof (intro iffI ballI conjI)
```
```   360   assume indep: "indep_sets (bool_case A B) UNIV"
```
```   361   { fix a b assume "a \<in> A" "b \<in> B"
```
```   362     with indep_setsD[OF indep, of UNIV "bool_case a b"]
```
```   363     show "prob (a \<inter> b) = prob a * prob b"
```
```   364       unfolding UNIV_bool by (simp add: ac_simps) }
```
```   365   from indep show "A \<subseteq> events" "B \<subseteq> events"
```
```   366     unfolding indep_sets_def UNIV_bool by auto
```
```   367 next
```
```   368   assume *: "A \<subseteq> events \<and> B \<subseteq> events \<and> (\<forall>a\<in>A. \<forall>b\<in>B. prob (a \<inter> b) = prob a * prob b)"
```
```   369   show "indep_sets (bool_case A B) UNIV"
```
```   370   proof (rule indep_setsI)
```
```   371     fix i show "(case i of True \<Rightarrow> A | False \<Rightarrow> B) \<subseteq> events"
```
```   372       using * by (auto split: bool.split)
```
```   373   next
```
```   374     fix J X assume "J \<noteq> {}" "J \<subseteq> UNIV" and X: "\<forall>j\<in>J. X j \<in> (case j of True \<Rightarrow> A | False \<Rightarrow> B)"
```
```   375     then have "J = {True} \<or> J = {False} \<or> J = {True,False}"
```
```   376       by (auto simp: UNIV_bool)
```
```   377     then show "prob (\<Inter>j\<in>J. X j) = (\<Prod>j\<in>J. prob (X j))"
```
```   378       using X * by auto
```
```   379   qed
```
```   380 qed
```
```   381
```
```   382 lemma (in prob_space) indep_set_sigma_sets:
```
```   383   assumes "indep_set A B"
```
```   384   assumes A: "Int_stable A" and B: "Int_stable B"
```
```   385   shows "indep_set (sigma_sets (space M) A) (sigma_sets (space M) B)"
```
```   386 proof -
```
```   387   have "indep_sets (\<lambda>i. sigma_sets (space M) (case i of True \<Rightarrow> A | False \<Rightarrow> B)) UNIV"
```
```   388   proof (rule indep_sets_sigma)
```
```   389     show "indep_sets (bool_case A B) UNIV"
```
```   390       by (rule `indep_set A B`[unfolded indep_set_def])
```
```   391     fix i show "Int_stable (case i of True \<Rightarrow> A | False \<Rightarrow> B)"
```
```   392       using A B by (cases i) auto
```
```   393   qed
```
```   394   then show ?thesis
```
```   395     unfolding indep_set_def
```
```   396     by (rule indep_sets_mono_sets) (auto split: bool.split)
```
```   397 qed
```
```   398
```
```   399 lemma (in prob_space) indep_sets_collect_sigma:
```
```   400   fixes I :: "'j \<Rightarrow> 'i set" and J :: "'j set" and E :: "'i \<Rightarrow> 'a set set"
```
```   401   assumes indep: "indep_sets E (\<Union>j\<in>J. I j)"
```
```   402   assumes Int_stable: "\<And>i j. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> Int_stable (E i)"
```
```   403   assumes disjoint: "disjoint_family_on I J"
```
```   404   shows "indep_sets (\<lambda>j. sigma_sets (space M) (\<Union>i\<in>I j. E i)) J"
```
```   405 proof -
```
```   406   let ?E = "\<lambda>j. {\<Inter>k\<in>K. E' k| E' K. finite K \<and> K \<noteq> {} \<and> K \<subseteq> I j \<and> (\<forall>k\<in>K. E' k \<in> E k) }"
```
```   407
```
```   408   from indep have E: "\<And>j i. j \<in> J \<Longrightarrow> i \<in> I j \<Longrightarrow> E i \<subseteq> events"
```
```   409     unfolding indep_sets_def by auto
```
```   410   { fix j
```
```   411     let ?S = "sigma_sets (space M) (\<Union>i\<in>I j. E i)"
```
```   412     assume "j \<in> J"
```
```   413     from E[OF this] interpret S: sigma_algebra "space M" ?S
```
```   414       using sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
```
```   415
```
```   416     have "sigma_sets (space M) (\<Union>i\<in>I j. E i) = sigma_sets (space M) (?E j)"
```
```   417     proof (rule sigma_sets_eqI)
```
```   418       fix A assume "A \<in> (\<Union>i\<in>I j. E i)"
```
```   419       then guess i ..
```
```   420       then show "A \<in> sigma_sets (space M) (?E j)"
```
```   421         by (auto intro!: sigma_sets.intros(2-) exI[of _ "{i}"] exI[of _ "\<lambda>i. A"])
```
```   422     next
```
```   423       fix A assume "A \<in> ?E j"
```
```   424       then obtain E' K where "finite K" "K \<noteq> {}" "K \<subseteq> I j" "\<And>k. k \<in> K \<Longrightarrow> E' k \<in> E k"
```
```   425         and A: "A = (\<Inter>k\<in>K. E' k)"
```
```   426         by auto
```
```   427       then have "A \<in> ?S" unfolding A
```
```   428         by (safe intro!: S.finite_INT) auto
```
```   429       then show "A \<in> sigma_sets (space M) (\<Union>i\<in>I j. E i)"
```
```   430         by simp
```
```   431     qed }
```
```   432   moreover have "indep_sets (\<lambda>j. sigma_sets (space M) (?E j)) J"
```
```   433   proof (rule indep_sets_sigma)
```
```   434     show "indep_sets ?E J"
```
```   435     proof (intro indep_setsI)
```
```   436       fix j assume "j \<in> J" with E show "?E j \<subseteq> events" by (force  intro!: finite_INT)
```
```   437     next
```
```   438       fix K A assume K: "K \<noteq> {}" "K \<subseteq> J" "finite K"
```
```   439         and "\<forall>j\<in>K. A j \<in> ?E j"
```
```   440       then have "\<forall>j\<in>K. \<exists>E' L. A j = (\<Inter>l\<in>L. E' l) \<and> finite L \<and> L \<noteq> {} \<and> L \<subseteq> I j \<and> (\<forall>l\<in>L. E' l \<in> E l)"
```
```   441         by simp
```
```   442       from bchoice[OF this] guess E' ..
