summary |
shortlog |
changelog |
graph |
tags |
bookmarks |
branches |
files |
changeset |
file |
latest |
revisions |
annotate |
diff |
comparison |
raw |
help

src/HOL/Quickcheck_Examples/Quickcheck_Examples.thy

author | wenzelm |

Wed, 29 Oct 2014 11:19:27 +0100 | |

changeset 58813 | 625d04d4fd2a |

parent 58310 | 91ea607a34d8 |

child 58889 | 5b7a9633cfa8 |

permissions | -rw-r--r-- |

tuned;

(* Title: HOL/Quickcheck_Examples/Quickcheck_Examples.thy Author: Stefan Berghofer, Lukas Bulwahn Copyright 2004 - 2010 TU Muenchen *) header {* Examples for the 'quickcheck' command *} theory Quickcheck_Examples imports Complex_Main "~~/src/HOL/Library/Dlist" "~~/src/HOL/Library/DAList_Multiset" begin text {* The 'quickcheck' command allows to find counterexamples by evaluating formulae. Currently, there are two different exploration schemes: - random testing: this is incomplete, but explores the search space faster. - exhaustive testing: this is complete, but increasing the depth leads to exponentially many assignments. quickcheck can handle quantifiers on finite universes. *} declare [[quickcheck_timeout = 3600]] subsection {* Lists *} theorem "map g (map f xs) = map (g o f) xs" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, size = 3, expect = no_counterexample] oops theorem "map g (map f xs) = map (f o g) xs" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops theorem "rev (xs @ ys) = rev ys @ rev xs" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, expect = no_counterexample] quickcheck[exhaustive, size = 1000, timeout = 0.1] oops theorem "rev (xs @ ys) = rev xs @ rev ys" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops theorem "rev (rev xs) = xs" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, expect = no_counterexample] oops theorem "rev xs = xs" quickcheck[tester = random, finite_types = true, report = false, expect = counterexample] quickcheck[tester = random, finite_types = false, report = false, expect = counterexample] quickcheck[tester = random, finite_types = true, report = true, expect = counterexample] quickcheck[tester = random, finite_types = false, report = true, expect = counterexample] quickcheck[tester = exhaustive, finite_types = true, expect = counterexample] quickcheck[tester = exhaustive, finite_types = false, expect = counterexample] oops text {* An example involving functions inside other data structures *} primrec app :: "('a \<Rightarrow> 'a) list \<Rightarrow> 'a \<Rightarrow> 'a" where "app [] x = x" | "app (f # fs) x = app fs (f x)" lemma "app (fs @ gs) x = app gs (app fs x)" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, size = 2, expect = no_counterexample] by (induct fs arbitrary: x) simp_all lemma "app (fs @ gs) x = app fs (app gs x)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops primrec occurs :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" where "occurs a [] = 0" | "occurs a (x#xs) = (if (x=a) then Suc(occurs a xs) else occurs a xs)" primrec del1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "del1 a [] = []" | "del1 a (x#xs) = (if (x=a) then xs else (x#del1 a xs))" text {* A lemma, you'd think to be true from our experience with delAll *} lemma "Suc (occurs a (del1 a xs)) = occurs a xs" -- {* Wrong. Precondition needed.*} quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops lemma "xs ~= [] \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] -- {* Also wrong.*} oops lemma "0 < occurs a xs \<longrightarrow> Suc (occurs a (del1 a xs)) = occurs a xs" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, expect = no_counterexample] by (induct xs) auto primrec replace :: "'a \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "replace a b [] = []" | "replace a b (x#xs) = (if (x=a) then (b#(replace a b xs)) else (x#(replace a b xs)))" lemma "occurs a xs = occurs b (replace a b xs)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] -- {* Wrong. Precondition needed.