3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1991 University of Cambridge
6 Tactics and lemmas for fol.thy (classical First-Order Logic)
11 signature FOL_LEMMAS =
14 val excluded_middle : thm
16 val ex_classical : thm
24 structure FOL_Lemmas : FOL_LEMMAS =
27 (*** Classical introduction rules for | and EX ***)
29 val disjCI = prove_goal FOL.thy
32 [ (resolve_tac [classical] 1),
33 (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
34 (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
36 (*introduction rule involving only EX*)
37 val ex_classical = prove_goal FOL.thy
38 "( ~(EX x. P(x)) ==> P(a)) ==> EX x.P(x)"
40 [ (resolve_tac [classical] 1),
41 (eresolve_tac (prems RL [exI]) 1) ]);
43 (*version of above, simplifying ~EX to ALL~ *)
44 val exCI = prove_goal FOL.thy
45 "(ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)"
47 [ (resolve_tac [ex_classical] 1),
48 (resolve_tac [notI RS allI RS prem] 1),
49 (eresolve_tac [notE] 1),
50 (eresolve_tac [exI] 1) ]);
52 val excluded_middle = prove_goal FOL.thy "~P | P"
53 (fn _=> [ rtac disjCI 1, assume_tac 1 ]);
56 (*** Special elimination rules *)
59 (*Classical implies (-->) elimination. *)
60 val impCE = prove_goal FOL.thy
61 "[| P-->Q; ~P ==> R; Q ==> R |] ==> R"
63 [ (resolve_tac [excluded_middle RS disjE] 1),
64 (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
66 (*Double negation law*)
67 val notnotD = prove_goal FOL.thy "~~P ==> P"
69 [ (resolve_tac [classical] 1), (eresolve_tac [major RS notE] 1) ]);
72 (*** Tactics for implication and contradiction ***)
74 (*Classical <-> elimination. Proof substitutes P=Q in
75 ~P ==> ~Q and P ==> Q *)
76 val iffCE = prove_goalw FOL.thy [iff_def]
77 "[| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R"
79 [ (resolve_tac [conjE] 1),
80 (REPEAT (DEPTH_SOLVE_1
81 (etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]);
84 (*Should be used as swap since ~P becomes redundant*)
85 val swap = prove_goal FOL.thy
86 "~P ==> (~Q ==> P) ==> Q"
88 [ (resolve_tac [classical] 1),
89 (rtac (major RS notE) 1),
90 (REPEAT (ares_tac prems 1)) ]);