```
```   443       from bchoice[OF this] obtain L
```
```   444         where A: "\<And>j. j\<in>K \<Longrightarrow> A j = (\<Inter>l\<in>L j. E' j l)"
```
```   445         and L: "\<And>j. j\<in>K \<Longrightarrow> finite (L j)" "\<And>j. j\<in>K \<Longrightarrow> L j \<noteq> {}" "\<And>j. j\<in>K \<Longrightarrow> L j \<subseteq> I j"
```
```   446         and E': "\<And>j l. j\<in>K \<Longrightarrow> l \<in> L j \<Longrightarrow> E' j l \<in> E l"
```
```   447         by auto
```
```   448
```
```   449       { fix k l j assume "k \<in> K" "j \<in> K" "l \<in> L j" "l \<in> L k"
```
```   450         have "k = j"
```
```   451         proof (rule ccontr)
```
```   452           assume "k \<noteq> j"
```
```   453           with disjoint `K \<subseteq> J` `k \<in> K` `j \<in> K` have "I k \<inter> I j = {}"
```
```   454             unfolding disjoint_family_on_def by auto
```
```   455           with L(2,3)[OF `j \<in> K`] L(2,3)[OF `k \<in> K`]
```
```   456           show False using `l \<in> L k` `l \<in> L j` by auto
```
```   457         qed }
```
```   458       note L_inj = this
```
```   459
```
```   460       def k \<equiv> "\<lambda>l. (SOME k. k \<in> K \<and> l \<in> L k)"
```
```   461       { fix x j l assume *: "j \<in> K" "l \<in> L j"
```
```   462         have "k l = j" unfolding k_def
```
```   463         proof (rule some_equality)
```
```   464           fix k assume "k \<in> K \<and> l \<in> L k"
```
```   465           with * L_inj show "k = j" by auto
```
```   466         qed (insert *, simp) }
```
```   467       note k_simp[simp] = this
```
```   468       let ?E' = "\<lambda>l. E' (k l) l"
```
```   469       have "prob (\<Inter>j\<in>K. A j) = prob (\<Inter>l\<in>(\<Union>k\<in>K. L k). ?E' l)"
```
```   470         by (auto simp: A intro!: arg_cong[where f=prob])
```
```   471       also have "\<dots> = (\<Prod>l\<in>(\<Union>k\<in>K. L k). prob (?E' l))"
```
```   472         using L K E' by (intro indep_setsD[OF indep]) (simp_all add: UN_mono)
```
```   473       also have "\<dots> = (\<Prod>j\<in>K. \<Prod>l\<in>L j. prob (E' j l))"
```
```   474         using K L L_inj by (subst setprod_UN_disjoint) auto
```
```   475       also have "\<dots> = (\<Prod>j\<in>K. prob (A j))"
```
```   476         using K L E' by (auto simp add: A intro!: setprod_cong indep_setsD[OF indep, symmetric]) blast
```
```   477       finally show "prob (\<Inter>j\<in>K. A j) = (\<Prod>j\<in>K. prob (A j))" .
```
```   478     qed
```
```   479   next
```
```   480     fix j assume "j \<in> J"
```
```   481     show "Int_stable (?E j)"
```
```   482     proof (rule Int_stableI)
```
```   483       fix a assume "a \<in> ?E j" then obtain Ka Ea
```
```   484         where a: "a = (\<Inter>k\<in>Ka. Ea k)" "finite Ka" "Ka \<noteq> {}" "Ka \<subseteq> I j" "\<And>k. k\<in>Ka \<Longrightarrow> Ea k \<in> E k" by auto
```
```   485       fix b assume "b \<in> ?E j" then obtain Kb Eb
```
```   486         where b: "b = (\<Inter>k\<in>Kb. Eb k)" "finite Kb" "Kb \<noteq> {}" "Kb \<subseteq> I j" "\<And>k. k\<in>Kb \<Longrightarrow> Eb k \<in> E k" by auto
```
```   487       let ?A = "\<lambda>k. (if k \<in> Ka \<inter> Kb then Ea k \<inter> Eb k else if k \<in> Kb then Eb k else if k \<in> Ka then Ea k else {})"
```
```   488       have "a \<inter> b = INTER (Ka \<union> Kb) ?A"
```
```   489         by (simp add: a b set_eq_iff) auto
```
```   490       with a b `j \<in> J` Int_stableD[OF Int_stable] show "a \<inter> b \<in> ?E j"
```
```   491         by (intro CollectI exI[of _ "Ka \<union> Kb"] exI[of _ ?A]) auto
```
```   492     qed
```
```   493   qed
```
```   494   ultimately show ?thesis
```
```   495     by (simp cong: indep_sets_cong)
```
```   496 qed
```
```   497
```
```   498 definition (in prob_space) tail_events where
```
```   499   "tail_events A = (\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
```
```   500
```
```   501 lemma (in prob_space) tail_events_sets:
```
```   502   assumes A: "\<And>i::nat. A i \<subseteq> events"
```
```   503   shows "tail_events A \<subseteq> events"
```
```   504 proof
```
```   505   fix X assume X: "X \<in> tail_events A"
```
```   506   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
```
```   507   from X have "\<And>n::nat. X \<in> sigma_sets (space M) (UNION {n..} A)" by (auto simp: tail_events_def)
```
```   508   from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
```
```   509   then show "X \<in> events"
```
```   510     by induct (insert A, auto)
```
```   511 qed
```
```   512
```
```   513 lemma (in prob_space) sigma_algebra_tail_events:
```
```   514   assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
```
```   515   shows "sigma_algebra (space M) (tail_events A)"
```
```   516   unfolding tail_events_def
```
```   517 proof (simp add: sigma_algebra_iff2, safe)
```
```   518   let ?A = "(\<Inter>n. sigma_sets (space M) (UNION {n..} A))"
```
```   519   interpret A: sigma_algebra "space M" "A i" for i by fact
```
```   520   { fix X x assume "X \<in> ?A" "x \<in> X"
```
```   521     then have "\<And>n. X \<in> sigma_sets (space M) (UNION {n..} A)" by auto
```
```   522     from this[of 0] have "X \<in> sigma_sets (space M) (UNION UNIV A)" by simp
```
```   523     then have "X \<subseteq> space M"
```
```   524       by induct (insert A.sets_into_space, auto)
```
```   525     with `x \<in> X` show "x \<in> space M" by auto }
```
```   526   { fix F :: "nat \<Rightarrow> 'a set" and n assume "range F \<subseteq> ?A"
```
```   527     then show "(UNION UNIV F) \<in> sigma_sets (space M) (UNION {n..} A)"
```
```   528       by (intro sigma_sets.Union) auto }
```
```   529 qed (auto intro!: sigma_sets.Compl sigma_sets.Empty)
```
```   530
```
```   531 lemma (in prob_space) kolmogorov_0_1_law:
```
```   532   fixes A :: "nat \<Rightarrow> 'a set set"
```
```   533   assumes "\<And>i::nat. sigma_algebra (space M) (A i)"
```
```   534   assumes indep: "indep_sets A UNIV"
```
```   535   and X: "X \<in> tail_events A"
```
```   536   shows "prob X = 0 \<or> prob X = 1"
```
```   537 proof -
```
```   538   have A: "\<And>i. A i \<subseteq> events"
```
```   539     using indep unfolding indep_sets_def by simp
```
```   540
```
```   541   let ?D = "{D \<in> events. prob (X \<inter> D) = prob X * prob D}"
```
```   542   interpret A: sigma_algebra "space M" "A i" for i by fact
```
```   543   interpret T: sigma_algebra "space M" "tail_events A"
```
```   544     by (rule sigma_algebra_tail_events) fact
```
```   545   have "X \<subseteq> space M" using T.space_closed X by auto
```
```   546
```
```   547   have X_in: "X \<in> events"
```
```   548     using tail_events_sets A X by auto
```
```   549
```
```   550   interpret D: dynkin_system "space M" ?D
```
```   551   proof (rule dynkin_systemI)
```
```   552     fix D assume "D \<in> ?D" then show "D \<subseteq> space M"
```
```   553       using sets_into_space by auto
```
```   554   next
```
```   555     show "space M \<in> ?D"
```
```   556       using prob_space `X \<subseteq> space M` by (simp add: Int_absorb2)