*} oops lemma "occurs b xs = 0 \<or> a=b \<longrightarrow> occurs a xs = occurs b (replace a b xs)" quickcheck[random, expect = no_counterexample] quickcheck[exhaustive, expect = no_counterexample] by (induct xs) simp_all subsection {* Trees *} datatype 'a tree = Twig | Leaf 'a | Branch "'a tree" "'a tree" primrec leaves :: "'a tree \<Rightarrow> 'a list" where "leaves Twig = []" | "leaves (Leaf a) = [a]" | "leaves (Branch l r) = (leaves l) @ (leaves r)" primrec plant :: "'a list \<Rightarrow> 'a tree" where "plant [] = Twig " | "plant (x#xs) = Branch (Leaf x) (plant xs)" primrec mirror :: "'a tree \<Rightarrow> 'a tree" where "mirror (Twig) = Twig " | "mirror (Leaf a) = Leaf a " | "mirror (Branch l r) = Branch (mirror r) (mirror l)" theorem "plant (rev (leaves xt)) = mirror xt" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] --{* Wrong! *} oops theorem "plant((leaves xt) @ (leaves yt)) = Branch xt yt" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] --{* Wrong! *} oops datatype 'a ntree = Tip "'a" | Node "'a" "'a ntree" "'a ntree" primrec inOrder :: "'a ntree \<Rightarrow> 'a list" where "inOrder (Tip a)= [a]" | "inOrder (Node f x y) = (inOrder x)@[f]@(inOrder y)" primrec root :: "'a ntree \<Rightarrow> 'a" where "root (Tip a) = a" | "root (Node f x y) = f" theorem "hd (inOrder xt) = root xt" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] --{* Wrong! *} oops subsection {* Exhaustive Testing beats Random Testing *} text {* Here are some examples from mutants from the List theory where exhaustive testing beats random testing *} lemma "[] ~= xs ==> hd xs = last (x # xs)" quickcheck[random] quickcheck[exhaustive, expect = counterexample] oops lemma assumes "!!i. [| i < n; i < length xs |] ==> P (xs ! i)" "n < length xs ==> ~ P (xs ! n)" shows "drop n xs = takeWhile P xs" quickcheck[random, iterations = 10000, quiet] quickcheck[exhaustive, expect = counterexample] oops lemma "i < length (List.transpose (List.transpose xs)) ==> xs ! i = map (%xs. xs ! i) [ys<-xs. i < length ys]" quickcheck[random, iterations = 10000] quickcheck[exhaustive, expect = counterexample] oops lemma "i < n - m ==> f (lcm m i) = map f [m..<n] ! i" quickcheck[random, iterations = 10000, finite_types = false] quickcheck[exhaustive, finite_types = false, expect = counterexample] oops lemma "i < n - m ==> f (lcm m i) = map f [m..<n] ! i" quickcheck[random, iterations = 10000, finite_types = false] quickcheck[exhaustive, finite_types = false, expect = counterexample] oops lemma "ns ! k < length ns ==> k <= listsum ns" quickcheck[random, iterations = 10000, finite_types = false, quiet] quickcheck[exhaustive, finite_types = false, expect = counterexample] oops lemma "[| ys = x # xs1; zs = xs1 @ xs |] ==> ys @ zs = x # xs" quickcheck[random, iterations = 10000] quickcheck[exhaustive, expect = counterexample] oops lemma "i < length xs ==> take (Suc i) xs = [] @ xs ! i # take i xs" quickcheck[random, iterations = 10000] quickcheck[exhaustive, expect = counterexample] oops lemma "i < length xs ==> take (Suc i) xs = (xs ! i # xs) @ take i []" quickcheck[random, iterations = 10000] quickcheck[exhaustive, expect = counterexample] oops lemma "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-remdups xs. i < length ys]" quickcheck[random] quickcheck[exhaustive, expect = counterexample] oops lemma "[| sorted (rev (map length xs)); i < length xs |] ==> xs ! i = map (%ys. ys ! i) [ys<-List.transpose xs. length ys \<in> {..