1 (* Title: HOLCF/fun1.ML
3 Author: Franz Regensburger
4 Copyright 1993 Technische Universitaet Muenchen
11 (* ------------------------------------------------------------------------ *)
12 (* less_fun is a partial order on 'a => 'b *)
13 (* ------------------------------------------------------------------------ *)
15 val refl_less_fun = prove_goalw Fun1.thy [less_fun_def] "less_fun(f,f)"
18 (fast_tac (HOL_cs addSIs [refl_less]) 1)
21 val antisym_less_fun = prove_goalw Fun1.thy [less_fun_def]
22 "[|less_fun(f1,f2); less_fun(f2,f1)|] ==> f1 = f2"
25 (cut_facts_tac prems 1),
26 (rtac (expand_fun_eq RS ssubst) 1),
27 (fast_tac (HOL_cs addSIs [antisym_less]) 1)
30 val trans_less_fun = prove_goalw Fun1.thy [less_fun_def]
31 "[|less_fun(f1,f2); less_fun(f2,f3)|] ==> less_fun(f1,f3)"
34 (cut_facts_tac prems 1),
39 ((etac allE 1) THEN (atac 1))
43 --------------------------------------------------------------------------
44 Since less_fun :: "['a::term=>'b::po,'a::term=>'b::po] => bool" the
45 lemmas refl_less_fun, antisym_less_fun, trans_less_fun justify
46 the class arity fun::(term,po)po !!
47 --------------------------------------------------------------------------