```
```   557   next
```
```   558     fix A assume A: "A \<in> ?D"
```
```   559     have "prob (X \<inter> (space M - A)) = prob (X - (X \<inter> A))"
```
```   560       using `X \<subseteq> space M` by (auto intro!: arg_cong[where f=prob])
```
```   561     also have "\<dots> = prob X - prob (X \<inter> A)"
```
```   562       using X_in A by (intro finite_measure_Diff) auto
```
```   563     also have "\<dots> = prob X * prob (space M) - prob X * prob A"
```
```   564       using A prob_space by auto
```
```   565     also have "\<dots> = prob X * prob (space M - A)"
```
```   566       using X_in A sets_into_space
```
```   567       by (subst finite_measure_Diff) (auto simp: field_simps)
```
```   568     finally show "space M - A \<in> ?D"
```
```   569       using A `X \<subseteq> space M` by auto
```
```   570   next
```
```   571     fix F :: "nat \<Rightarrow> 'a set" assume dis: "disjoint_family F" and "range F \<subseteq> ?D"
```
```   572     then have F: "range F \<subseteq> events" "\<And>i. prob (X \<inter> F i) = prob X * prob (F i)"
```
```   573       by auto
```
```   574     have "(\<lambda>i. prob (X \<inter> F i)) sums prob (\<Union>i. X \<inter> F i)"
```
```   575     proof (rule finite_measure_UNION)
```
```   576       show "range (\<lambda>i. X \<inter> F i) \<subseteq> events"
```
```   577         using F X_in by auto
```
```   578       show "disjoint_family (\<lambda>i. X \<inter> F i)"
```
```   579         using dis by (rule disjoint_family_on_bisimulation) auto
```
```   580     qed
```
```   581     with F have "(\<lambda>i. prob X * prob (F i)) sums prob (X \<inter> (\<Union>i. F i))"
```
```   582       by simp
```
```   583     moreover have "(\<lambda>i. prob X * prob (F i)) sums (prob X * prob (\<Union>i. F i))"
```
```   584       by (intro sums_mult finite_measure_UNION F dis)
```
```   585     ultimately have "prob (X \<inter> (\<Union>i. F i)) = prob X * prob (\<Union>i. F i)"
```
```   586       by (auto dest!: sums_unique)
```
```   587     with F show "(\<Union>i. F i) \<in> ?D"
```
```   588       by auto
```
```   589   qed
```
```   590
```
```   591   { fix n
```
```   592     have "indep_sets (\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) UNIV"
```
```   593     proof (rule indep_sets_collect_sigma)
```
```   594       have *: "(\<Union>b. case b of True \<Rightarrow> {..n} | False \<Rightarrow> {Suc n..}) = UNIV" (is "?U = _")
```
```   595         by (simp split: bool.split add: set_eq_iff) (metis not_less_eq_eq)
```
```   596       with indep show "indep_sets A ?U" by simp
```
```   597       show "disjoint_family (bool_case {..n} {Suc n..})"
```
```   598         unfolding disjoint_family_on_def by (auto split: bool.split)
```
```   599       fix m
```
```   600       show "Int_stable (A m)"
```
```   601         unfolding Int_stable_def using A.Int by auto
```
```   602     qed
```
```   603     also have "(\<lambda>b. sigma_sets (space M) (\<Union>m\<in>bool_case {..n} {Suc n..} b. A m)) =
```
```   604       bool_case (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
```
```   605       by (auto intro!: ext split: bool.split)
```
```   606     finally have indep: "indep_set (sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) (sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m))"
```
```   607       unfolding indep_set_def by simp
```
```   608
```
```   609     have "sigma_sets (space M) (\<Union>m\<in>{..n}. A m) \<subseteq> ?D"
```
```   610     proof (simp add: subset_eq, rule)
```
```   611       fix D assume D: "D \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
```
```   612       have "X \<in> sigma_sets (space M) (\<Union>m\<in>{Suc n..}. A m)"
```
```   613         using X unfolding tail_events_def by simp
```
```   614       from indep_setD[OF indep D this] indep_setD_ev1[OF indep] D
```
```   615       show "D \<in> events \<and> prob (X \<inter> D) = prob X * prob D"
```
```   616         by (auto simp add: ac_simps)
```
```   617     qed }
```
```   618   then have "(\<Union>n. sigma_sets (space M) (\<Union>m\<in>{..n}. A m)) \<subseteq> ?D" (is "?A \<subseteq> _")
```
```   619     by auto
```
```   620
```
```   621   note `X \<in> tail_events A`
```
```   622   also {
```
```   623     have "\<And>n. sigma_sets (space M) (\<Union>i\<in>{n..}. A i) \<subseteq> sigma_sets (space M) ?A"
```
```   624       by (intro sigma_sets_subseteq UN_mono) auto
```
```   625    then have "tail_events A \<subseteq> sigma_sets (space M) ?A"
```
```   626       unfolding tail_events_def by auto }
```
```   627   also have "sigma_sets (space M) ?A = dynkin (space M) ?A"
```
```   628   proof (rule sigma_eq_dynkin)
```
```   629     { fix B n assume "B \<in> sigma_sets (space M) (\<Union>m\<in>{..n}. A m)"
```
```   630       then have "B \<subseteq> space M"
```
```   631         by induct (insert A sets_into_space[of _ M], auto) }
```
```   632     then show "?A \<subseteq> Pow (space M)" by auto
```
```   633     show "Int_stable ?A"
```
```   634     proof (rule Int_stableI)
```
```   635       fix a assume "a \<in> ?A" then guess n .. note a = this
```
```   636       fix b assume "b \<in> ?A" then guess m .. note b = this
```
```   637       interpret Amn: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
```
```   638         using A sets_into_space[of _ M] by (intro sigma_algebra_sigma_sets) auto
```
```   639       have "sigma_sets (space M) (\<Union>i\<in>{..n}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
```
```   640         by (intro sigma_sets_subseteq UN_mono) auto
```
```   641       with a have "a \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
```
```   642       moreover
```
```   643       have "sigma_sets (space M) (\<Union>i\<in>{..m}. A i) \<subseteq> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
```
```   644         by (intro sigma_sets_subseteq UN_mono) auto
```
```   645       with b have "b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)" by auto
```
```   646       ultimately have "a \<inter> b \<in> sigma_sets (space M) (\<Union>i\<in>{..max m n}. A i)"
```
```   647         using Amn.Int[of a b] by simp
```
```   648       then show "a \<inter> b \<in> (\<Union>n. sigma_sets (space M) (\<Union>i\<in>{..n}. A i))" by auto
```
```   649     qed
```
```   650   qed
```
```   651   also have "dynkin (space M) ?A \<subseteq> ?D"
```
```   652     using `?A \<subseteq> ?D` by (auto intro!: D.dynkin_subset)
```
```   653   finally show ?thesis by auto
```
```   654 qed
```
```   655
```
```   656 lemma (in prob_space) borel_0_1_law:
```
```   657   fixes F :: "nat \<Rightarrow> 'a set"
```
```   658   assumes F2: "indep_events F UNIV"
```
```   659   shows "prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 0 \<or> prob (\<Inter>n. \<Union>m\<in>{n..}. F m) = 1"
```
```   660 proof (rule kolmogorov_0_1_law[of "\<lambda>i. sigma_sets (space M) { F i }"])
```
```   661   have F1: "range F \<subseteq> events"
```
```   662     using F2 by (simp add: indep_events_def subset_eq)
```