<i}]" quickcheck[random] quickcheck[exhaustive, expect = counterexample] oops lemma "(ys = zs) = (xs @ ys = splice xs zs)" quickcheck[random] quickcheck[exhaustive, expect = counterexample] oops subsection {* Random Testing beats Exhaustive Testing *} lemma mult_inj_if_coprime_nat: "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)" quickcheck[exhaustive] quickcheck[random] oops subsection {* Examples with quantifiers *} text {* These examples show that we can handle quantifiers. *} lemma "(\<exists>x. P x) \<longrightarrow> (\<forall>x. P x)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops lemma "(\<forall>x. \<exists>y. P x y) \<longrightarrow> (\<exists>y. \<forall>x. P x y)" quickcheck[random, expect = counterexample] quickcheck[expect = counterexample] oops lemma "(\<exists>x. P x) \<longrightarrow> (EX! x. P x)" quickcheck[random, expect = counterexample] quickcheck[expect = counterexample] oops subsection {* Examples with sets *} lemma "{} = A Un - A" quickcheck[exhaustive, expect = counterexample] oops lemma "[| bij_betw f A B; bij_betw f C D |] ==> bij_betw f (A Un C) (B Un D)" quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with relations *} lemma "acyclic (R :: ('a * 'a) set) ==> acyclic S ==> acyclic (R Un S)" quickcheck[exhaustive, expect = counterexample] oops lemma "acyclic (R :: (nat * nat) set) ==> acyclic S ==> acyclic (R Un S)" quickcheck[exhaustive, expect = counterexample] oops (* FIXME: some dramatic performance decrease after changing the code equation of the ntrancl *) lemma "(x, z) : rtrancl (R Un S) ==> \<exists> y. (x, y) : rtrancl R & (y, z) : rtrancl S" (*quickcheck[exhaustive, expect = counterexample]*) oops lemma "wf (R :: ('a * 'a) set) ==> wf S ==> wf (R Un S)" quickcheck[exhaustive, expect = counterexample] oops lemma "wf (R :: (nat * nat) set) ==> wf S ==> wf (R Un S)" quickcheck[exhaustive, expect = counterexample] oops lemma "wf (R :: (int * int) set) ==> wf S ==> wf (R Un S)" quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with the descriptive operator *} lemma "(THE x. x = a) = b" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with Multisets *} lemma "X + Y = Y + (Z :: 'a multiset)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops lemma "X - Y = Y - (Z :: 'a multiset)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops lemma "N + M - N = (N::'a multiset)" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with numerical types *} text {* Quickcheck supports the common types nat, int, rat and real. *} lemma "(x :: nat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z" quickcheck[exhaustive, size = 10, expect = counterexample] quickcheck[random, size = 10] oops lemma "(x :: int) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z" quickcheck[exhaustive, size = 10, expect = counterexample] quickcheck[random, size = 10] oops lemma "(x :: rat) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z" quickcheck[exhaustive, size = 10, expect = counterexample] quickcheck[random, size = 10] oops lemma "(x :: rat) >= 0" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops lemma "(x :: real) > 0 ==> y > 0 ==> z > 0 ==> x * x + y * y \<noteq> z * z" quickcheck[exhaustive, size = 10, expect = counterexample] quickcheck[random, size = 10] oops lemma "(x :: real) >= 0" quickcheck[random, expect = counterexample] quickcheck[exhaustive, expect = counterexample] oops subsubsection {* floor and ceiling functions *} lemma "floor x + floor y = floor (x + y :: rat)" quickcheck[expect = counterexample] oops lemma "floor x + floor y = floor (x + y :: real)" quickcheck[expect = counterexample] oops lemma "ceiling x + ceiling y = ceiling (x + y :: rat)" quickcheck[expect = counterexample] oops lemma "ceiling x + ceiling y = ceiling (x + y :: real)" quickcheck[expect = counterexample] oops subsection {* Examples