```   663   { fix i show "sigma_algebra (space M) (sigma_sets (space M) {F i})"
```
```   664       using sigma_algebra_sigma_sets[of "{F i}" "space M"] F1 sets_into_space
```
```   665       by auto }
```
```   666   show "indep_sets (\<lambda>i. sigma_sets (space M) {F i}) UNIV"
```
```   667   proof (rule indep_sets_sigma)
```
```   668     show "indep_sets (\<lambda>i. {F i}) UNIV"
```
```   669       unfolding indep_events_def_alt[symmetric] by fact
```
```   670     fix i show "Int_stable {F i}"
```
```   671       unfolding Int_stable_def by simp
```
```   672   qed
```
```   673   let ?Q = "\<lambda>n. \<Union>i\<in>{n..}. F i"
```
```   674   show "(\<Inter>n. \<Union>m\<in>{n..}. F m) \<in> tail_events (\<lambda>i. sigma_sets (space M) {F i})"
```
```   675     unfolding tail_events_def
```
```   676   proof
```
```   677     fix j
```
```   678     interpret S: sigma_algebra "space M" "sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
```
```   679       using order_trans[OF F1 space_closed]
```
```   680       by (intro sigma_algebra_sigma_sets) (simp add: sigma_sets_singleton subset_eq)
```
```   681     have "(\<Inter>n. ?Q n) = (\<Inter>n\<in>{j..}. ?Q n)"
```
```   682       by (intro decseq_SucI INT_decseq_offset UN_mono) auto
```
```   683     also have "\<dots> \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
```
```   684       using order_trans[OF F1 space_closed]
```
```   685       by (safe intro!: S.countable_INT S.countable_UN)
```
```   686          (auto simp: sigma_sets_singleton intro!: sigma_sets.Basic bexI)
```
```   687     finally show "(\<Inter>n. ?Q n) \<in> sigma_sets (space M) (\<Union>i\<in>{j..}. sigma_sets (space M) {F i})"
```
```   688       by simp
```
```   689   qed
```
```   690 qed
```
```   691
```
```   692 lemma (in prob_space) indep_sets_finite:
```
```   693   assumes I: "I \<noteq> {}" "finite I"
```
```   694     and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i"
```
```   695   shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))"
```
```   696 proof
```
```   697   assume *: "indep_sets F I"
```
```   698   from I show "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
```
```   699     by (intro indep_setsD[OF *] ballI) auto
```
```   700 next
```
```   701   assume indep: "\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j))"
```
```   702   show "indep_sets F I"
```
```   703   proof (rule indep_setsI[OF F(1)])
```
```   704     fix A J assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
```
```   705     assume A: "\<forall>j\<in>J. A j \<in> F j"
```
```   706     let ?A = "\<lambda>j. if j \<in> J then A j else space M"
```
```   707     have "prob (\<Inter>j\<in>I. ?A j) = prob (\<Inter>j\<in>J. A j)"
```
```   708       using subset_trans[OF F(1) space_closed] J A
```
```   709       by (auto intro!: arg_cong[where f=prob] split: split_if_asm) blast
```
```   710     also
```
```   711     from A F have "(\<lambda>j. if j \<in> J then A j else space M) \<in> Pi I F" (is "?A \<in> _")
```
```   712       by (auto split: split_if_asm)
```
```   713     with indep have "prob (\<Inter>j\<in>I. ?A j) = (\<Prod>j\<in>I. prob (?A j))"
```
```   714       by auto
```
```   715     also have "\<dots> = (\<Prod>j\<in>J. prob (A j))"
```
```   716       unfolding if_distrib setprod.If_cases[OF `finite I`]
```
```   717       using prob_space `J \<subseteq> I` by (simp add: Int_absorb1 setprod_1)
```
```   718     finally show "prob (\<Inter>j\<in>J. A j) = (\<Prod>j\<in>J. prob (A j))" ..
```
```   719   qed
```
```   720 qed
```
```   721
```
```   722 lemma (in prob_space) indep_vars_finite:
```
```   723   fixes I :: "'i set"
```
```   724   assumes I: "I \<noteq> {}" "finite I"
```
```   725     and M': "\<And>i. i \<in> I \<Longrightarrow> sets (M' i) = sigma_sets (space (M' i)) (E i)"
```
```   726     and rv: "\<And>i. i \<in> I \<Longrightarrow> random_variable (M' i) (X i)"
```
```   727     and Int_stable: "\<And>i. i \<in> I \<Longrightarrow> Int_stable (E i)"
```
```   728     and space: "\<And>i. i \<in> I \<Longrightarrow> space (M' i) \<in> E i" and closed: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (space (M' i))"
```
```   729   shows "indep_vars M' X I \<longleftrightarrow>
```
```   730     (\<forall>A\<in>(\<Pi> i\<in>I. E i). prob (\<Inter>j\<in>I. X j -` A j \<inter> space M) = (\<Prod>j\<in>I. prob (X j -` A j \<inter> space M)))"
```
```   731 proof -
```
```   732   from rv have X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> space M \<rightarrow> space (M' i)"
```
```   733     unfolding measurable_def by simp
```
```   734
```
```   735   { fix i assume "i\<in>I"
```
```   736     from closed[OF `i \<in> I`]
```
```   737     have "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}
```
```   738       = sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   739       unfolding sigma_sets_vimage_commute[OF X, OF `i \<in> I`, symmetric] M'[OF `i \<in> I`]
```
```   740       by (subst sigma_sets_sigma_sets_eq) auto }
```
```   741   note sigma_sets_X = this
```
```   742
```
```   743   { fix i assume "i\<in>I"
```
```   744     have "Int_stable {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   745     proof (rule Int_stableI)
```
```   746       fix a assume "a \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   747       then obtain A where "a = X i -` A \<inter> space M" "A \<in> E i" by auto
```
```   748       moreover
```
```   749       fix b assume "b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   750       then obtain B where "b = X i -` B \<inter> space M" "B \<in> E i" by auto
```
```   751       moreover
```
```   752       have "(X i -` A \<inter> space M) \<inter> (X i -` B \<inter> space M) = X i -` (A \<inter> B) \<inter> space M" by auto
```
```   753       moreover note Int_stable[OF `i \<in> I`]
```
```   754       ultimately
```
```   755       show "a \<inter> b \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   756         by (auto simp del: vimage_Int intro!: exI[of _ "A \<inter> B"] dest: Int_stableD)
```
```   757     qed }
```
```   758   note indep_sets_X = indep_sets_sigma_sets_iff[OF this]
```
```   759
```
```   760   { fix i assume "i \<in> I"
```
```   761     { fix A assume "A \<in> E i"
```
```   762       with M'[OF `i \<in> I`] have "A \<in> sets (M' i)" by auto
```
```   763       moreover
```
```   764       from rv[OF `i\<in>I`] have "X i \<in> measurable M (M' i)" by auto
```
```   765       ultimately
```
```   766       have "X i -` A \<inter> space M \<in> sets M" by (auto intro: measurable_sets) }
```
```   767     with X[OF `i\<in>I`] space[OF `i\<in>I`]
```
```   768     have "{X i -` A \<inter> space M |A. A \<in> E i} \<subseteq> events"
```
```   769       "space M \<in> {X i -` A \<inter> space M |A. A \<in> E i}"
```
```   770       by (auto intro!: exI[of _ "space (M' i)"]) }
```
```   771   note indep_sets_finite_X = indep_sets_finite[OF I this]
```
```   772
```
```   773   have "(\<forall>A\<in>\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i}. prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))) =
```
```   774     (\<forall>A\<in>\<Pi> i\<in>I. E i. prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M)))"
```
```   775     (is "?L = ?R")
```
```   776   proof safe
```
```   777     fix A assume ?L and A: "A \<in> (\<Pi> i\<in>I. E i)"
```
```   778     from `?L`[THEN bspec, of "\<lambda>i. X i -` A i \<inter> space M"] A `I \<noteq> {}`
```
```   779     show "prob ((\<Inter>j\<in>I. X j -` A j) \<inter> space M) = (\<Prod>x\<in>I. prob (X x -` A x \<inter> space M))"
```
```   780       by (auto simp add: Pi_iff)
```
```   781   next
```
```   782     fix A assume ?R and A: "A \<in> (\<Pi> i\<in>I. {X i -` A \<inter> space M |A. A \<in> E i})"
```
```   783     from A have "\<forall>i\<in>I. \<exists>B. A i = X i -` B \<inter> space M \<and> B \<in> E i" by auto
```
```   784     from bchoice[OF this] obtain B where B: "\<forall>i\<in>I. A i = X i -` B i \<inter> space M"
```
```   785       "B \<in> (\<Pi> i\<in>I. E i)" by auto
```
```   786     from `?R`[THEN bspec, OF B(2)] B(1) `I \<noteq> {}`
```
```   787     show "prob (INTER I A) = (\<Prod>j\<in>I. prob (A j))"
```
```   788       by simp
```
```   789   qed
```
```   790   then show ?thesis using `I \<noteq> {}`
```
```   791     by (simp add: rv indep_vars_def indep_sets_X sigma_sets_X indep_sets_finite_X cong: indep_sets_cong)
```
```   792 qed
```
```   793
```
```   794 lemma (in prob_space) indep_vars_compose:
```
```   795   assumes "indep_vars M' X I"
```
```   796   assumes rv: "\<And>i. i \<in> I \<Longrightarrow> Y i \<in> measurable (M' i) (N i)"
```
```   797   shows "indep_vars N (\<lambda>i. Y i \<circ> X i) I"
```
```   798   unfolding indep_vars_def
```
```   799 proof
```
```   800   from rv `indep_vars M' X I`
```
```   801   show "\<forall>i\<in>I. random_variable (N i) (Y i \<circ> X i)"
```
```   802     by (auto simp: indep_vars_def)
```
```   803
```
```   804   have "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
```
```   805     using `indep_vars M' X I` by (simp add: indep_vars_def)
```
```   806   then show "indep_sets (\<lambda>i. sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)}) I"
```
```   807   proof (rule indep_sets_mono_sets)
```
```   808     fix i assume "i \<in> I"
```
```   809     with `indep_vars M' X I` have X: "X i \<in> space M \<rightarrow> space (M' i)"
```
```   810       unfolding indep_vars_def measurable_def by auto
```
```   811     { fix A assume "A \<in> sets (N i)"
```
```   812       then have "\<exists>B. (Y i \<circ> X i) -` A \<inter> space M = X i -` B \<inter> space M \<and> B \<in> sets (M' i)"
```
```   813         by (intro exI[of _ "Y i -` A \<inter> space (M' i)"])
```
```   814            (auto simp: vimage_compose intro!: measurable_sets rv `i \<in> I` funcset_mem[OF X]) }
```
```   815     then show "sigma_sets (space M) {(Y i \<circ> X i) -` A \<inter> space M |A. A \<in> sets (N i)} \<subseteq>
```
```   816       sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
```
```   817       by (intro sigma_sets_subseteq) (auto simp: vimage_compose)
```
```   818   qed
```
```   819 qed
```
```   820
```
```   821 lemma (in prob_space) indep_varsD_finite:
```
```   822   assumes X: "indep_vars M' X I"
```
```   823   assumes I: "I \<noteq> {}" "finite I" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M' i)"
```
```   824   shows "prob (\<Inter>i\<in>I. X i -` A i \<inter> space M) = (\<Prod>i\<in>I. prob (X i -` A i \<inter> space M))"
```
```   825 proof (rule indep_setsD)
```
```   826   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
```
```   827     using X by (auto simp: indep_vars_def)
```
```   828   show "I \<subseteq> I" "I \<noteq> {}" "finite I" using I by auto
```
```   829   show "\<forall>i\<in>I. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
```
```   830     using I by auto
```
```   831 qed
```
```   832
```
```   833 lemma (in prob_space) indep_varsD:
```
```   834   assumes X: "indep_vars M' X I"
```
```   835   assumes I: "J \<noteq> {}" "finite J" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M' i)"
```
```   836   shows "prob (\<Inter>i\<in>J. X i -` A i \<inter> space M) = (\<Prod>i\<in>J. prob (X i -` A i \<inter> space M))"
```
```   837 proof (rule indep_setsD)
```
```   838   show "indep_sets (\<lambda>i. sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}) I"
```
```   839     using X by (auto simp: indep_vars_def)
```
```   840   show "\<forall>i\<in>J. X i -` A i \<inter> space M \<in> sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)}"
```
```   841     using I by auto
```
```   842 qed fact+
```
```   843
```
```   844 lemma prod_algebra_cong:
```
```   845   assumes "I = J" and sets: "(\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sets (N i))"
```
```   846   shows "prod_algebra I M = prod_algebra J N"
```
```   847 proof -
```
```   848   have space: "\<And>i. i \<in> I \<Longrightarrow> space (M i) = space (N i)"
```
```   849     using sets_eq_imp_space_eq[OF sets] by auto
```
```   850   with sets show ?thesis unfolding `I = J`
```
```   851     by (intro antisym prod_algebra_mono) auto
```
```   852 qed
```
```   853
```
```   854 lemma space_in_prod_algebra:
```
```   855   "(\<Pi>\<^isub>E i\<in>I. space (M i)) \<in> prod_algebra I M"
```
```   856 proof cases
```
```   857   assume "I = {}" then show ?thesis
```
```   858     by (auto simp add: prod_algebra_def image_iff prod_emb_def)
```
```   859 next
```
```   860   assume "I \<noteq> {}"
```
```   861   then obtain i where "i \<in> I" by auto
```
```   862   then have "(\<Pi>\<^isub>E i\<in>I. space (M i)) = prod_emb I M {i} (\<Pi>\<^isub>E i\<in>{i}. space (M i))"
```
```   863     by (auto simp: prod_emb_def Pi_iff)
```
```   864   also have "\<dots> \<in> prod_algebra I M"
```
```   865     using `i \<in> I` by (intro prod_algebraI) auto
```
```   866   finally show ?thesis .
```
```   867 qed
```
```   868
```
```   869 lemma (in prob_space) indep_vars_iff_distr_eq_PiM:
```
```   870   fixes I :: "'i set" and X :: "'i \<Rightarrow> 'a \<Rightarrow> 'b"
```
```   871   assumes "I \<noteq> {}"
```
```   872   assumes rv: "\<And>i. random_variable (M' i) (X i)"
```
```   873   shows "indep_vars M' X I \<longleftrightarrow>
```
```   874     distr M (\<Pi>\<^isub>M i\<in>I. M' i) (\<lambda>x. \<lambda>i\<in>I. X i x) = (\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i))"
```
```   875 proof -
```
```   876   let ?P = "\<Pi>\<^isub>M i\<in>I. M' i"
```
```   877   let ?X = "\<lambda>x. \<lambda>i\<in>I. X i x"
```
```   878   let ?D = "distr M ?P ?X"
```
```   879   have X: "random_variable ?P ?X" by (intro measurable_restrict rv)
```
```   880   interpret D: prob_space ?D by (intro prob_space_distr X)
```
```   881
```
```   882   let ?D' = "\<lambda>i. distr M (M' i) (X i)"
```
```   883   let ?P' = "\<Pi>\<^isub>M i\<in>I. distr M (M' i) (X i)"
```
```   884   interpret D': prob_space "?D' i" for i by (intro prob_space_distr rv)
```
```   885   interpret P: product_prob_space ?D' I ..