with abstract types *} lemma "Dlist.length (Dlist.remove x xs) = Dlist.length xs - 1" quickcheck[exhaustive] quickcheck[random] oops lemma "Dlist.length (Dlist.insert x xs) = Dlist.length xs + 1" quickcheck[exhaustive] quickcheck[random] oops subsection {* Examples with Records *} record point = xpos :: nat ypos :: nat lemma "xpos r = xpos r' ==> r = r'" quickcheck[exhaustive, expect = counterexample] quickcheck[random, expect = counterexample] oops datatype colour = Red | Green | Blue record cpoint = point + colour :: colour lemma "xpos r = xpos r' ==> ypos r = ypos r' ==> (r :: cpoint) = r'" quickcheck[exhaustive, expect = counterexample] quickcheck[random, expect = counterexample] oops subsection {* Examples with locales *} locale Truth context Truth begin lemma "False" quickcheck[exhaustive, expect = counterexample] oops end interpretation Truth . context Truth begin lemma "False" quickcheck[exhaustive, expect = counterexample] oops end locale antisym = fixes R assumes "R x y --> R y x --> x = y" interpretation equal : antisym "op =" by default simp interpretation order_nat : antisym "op <= :: nat => _ => _" by default simp lemma (in antisym) "R x y --> R y z --> R x z" quickcheck[exhaustive, finite_type_size = 2, expect = no_counterexample] quickcheck[exhaustive, expect = counterexample] oops declare [[quickcheck_locale = "interpret"]] lemma (in antisym) "R x y --> R y z --> R x z" quickcheck[exhaustive, expect = no_counterexample] oops declare [[quickcheck_locale = "expand"]] lemma (in antisym) "R x y --> R y z --> R x z" quickcheck[exhaustive, finite_type_size = 2, expect = no_counterexample] quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with HOL quantifiers *} lemma "\<forall> xs ys. xs = [] --> xs = ys" quickcheck[exhaustive, expect = counterexample] oops lemma "ys = [] --> (\<forall>xs. xs = [] --> xs = y # ys)" quickcheck[exhaustive, expect = counterexample] oops lemma "\<forall>xs. (\<exists> ys. ys = []) --> xs = ys" quickcheck[exhaustive, expect = counterexample] oops subsection {* Examples with underspecified/partial functions *} lemma "xs = [] ==> hd xs \<noteq> x" quickcheck[exhaustive, expect = no_counterexample] quickcheck[random, report = false, expect = no_counterexample] quickcheck[random, report = true, expect = no_counterexample] oops lemma "xs = [] ==> hd xs = x" quickcheck[exhaustive, expect = no_counterexample] quickcheck[random, report = false, expect = no_counterexample] quickcheck[random, report = true, expect = no_counterexample] oops lemma "xs = [] ==> hd xs = x ==> x = y" quickcheck[exhaustive, expect = no_counterexample] quickcheck[random, report = false, expect = no_counterexample] quickcheck[random, report = true, expect = no_counterexample] oops text {* with the simple testing scheme *} setup Exhaustive_Generators.setup_exhaustive_datatype_interpretation declare [[quickcheck_full_support = false]] lemma "xs = [] ==> hd xs \<noteq> x" quickcheck[exhaustive, expect = no_counterexample] oops lemma "xs = [] ==> hd xs = x" quickcheck[exhaustive, expect = no_counterexample] oops lemma "xs = [] ==> hd xs = x ==> x = y" quickcheck[exhaustive, expect = no_counterexample] oops declare [[quickcheck_full_support = true]] subsection {* Equality Optimisation *} lemma "f x = y ==> y = (0 :: nat)" quickcheck oops lemma "y = f x ==> y = (0 :: nat)" quickcheck oops lemma "f y = zz # zzs ==> zz = (0 :: nat) \<and> zzs = []" quickcheck oops lemma "f y = x # x' # xs ==> x = (0 :: nat) \<and> x' = 0 \<and> xs = []" quickcheck oops lemma "x = f x \<Longrightarrow> x = (0 :: nat)" quickcheck oops lemma "f y = x # x # xs ==> x = (0 :: nat) \<and> xs = []" quickcheck oops lemma "m1 k = Some v \<Longrightarrow> (m1 ++ m2) k = Some v" quickcheck oops end