```
```   886
```
```   887   show ?thesis
```
```   888   proof
```
```   889     assume "indep_vars M' X I"
```
```   890     show "?D = ?P'"
```
```   891     proof (rule measure_eqI_generator_eq)
```
```   892       show "Int_stable (prod_algebra I M')"
```
```   893         by (rule Int_stable_prod_algebra)
```
```   894       show "prod_algebra I M' \<subseteq> Pow (space ?P)"
```
```   895         using prod_algebra_sets_into_space by (simp add: space_PiM)
```
```   896       show "sets ?D = sigma_sets (space ?P) (prod_algebra I M')"
```
```   897         by (simp add: sets_PiM space_PiM)
```
```   898       show "sets ?P' = sigma_sets (space ?P) (prod_algebra I M')"
```
```   899         by (simp add: sets_PiM space_PiM cong: prod_algebra_cong)
```
```   900       let ?A = "\<lambda>i. \<Pi>\<^isub>E i\<in>I. space (M' i)"
```
```   901       show "range ?A \<subseteq> prod_algebra I M'" "(\<Union>i. ?A i) = space (Pi\<^isub>M I M')"
```
```   902         by (auto simp: space_PiM intro!: space_in_prod_algebra cong: prod_algebra_cong)
```
```   903       { fix i show "emeasure ?D (\<Pi>\<^isub>E i\<in>I. space (M' i)) \<noteq> \<infinity>" by auto }
```
```   904     next
```
```   905       fix E assume E: "E \<in> prod_algebra I M'"
```
```   906       from prod_algebraE[OF E] guess J Y . note J = this
```
```   907
```
```   908       from E have "E \<in> sets ?P" by (auto simp: sets_PiM)
```
```   909       then have "emeasure ?D E = emeasure M (?X -` E \<inter> space M)"
```
```   910         by (simp add: emeasure_distr X)
```
```   911       also have "?X -` E \<inter> space M = (\<Inter>i\<in>J. X i -` Y i \<inter> space M)"
```
```   912         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def Pi_iff split: split_if_asm)
```
```   913       also have "emeasure M (\<Inter>i\<in>J. X i -` Y i \<inter> space M) = (\<Prod> i\<in>J. emeasure M (X i -` Y i \<inter> space M))"
```
```   914         using `indep_vars M' X I` J `I \<noteq> {}` using indep_varsD[of M' X I J]
```
```   915         by (auto simp: emeasure_eq_measure setprod_ereal)
```
```   916       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
```
```   917         using rv J by (simp add: emeasure_distr)
```
```   918       also have "\<dots> = emeasure ?P' E"
```
```   919         using P.emeasure_PiM_emb[of J Y] J by (simp add: prod_emb_def)
```
```   920       finally show "emeasure ?D E = emeasure ?P' E" .
```
```   921     qed
```
```   922   next
```
```   923     assume "?D = ?P'"
```
```   924     show "indep_vars M' X I" unfolding indep_vars_def
```
```   925     proof (intro conjI indep_setsI ballI rv)
```
```   926       fix i show "sigma_sets (space M) {X i -` A \<inter> space M |A. A \<in> sets (M' i)} \<subseteq> events"
```
```   927         by (auto intro!: sigma_sets_subset measurable_sets rv)
```
```   928     next
```
```   929       fix J Y' assume J: "J \<noteq> {}" "J \<subseteq> I" "finite J"
```
```   930       assume Y': "\<forall>j\<in>J. Y' j \<in> sigma_sets (space M) {X j -` A \<inter> space M |A. A \<in> sets (M' j)}"
```
```   931       have "\<forall>j\<in>J. \<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
```
```   932       proof
```
```   933         fix j assume "j \<in> J"
```
```   934         from Y'[rule_format, OF this] rv[of j]
```
```   935         show "\<exists>Y. Y' j = X j -` Y \<inter> space M \<and> Y \<in> sets (M' j)"
```
```   936           by (subst (asm) sigma_sets_vimage_commute[symmetric, of _ _ "space (M' j)"])
```
```   937              (auto dest: measurable_space simp: sigma_sets_eq)
```
```   938       qed
```
```   939       from bchoice[OF this] obtain Y where
```
```   940         Y: "\<And>j. j \<in> J \<Longrightarrow> Y' j = X j -` Y j \<inter> space M" "\<And>j. j \<in> J \<Longrightarrow> Y j \<in> sets (M' j)" by auto
```
```   941       let ?E = "prod_emb I M' J (Pi\<^isub>E J Y)"
```
```   942       from Y have "(\<Inter>j\<in>J. Y' j) = ?X -` ?E \<inter> space M"
```
```   943         using J `I \<noteq> {}` measurable_space[OF rv] by (auto simp: prod_emb_def Pi_iff split: split_if_asm)
```
```   944       then have "emeasure M (\<Inter>j\<in>J. Y' j) = emeasure M (?X -` ?E \<inter> space M)"
```
```   945         by simp
```
```   946       also have "\<dots> = emeasure ?D ?E"
```
```   947         using Y  J by (intro emeasure_distr[symmetric] X sets_PiM_I) auto
```
```   948       also have "\<dots> = emeasure ?P' ?E"
```
```   949         using `?D = ?P'` by simp
```
```   950       also have "\<dots> = (\<Prod> i\<in>J. emeasure (?D' i) (Y i))"
```
```   951         using P.emeasure_PiM_emb[of J Y] J Y by (simp add: prod_emb_def)
```
```   952       also have "\<dots> = (\<Prod> i\<in>J. emeasure M (Y' i))"
```
```   953         using rv J Y by (simp add: emeasure_distr)
```
```   954       finally have "emeasure M (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. emeasure M (Y' i))" .
```
```   955       then show "prob (\<Inter>j\<in>J. Y' j) = (\<Prod> i\<in>J. prob (Y' i))"
```
```   956         by (auto simp: emeasure_eq_measure setprod_ereal)
```
```   957     qed
```
```   958   qed
```
```   959 qed
```
```   960
```
```   961 lemma (in prob_space) indep_varD:
```
```   962   assumes indep: "indep_var Ma A Mb B"
```
```   963   assumes sets: "Xa \<in> sets Ma" "Xb \<in> sets Mb"
```
```   964   shows "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
```
```   965     prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
```
```   966 proof -
```
```   967   have "prob ((\<lambda>x. (A x, B x)) -` (Xa \<times> Xb) \<inter> space M) =
```
```   968     prob (\<Inter>i\<in>UNIV. (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
```
```   969     by (auto intro!: arg_cong[where f=prob] simp: UNIV_bool)
```
```   970   also have "\<dots> = (\<Prod>i\<in>UNIV. prob (bool_case A B i -` bool_case Xa Xb i \<inter> space M))"
```
```   971     using indep unfolding indep_var_def
```
```   972     by (rule indep_varsD) (auto split: bool.split intro: sets)
```
```   973   also have "\<dots> = prob (A -` Xa \<inter> space M) * prob (B -` Xb \<inter> space M)"
```
```   974     unfolding UNIV_bool by simp
```
```   975   finally show ?thesis .
```
```   976 qed
```
```   977
```
```   978 lemma (in prob_space)
```
```   979   assumes "indep_var S X T Y"
```
```   980   shows indep_var_rv1: "random_variable S X"
```
```   981     and indep_var_rv2: "random_variable T Y"
```
```   982 proof -
```
```   983   have "\<forall>i\<in>UNIV. random_variable (bool_case S T i) (bool_case X Y i)"
```
```   984     using assms unfolding indep_var_def indep_vars_def by auto
```
```   985   then show "random_variable S X" "random_variable T Y"
```
```   986     unfolding UNIV_bool by auto
```
```   987 qed
```
```   988
```
```   989 lemma measurable_bool_case[simp, intro]:
```
```   990   "(\<lambda>(x, y). bool_case x y) \<in> measurable (M \<Otimes>\<^isub>M N) (Pi\<^isub>M UNIV (bool_case M N))"
```
```   991     (is "?f \<in> measurable ?B ?P")
```
```   992 proof (rule measurable_PiM_single)
```
```   993   show "?f \<in> space ?B \<rightarrow> (\<Pi>\<^isub>E i\<in>UNIV. space (bool_case M N i))"
```
```   994     by (auto simp: space_pair_measure extensional_def split: bool.split)
```
```   995   fix i A assume "A \<in> sets (case i of True \<Rightarrow> M | False \<Rightarrow> N)"
```
```   996   moreover then have "{\<omega> \<in> space (M \<Otimes>\<^isub>M N). prod_case bool_case \<omega> i \<in> A}
```
```   997     = (case i of True \<Rightarrow> A \<times> space N | False \<Rightarrow> space M \<times> A)"
```
```   998     by (auto simp: space_pair_measure split: bool.split dest!: sets_into_space)
```
```   999   ultimately show "{\<omega> \<in> space (M \<Otimes>\<^isub>M N). prod_case bool_case \<omega> i \<in> A} \<in> sets ?B"
```
```  1000     by (auto split: bool.split)
```
```  1001 qed
```
```  1002
```
```  1003 lemma borel_measurable_indicator':
```
```  1004   "A \<in> sets N \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> (\<lambda>x. indicator A (f x)) \<in> borel_measurable M"
```
```  1005   using measurable_comp[OF _ borel_measurable_indicator, of f M N A] by (auto simp add: comp_def)
```
```  1006
```
```  1007 lemma (in product_sigma_finite) distr_component:
```
```  1008   "distr (M i) (Pi\<^isub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x) = Pi\<^isub>M {i} M" (is "?D = ?P")
```
```  1009 proof (intro measure_eqI[symmetric])
```
```  1010   interpret I: finite_product_sigma_finite M "{i}" by default simp
```
```  1011
```
```  1012   have eq: "\<And>x. x \<in> extensional {i} \<Longrightarrow> (\<lambda>j\<in>{i}. x i) = x"
```
```  1013     by (auto simp: extensional_def restrict_def)
```
```  1014
```
```  1015   fix A assume A: "A \<in> sets ?P"
```
```  1016   then have "emeasure ?P A = (\<integral>\<^isup>+x. indicator A x \<partial>?P)"
```
```  1017     by simp
```
```  1018   also have "\<dots> = (\<integral>\<^isup>+x. indicator ((\<lambda>x. \<lambda>i\<in>{i}. x) -` A \<inter> space (M i)) x \<partial>M i)"
```
```  1019     apply (subst product_positive_integral_singleton[symmetric])
```
```  1020     apply (force intro!: measurable_restrict measurable_sets A)
```
```  1021     apply (auto intro!: positive_integral_cong simp: space_PiM indicator_def simp: eq)
```
```  1022     done
```
```  1023   also have "\<dots> = emeasure (M i) ((\<lambda>x. \<lambda>i\<in>{i}. x) -` A \<inter> space (M i))"
```
```  1024     by (force intro!: measurable_restrict measurable_sets A positive_integral_indicator)
```
```  1025   also have "\<dots> = emeasure ?D A"
```
```  1026     using A by (auto intro!: emeasure_distr[symmetric] measurable_restrict)
```
```  1027   finally show "emeasure (Pi\<^isub>M {i} M) A = emeasure ?D A" .
```
```  1028 qed simp
```
```  1029
```
```  1030 lemma pair_measure_eqI:
```
```  1031   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
```
```  1032   assumes sets: "sets (M1 \<Otimes>\<^isub>M M2) = sets M"
```
```  1033   assumes emeasure: "\<And>A B. A \<in> sets M1 \<Longrightarrow> B \<in> sets M2 \<Longrightarrow> emeasure M1 A * emeasure M2 B = emeasure M (A \<times> B)"
```
```  1034   shows "M1 \<Otimes>\<^isub>M M2 = M"
```
```  1035 proof -
```
```  1036   interpret M1: sigma_finite_measure M1 by fact
```
```  1037   interpret M2: sigma_finite_measure M2 by fact
```
```  1038   interpret pair_sigma_finite M1 M2 by default
```
```  1039   from sigma_finite_up_in_pair_measure_generator guess F :: "nat \<Rightarrow> ('a \<times> 'b) set" .. note F = this
```
```  1040   let ?E = "{a \<times> b |a b. a \<in> sets M1 \<and> b \<in> sets M2}"
```
```  1041   let ?P = "M1 \<Otimes>\<^isub>M M2"
```
```  1042   show ?thesis
```
```  1043   proof (rule measure_eqI_generator_eq[OF Int_stable_pair_measure_generator[of M1 M2]])
```
```  1044     show "?E \<subseteq> Pow (space ?P)"
```
```  1045       using space_closed[of M1] space_closed[of M2] by (auto simp: space_pair_measure)
```
```  1046     show "sets ?P = sigma_sets (space ?P) ?E"
```
```  1047       by (simp add: sets_pair_measure space_pair_measure)
```
```  1048     then show "sets M = sigma_sets (space ?P) ?E"
```
```  1049       using sets[symmetric] by simp
```
```  1050   next
```
```  1051     show "range F \<subseteq> ?E" "(\<Union>i. F i) = space ?P" "\<And>i. emeasure ?P (F i) \<noteq> \<infinity>"
```
```  1052       using F by (auto simp: space_pair_measure)
```
```  1053   next
```
```  1054     fix X assume "X \<in> ?E"
```
```  1055     then obtain A B where X[simp]: "X = A \<times> B" and A: "A \<in> sets M1" and B: "B \<in> sets M2" by auto
```
```  1056     then have "emeasure ?P X = emeasure M1 A * emeasure M2 B"
```
```  1057        by (simp add: M2.emeasure_pair_measure_Times)
```
```  1058     also have "\<dots> = emeasure M (A \<times> B)"
```
```  1059       using A B emeasure by auto
```
```  1060     finally show "emeasure ?P X = emeasure M X"
```
```  1061       by simp
```
```  1062   qed
```
```  1063 qed
```
```  1064
```
```  1065 lemma pair_measure_eq_distr_PiM:
```
```  1066   fixes M1 :: "'a measure" and M2 :: "'a measure"
```
```  1067   assumes "sigma_finite_measure M1" "sigma_finite_measure M2"
```
```  1068   shows "(M1 \<Otimes>\<^isub>M M2) = distr (Pi\<^isub>M UNIV (bool_case M1 M2)) (M1 \<Otimes>\<^isub>M M2) (\<lambda>x. (x True, x False))"
```
```  1069     (is "?P = ?D")
```
```  1070 proof (rule pair_measure_eqI[OF assms])
```
```  1071   interpret B: product_sigma_finite "bool_case M1 M2"
```
```  1072     unfolding product_sigma_finite_def using assms by (auto split: bool.split)
```
```  1073   let ?B = "Pi\<^isub>M UNIV (bool_case M1 M2)"
```
```  1074
```
```  1075   have [simp]: "fst \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x True)" "snd \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x False)"
```
```  1076     by auto
```
```  1077   fix A B assume A: "A \<in> sets M1" and B: "B \<in> sets M2"
```
```  1078   have "emeasure M1 A * emeasure M2 B = (\<Prod> i\<in>UNIV. emeasure (bool_case M1 M2 i) (bool_case A B i))"
```
```  1079     by (simp add: UNIV_bool ac_simps)
```
```  1080   also have "\<dots> = emeasure ?B (Pi\<^isub>E UNIV (bool_case A B))"
```
```  1081     using A B by (subst B.emeasure_PiM) (auto split: bool.split)
```
```  1082   also have "Pi\<^isub>E UNIV (bool_case A B) = (\<lambda>x. (x True, x False)) -` (A \<times> B) \<inter> space ?B"
```
```  1083     using A[THEN sets_into_space] B[THEN sets_into_space]
```
```  1084     by (auto simp: Pi_iff all_bool_eq space_PiM split: bool.split)
```
```  1085   finally show "emeasure M1 A * emeasure M2 B = emeasure ?D (A \<times> B)"
```
```  1086     using A B
```
```  1087       measurable_component_singleton[of True UNIV "bool_case M1 M2"]
```
```  1088       measurable_component_singleton[of False UNIV "bool_case M1 M2"]
```
```  1089     by (subst emeasure_distr) (auto simp: measurable_pair_iff)
```
```  1090 qed simp
```
```  1091
```
```  1092 lemma measurable_Pair:
```
```  1093   assumes rvs: "X \<in> measurable M S" "Y \<in> measurable M T"
```
```  1094   shows "(\<lambda>x. (X x, Y x)) \<in> measurable M (S \<Otimes>\<^isub>M T)"
```
```  1095 proof -
```
```  1096   have [simp]: "fst \<circ> (\<lambda>x. (X x, Y x)) = (\<lambda>x. X x)" "snd \<circ> (\<lambda>x. (X x, Y x)) = (\<lambda>x. Y x)"
```
```  1097     by auto
```
```  1098   show " (\<lambda>x. (X x, Y x)) \<in> measurable M (S \<Otimes>\<^isub>M T)"
```
```  1099     by (auto simp: measurable_pair_iff rvs)
```
```  1100 qed
```
```  1101
```
```  1102 lemma (in prob_space) indep_var_distribution_eq:
```
```  1103   "indep_var S X T Y \<longleftrightarrow> random_variable S X \<and> random_variable T Y \<and>
```
```  1104     distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" (is "_ \<longleftrightarrow> _ \<and> _ \<and> ?S \<Otimes>\<^isub>M ?T = ?J")
```
```  1105 proof safe
```
```  1106   assume "indep_var S X T Y"
```
```  1107   then show rvs: "random_variable S X" "random_variable T Y"
```
```  1108     by (blast dest: indep_var_rv1 indep_var_rv2)+
```
```  1109   then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
```
```  1110     by (rule measurable_Pair)
```
```  1111
```
```  1112   interpret X: prob_space ?S by (rule prob_space_distr) fact
```
```  1113   interpret Y: prob_space ?T by (rule prob_space_distr) fact
```
```  1114   interpret XY: pair_prob_space ?S ?T ..
```
```  1115   show "?S \<Otimes>\<^isub>M ?T = ?J"
```
```  1116   proof (rule pair_measure_eqI)
```
```  1117     show "sigma_finite_measure ?S" ..
```
```  1118     show "sigma_finite_measure ?T" ..
```
```  1119
```
```  1120     fix A B assume A: "A \<in> sets ?S" and B: "B \<in> sets ?T"
```
```  1121     have "emeasure ?J (A \<times> B) = emeasure M ((\<lambda>x. (X x, Y x)) -` (A \<times> B) \<inter> space M)"
```
```  1122       using A B by (intro emeasure_distr[OF XY]) auto
```
```  1123     also have "\<dots> = emeasure M (X -` A \<inter> space M) * emeasure M (Y -` B \<inter> space M)"
```
```  1124       using indep_varD[OF `indep_var S X T Y`, of A B] A B by (simp add: emeasure_eq_measure)
```
```  1125     also have "\<dots> = emeasure ?S A * emeasure ?T B"
```
```  1126       using rvs A B by (simp add: emeasure_distr)
```
```  1127     finally show "emeasure ?S A * emeasure ?T B = emeasure ?J (A \<times> B)" by simp
```
```  1128   qed simp
```
```  1129 next
```
```  1130   assume rvs: "random_variable S X" "random_variable T Y"
```
```  1131   then have XY: "random_variable (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
```
```  1132     by (rule measurable_Pair)
```
```  1133
```
```  1134   let ?S = "distr M S X" and ?T = "distr M T Y"
```
```  1135   interpret X: prob_space ?S by (rule prob_space_distr) fact
```
```  1136   interpret Y: prob_space ?T by (rule prob_space_distr) fact
```
```  1137   interpret XY: pair_prob_space ?S ?T ..
```
```  1138
```
```  1139   assume "?S \<Otimes>\<^isub>M ?T = ?J"
```
```  1140
```
```  1141   { fix S and X
```
```  1142     have "Int_stable {X -` A \<inter> space M |A. A \<in> sets S}"
```
```  1143     proof (safe intro!: Int_stableI)
```
```  1144       fix A B assume "A \<in> sets S" "B \<in> sets S"
```
```  1145       then show "\<exists>C. (X -` A \<inter> space M) \<inter> (X -` B \<inter> space M) = (X -` C \<inter> space M) \<and> C \<in> sets S"
```
```  1146         by (intro exI[of _ "A \<inter> B"]) auto
```
```  1147     qed }
```
```  1148   note Int_stable = this
```
```  1149
```
```  1150   show "indep_var S X T Y" unfolding indep_var_eq
```
```  1151   proof (intro conjI indep_set_sigma_sets Int_stable rvs)
```
```  1152     show "indep_set {X -` A \<inter> space M |A. A \<in> sets S} {Y -` A \<inter> space M |A. A \<in> sets T}"
```
```  1153     proof (safe intro!: indep_setI)
```
```  1154       { fix A assume "A \<in> sets S" then show "X -` A \<inter> space M \<in> sets M"
```
```  1155         using `X \<in> measurable M S` by (auto intro: measurable_sets) }
```
```  1156       { fix A assume "A \<in> sets T" then show "Y -` A \<inter> space M \<in> sets M"
```
```  1157         using `Y \<in> measurable M T` by (auto intro: measurable_sets) }
```
```  1158     next
```
```  1159       fix A B assume ab: "A \<in> sets S" "B \<in> sets T"
```
```  1160       then have "ereal (prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M))) = emeasure ?J (A \<times> B)"
```
```  1161         using XY by (auto simp add: emeasure_distr emeasure_eq_measure intro!: arg_cong[where f="prob"])
```
```  1162       also have "\<dots> = emeasure (?S \<Otimes>\<^isub>M ?T) (A \<times> B)"
```
```  1163         unfolding `?S \<Otimes>\<^isub>M ?T = ?J` ..
```
```  1164       also have "\<dots> = emeasure ?S A * emeasure ?T B"
```
```  1165         using ab by (simp add: Y.emeasure_pair_measure_Times)
```
```  1166       finally show "prob ((X -` A \<inter> space M) \<inter> (Y -` B \<inter> space M)) =
```
```  1167         prob (X -` A \<inter> space M) * prob (Y -` B \<inter> space M)"
```
```  1168         using rvs ab by (simp add: emeasure_eq_measure emeasure_distr)
```
```  1169     qed
```
```  1170   qed
```
```  1171 qed
```
```  1172
```
```  1173 end
```